Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders

Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 10; H. 1; S. 10971
Hauptverfasser: Sood, Meemansa, Sahay, Akrishta, Karki, Reagon, Emon, Mohammad Asif, Vrooman, Henri, Hofmann-Apitius, Martin, Fröhlich, Holger
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 03.07.2020
Nature Publishing Group
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need to be analyzed and compared. A large number of clinical studies is nowadays conducted in the context of drug development in pharmaceutical research. However, legal and ethical constraints typically do not allow for sharing sensitive patient data. In consequence there exist data “silos”, which slow down the overall scientific progress in translational research. In this paper, we suggest the idea of a virtual cohort (VC) to address this limitation. Our key idea is to describe a longitudinal patient cohort with the help of a generative statistical model, namely a modular Bayesian Network, in which individual modules are represented as sparse autoencoder networks. We show that with the help of such a model we can simulate subjects that are highly similar to real ones. Our approach allows for incorporating arbitrary multi-scale, multi-modal data without making specific distribution assumptions. Moreover, we demonstrate the possibility to simulate interventions (e.g. via a treatment) in the VC. Overall, our proposed approach opens the possibility to build sufficiently realistic VCs for multiple disease areas in the future.
AbstractList Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need to be analyzed and compared. A large number of clinical studies is nowadays conducted in the context of drug development in pharmaceutical research. However, legal and ethical constraints typically do not allow for sharing sensitive patient data. In consequence there exist data "silos", which slow down the overall scientific progress in translational research. In this paper, we suggest the idea of a virtual cohort (VC) to address this limitation. Our key idea is to describe a longitudinal patient cohort with the help of a generative statistical model, namely a modular Bayesian Network, in which individual modules are represented as sparse autoencoder networks. We show that with the help of such a model we can simulate subjects that are highly similar to real ones. Our approach allows for incorporating arbitrary multi-scale, multi-modal data without making specific distribution assumptions. Moreover, we demonstrate the possibility to simulate interventions (e.g. via a treatment) in the VC. Overall, our proposed approach opens the possibility to build sufficiently realistic VCs for multiple disease areas in the future.
Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need to be analyzed and compared. A large number of clinical studies is nowadays conducted in the context of drug development in pharmaceutical research. However, legal and ethical constraints typically do not allow for sharing sensitive patient data. In consequence there exist data "silos", which slow down the overall scientific progress in translational research. In this paper, we suggest the idea of a virtual cohort (VC) to address this limitation. Our key idea is to describe a longitudinal patient cohort with the help of a generative statistical model, namely a modular Bayesian Network, in which individual modules are represented as sparse autoencoder networks. We show that with the help of such a model we can simulate subjects that are highly similar to real ones. Our approach allows for incorporating arbitrary multi-scale, multi-modal data without making specific distribution assumptions. Moreover, we demonstrate the possibility to simulate interventions (e.g. via a treatment) in the VC. Overall, our proposed approach opens the possibility to build sufficiently realistic VCs for multiple disease areas in the future.Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need to be analyzed and compared. A large number of clinical studies is nowadays conducted in the context of drug development in pharmaceutical research. However, legal and ethical constraints typically do not allow for sharing sensitive patient data. In consequence there exist data "silos", which slow down the overall scientific progress in translational research. In this paper, we suggest the idea of a virtual cohort (VC) to address this limitation. Our key idea is to describe a longitudinal patient cohort with the help of a generative statistical model, namely a modular Bayesian Network, in which individual modules are represented as sparse autoencoder networks. We show that with the help of such a model we can simulate subjects that are highly similar to real ones. Our approach allows for incorporating arbitrary multi-scale, multi-modal data without making specific distribution assumptions. Moreover, we demonstrate the possibility to simulate interventions (e.g. via a treatment) in the VC. Overall, our proposed approach opens the possibility to build sufficiently realistic VCs for multiple disease areas in the future.
ArticleNumber 10971
Author Sahay, Akrishta
Vrooman, Henri
Karki, Reagon
Emon, Mohammad Asif
Sood, Meemansa
Hofmann-Apitius, Martin
Fröhlich, Holger
Author_xml – sequence: 1
  givenname: Meemansa
  surname: Sood
  fullname: Sood, Meemansa
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn
– sequence: 2
  givenname: Akrishta
  surname: Sahay
  fullname: Sahay, Akrishta
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn
– sequence: 3
  givenname: Reagon
  surname: Karki
  fullname: Karki, Reagon
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn
– sequence: 4
  givenname: Mohammad Asif
  surname: Emon
  fullname: Emon, Mohammad Asif
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn
– sequence: 5
  givenname: Henri
  surname: Vrooman
  fullname: Vrooman, Henri
  organization: Department of Radiology and Medical Informatics, Erasmus MC, University Medical Center Rotterdam
– sequence: 6
  givenname: Martin
  orcidid: 0000-0001-9012-6720
  surname: Hofmann-Apitius
  fullname: Hofmann-Apitius, Martin
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn
– sequence: 7
  givenname: Holger
  orcidid: 0000-0002-5328-1243
  surname: Fröhlich
  fullname: Fröhlich, Holger
  email: holger.froehlich@scai.fraunhofer.de
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, UCB Biosciences GmbH
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32620927$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQtFAQeZAf4IAsceHAgMf2vC5IEPGSIiEhOFs9ds_iZdZe3J6gXPh2nOwGQg7xxW13ValaXcfsIMSAjD2pxctaqP4V6boZ-kpIUbWdKpV-wI6k0E0llZQHt-pDