Propagating Wave of ERK Activation Orients Collective Cell Migration

The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular sig...

Full description

Saved in:
Bibliographic Details
Published in:Developmental cell Vol. 43; no. 3; p. 305
Main Authors: Aoki, Kazuhiro, Kondo, Yohei, Naoki, Honda, Hiratsuka, Toru, Itoh, Reina E, Matsuda, Michiyuki
Format: Journal Article
Language:English
Published: United States 06.11.2017
Subjects:
ISSN:1878-1551, 1878-1551
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.
AbstractList The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.
The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.
Author Itoh, Reina E
Naoki, Honda
Hiratsuka, Toru
Kondo, Yohei
Matsuda, Michiyuki
Aoki, Kazuhiro
Author_xml – sequence: 1
  givenname: Kazuhiro
  surname: Aoki
  fullname: Aoki, Kazuhiro
  email: k-aoki@nibb.ac.jp
  organization: Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Higashiyama 5-1, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, Faculty of Life Science, Sokendai (Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8787, Japan. Electronic address: k-aoki@nibb.ac.jp
– sequence: 2
  givenname: Yohei
  surname: Kondo
  fullname: Kondo, Yohei
  organization: Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Higashiyama 5-1, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, Faculty of Life Science, Sokendai (Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8787, Japan; Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 3
  givenname: Honda
  surname: Naoki
  fullname: Naoki, Honda
  organization: Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 4
  givenname: Toru
  surname: Hiratsuka
  fullname: Hiratsuka, Toru
  organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 5
  givenname: Reina E
  surname: Itoh
  fullname: Itoh, Reina E
  organization: Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Higashiyama 5-1, Okazaki, Aichi 444-8787, Japan
– sequence: 6
  givenname: Michiyuki
  surname: Matsuda
  fullname: Matsuda, Michiyuki
  organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29112851$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAUhoNMnJv-A5FcetOakyVNdjnq_MDJRBQvS5qejo6smU038N8bdYJX7-Hh4cD7jsig9S0ScgEsBQbZ9TqtcG_RpZyBiiiN8IicglY6ASlh8O8eklEIaxYN0OyEDPkUgGsJp-TmufNbszJ9067ou9kj9TWdvzzSme2bfcS-pcuuwbYPNPfO4TdGmqNz9KlZdT_GGTmujQt4fsgxebudv-b3yWJ595DPFokVSvRJpTQgn2hRqhqhqlCDyoyuOSpbmlLwcjoREqWtmeKW8WgLjVlZARdg0fAxufr9u-38xw5DX2yaECdwpkW_CwVMYz-ZSTaJ6uVB3ZUbrIpt12xM91n8NedfXP1d5g
CitedBy_id crossref_primary_10_1016_j_devcel_2024_11_003
crossref_primary_10_1038_s41598_021_83396_6
crossref_primary_10_1038_s41556_024_01413_y
crossref_primary_10_1242_dev_191767
crossref_primary_10_1016_j_mvr_2022_104338
crossref_primary_10_1016_j_devcel_2020_05_011
crossref_primary_10_1091_mbc_E19_12_0709
crossref_primary_10_1103_r4fs_4qqk
crossref_primary_10_1016_j_phytol_2018_07_019
crossref_primary_10_1038_s41567_023_02103_6
crossref_primary_10_3390_ijms20030679
crossref_primary_10_1146_annurev_bioeng_083120_111648
crossref_primary_10_3390_ijms26073040
crossref_primary_10_1073_pnas_2408628121
crossref_primary_10_1016_j_bbrc_2018_04_205
crossref_primary_10_1165_rcmb_2024_0547ED
crossref_primary_10_1371_journal_pcbi_1008462
crossref_primary_10_7554_eLife_60541
crossref_primary_10_1016_j_cub_2019_06_030
crossref_primary_10_1016_j_cej_2025_163899
crossref_primary_10_1016_j_semcdb_2025_103628
crossref_primary_10_1016_j_cdev_2025_203995
crossref_primary_10_1111_boc_201800075
crossref_primary_10_1016_j_cobme_2020_100250
crossref_primary_10_1038_s41580_025_00858_9
crossref_primary_10_1002_wsbm_1479
crossref_primary_10_1063_5_0114334
crossref_primary_10_1371_journal_pone_0204957
crossref_primary_10_1073_pnas_2318155121
crossref_primary_10_7554_eLife_54894
crossref_primary_10_1016_j_cell_2023_06_019
crossref_primary_10_7554_eLife_83796
crossref_primary_10_1016_j_cels_2020_02_005
crossref_primary_10_1042_BCJ20220223
crossref_primary_10_1016_j_ultras_2022_106852
crossref_primary_10_1002_cbic_202500327
crossref_primary_10_1016_j_ceb_2023_102249
crossref_primary_10_1016_j_devcel_2021_05_007
crossref_primary_10_1016_j_devcel_2021_05_006
crossref_primary_10_1016_j_pbiomolbio_2024_11_005
crossref_primary_10_1247_csf_22074
crossref_primary_10_1016_j_peptides_2025_171350
crossref_primary_10_1088_1478_3975_acf7a1
crossref_primary_10_1242_jcs_261199
crossref_primary_10_1247_csf_23045
crossref_primary_10_1038_s42003_024_06583_x
crossref_primary_10_1016_j_semcdb_2025_103615
crossref_primary_10_1016_j_ceb_2020_07_004
crossref_primary_10_1242_jcs_263779
crossref_primary_10_1038_s41586_020_03085_8
crossref_primary_10_1103_PhysRevE_105_024404
crossref_primary_10_1242_jcs_259685
crossref_primary_10_1038_s41419_020_2610_1
crossref_primary_10_1021_acsbiomaterials_8b01428
crossref_primary_10_7554_eLife_86727_3
crossref_primary_10_1073_pnas_2026123118
crossref_primary_10_1091_mbc_E19_08_0474
crossref_primary_10_1038_s41580_021_00375_5
crossref_primary_10_1016_j_cbpa_2022_102224
crossref_primary_10_1038_s41467_022_33727_6
crossref_primary_10_1038_s41556_021_00654_5
crossref_primary_10_1016_j_bpj_2021_05_004
crossref_primary_10_15252_msb_202010026
crossref_primary_10_1080_09168451_2018_1547105
crossref_primary_10_1016_j_semcancer_2019_05_004
crossref_primary_10_1016_j_celrep_2024_115193
crossref_primary_10_1038_s41598_025_13686_w
crossref_primary_10_1242_dev_199710
crossref_primary_10_1002_advs_202302327
crossref_primary_10_1016_j_cels_2025_101203
crossref_primary_10_1083_jcb_202207048
crossref_primary_10_1016_j_devcel_2022_08_008
crossref_primary_10_1038_s41598_020_57756_7
crossref_primary_10_1371_journal_pcbi_1009293
crossref_primary_10_1038_s41567_020_0875_z
crossref_primary_10_3390_ijms23179580
crossref_primary_10_3390_ma14040935
crossref_primary_10_1111_pin_12925
crossref_primary_10_1101_cshperspect_a041519
crossref_primary_10_1146_annurev_cellbio_013020_103810
crossref_primary_10_3389_fcell_2024_1385991
crossref_primary_10_1186_s44330_025_00033_8
crossref_primary_10_1091_mbc_E20_10_0681
crossref_primary_10_1126_scisignal_adr7926
crossref_primary_10_1007_s10911_025_09574_8
crossref_primary_10_7554_eLife_86727
crossref_primary_10_3390_biophysica3020022
crossref_primary_10_1093_jb_mvaa085
crossref_primary_10_1007_s10237_022_01603_3
crossref_primary_10_1002_advs_201801826
crossref_primary_10_1016_j_ceb_2022_01_011
crossref_primary_10_1242_dev_201139
crossref_primary_10_1016_j_ceb_2022_102130
crossref_primary_10_1242_jcs_223974
crossref_primary_10_1038_s41598_021_85056_1
crossref_primary_10_1371_journal_pcbi_1012846
crossref_primary_10_7554_eLife_58945
crossref_primary_10_1016_j_devcel_2022_12_008
crossref_primary_10_1016_j_ydbio_2020_10_013
crossref_primary_10_1088_1361_648X_aabd9f
crossref_primary_10_3389_fcell_2021_704939
crossref_primary_10_1016_j_ceb_2023_102217
crossref_primary_10_1016_j_gde_2018_06_013
crossref_primary_10_1016_j_gde_2024_102228
crossref_primary_10_1038_s41567_022_01747_0
crossref_primary_10_1016_j_ceb_2021_04_006
crossref_primary_10_1007_s11010_020_03732_8
crossref_primary_10_1016_j_devcel_2019_01_022
crossref_primary_10_1038_s41580_020_0255_7
crossref_primary_10_1016_j_tice_2021_101714
crossref_primary_10_1016_j_jtbi_2025_112070
crossref_primary_10_1016_j_ydbio_2018_02_003
crossref_primary_10_1371_journal_pcbi_1011306
crossref_primary_10_26508_lsa_202101206
crossref_primary_10_1002_jcp_30190
crossref_primary_10_1002_adfm_202316675
crossref_primary_10_3389_fcell_2023_1087650
crossref_primary_10_3389_fmolb_2022_998475
crossref_primary_10_1093_pnasnexus_pgaf232
crossref_primary_10_1038_s41598_022_06269_6
crossref_primary_10_1172_JCI160227
crossref_primary_10_1093_pnasnexus_pgac002
crossref_primary_10_1002_adbi_202400384
crossref_primary_10_3390_cancers11040513
crossref_primary_10_1093_neuonc_noad161
crossref_primary_10_1007_s12551_020_00633_4
crossref_primary_10_1038_s41598_023_40049_0
crossref_primary_10_1042_BCJ20220021
crossref_primary_10_1247_csf_24064
crossref_primary_10_1242_dev_201231
crossref_primary_10_1002_anie_201911190
crossref_primary_10_1016_j_devcel_2018_06_004
crossref_primary_10_7554_eLife_62196
crossref_primary_10_1016_j_jbc_2022_102803
crossref_primary_10_1038_s41598_025_15071_z
crossref_primary_10_1016_j_bpj_2021_06_036
crossref_primary_10_1146_annurev_biophys_111521_102500
crossref_primary_10_1038_s41567_020_01037_7
crossref_primary_10_3390_ijms222011223
crossref_primary_10_1002_cm_21881
crossref_primary_10_3389_fcell_2024_1430911
crossref_primary_10_1083_jcb_201701158
crossref_primary_10_1165_rcmb_2024_0256OC
crossref_primary_10_1146_annurev_cellbio_120420_095337
crossref_primary_10_3390_bioengineering10020269
crossref_primary_10_2116_analsci_18SDP06
crossref_primary_10_2131_jts_50_459
crossref_primary_10_3390_bios15090614
crossref_primary_10_1002_lipd_12281
crossref_primary_10_1016_j_ejphar_2024_177124
crossref_primary_10_1016_j_ydbio_2025_04_009
crossref_primary_10_1016_j_cub_2018_11_007
crossref_primary_10_1016_j_devcel_2018_06_021
crossref_primary_10_1038_s41580_024_00719_x
crossref_primary_10_1038_s41598_022_17312_x
crossref_primary_10_1016_j_devcel_2022_09_003
crossref_primary_10_1155_2021_5582943
crossref_primary_10_1073_pnas_2318871121
crossref_primary_10_3390_ijms19124052
crossref_primary_10_1016_j_semcdb_2024_12_004
crossref_primary_10_1038_s41467_020_18841_7
crossref_primary_10_3389_fphys_2021_771040
crossref_primary_10_1007_s00018_023_05007_z
crossref_primary_10_1007_s12094_021_02763_x
crossref_primary_10_1016_j_celrep_2024_114986
crossref_primary_10_3389_fcell_2018_00004
crossref_primary_10_7554_eLife_61092
crossref_primary_10_1016_j_cels_2025_101241
crossref_primary_10_1042_BCJ20210557
crossref_primary_10_1038_s41467_018_07150_9
crossref_primary_10_1038_s41467_024_50119_0
crossref_primary_10_3389_fcell_2024_1373609
crossref_primary_10_1016_j_ceb_2024_102368
crossref_primary_10_1002_ange_201911190
crossref_primary_10_1016_j_gde_2020_01_004
crossref_primary_10_1016_j_neures_2019_12_018
crossref_primary_10_1242_dev_204684
crossref_primary_10_1016_j_semcdb_2021_07_003
crossref_primary_10_1242_dev_199767
crossref_primary_10_15252_embr_202357739
crossref_primary_10_1016_j_ajpath_2018_07_010
crossref_primary_10_1371_journal_pcbi_1011155
crossref_primary_10_1016_j_cell_2019_05_052
crossref_primary_10_1016_j_devcel_2020_06_002
crossref_primary_10_1002_advs_202307487
crossref_primary_10_1042_BCJ20230277
crossref_primary_10_1042_BCJ20230276
ContentType Journal Article
Copyright Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.devcel.2017.10.016
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1878-1551
ExternalDocumentID 29112851
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
2WC
4.4
457
4G.
53G
5GY
62-
7-5
AACTN
AAEDT
AAEDW
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
7X8
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c474t-d781e2384b7fe1dde8176a8f2e7cbab42b9345e5cf072c0281e48e6bd1241cea2
IEDL.DBID 7X8
ISICitedReferencesCount 210
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414584300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1878-1551
IngestDate Wed Oct 01 13:11:14 EDT 2025
Thu Apr 03 07:07:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords myosin light chain
simulation
mathematical model
FRET
force
collective cell migration
ERK
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-d781e2384b7fe1dde8176a8f2e7cbab42b9345e5cf072c0281e48e6bd1241cea2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.devcel.2017.10.016
PMID 29112851
PQID 1961856503
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1961856503
pubmed_primary_29112851
PublicationCentury 2000
PublicationDate 2017-11-06
PublicationDateYYYYMMDD 2017-11-06
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental cell
PublicationTitleAlternate Dev Cell
PublicationYear 2017
SSID ssj0016180
Score 2.6291234
Snippet The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 305
SubjectTerms Actomyosin - metabolism
Animals
Cell Movement - physiology
Dogs
Enzyme Activation
Epithelial Cells - cytology
Kidney - metabolism
MAP Kinase Signaling System - physiology
Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Wound Healing - physiology
Title Propagating Wave of ERK Activation Orients Collective Cell Migration
URI https://www.ncbi.nlm.nih.gov/pubmed/29112851
https://www.proquest.com/docview/1961856503
Volume 43
WOSCitedRecordID wos000414584300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qFHzxfpk3IvhabdqsSZ9kzA1BN4co7q0kaTIGo53rHPjvPUlb9iQIQulboJyefPlybh9CNwE1YZyGxlPK9z0qROjZ_kkvZUIqHkseSTfE9ZkNBnw0iodVwK2oyiprTHRAnebKxsjviJUmAfbhh_ezT8-qRtnsaiWhsY4aIVAZ69VstMoiwArXEMntTQmoQd065-q7Ur1U2iYfCLu19V0k-p1kusOmt_vfz9xDOxXNxO3SL_bRms4O0FYpPPl9iB6Gc7gs2-Ea2Rh_iKXGucHd1yfcVrXcGX6xE5AXBXahBYeKuKOnU9yfjEuvOULvve5b59Gr9BQ8RRldgP050XBEU8mMJoBrnLBIcBNopqSQNJBxSFu6pYzPAgXEg2jKdSRT4ABEaREco40sz_QpwsoQIpkfw6NpbFqAqSINozRVRnHK_Sa6rs2TgL_aJITIdP5VJCsDNdFJaeNkVg7WSAJA3gAo4NkfVp-jbfvrXFtgdIEaBnarvkSbarmYFPMr5wjwHgz7P2HXvQo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagating+Wave+of+ERK+Activation+Orients+Collective+Cell+Migration&rft.jtitle=Developmental+cell&rft.au=Aoki%2C+Kazuhiro&rft.au=Kondo%2C+Yohei&rft.au=Naoki%2C+Honda&rft.au=Hiratsuka%2C+Toru&rft.date=2017-11-06&rft.issn=1878-1551&rft.eissn=1878-1551&rft.volume=43&rft.issue=3&rft.spage=305&rft_id=info:doi/10.1016%2Fj.devcel.2017.10.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-1551&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-1551&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-1551&client=summon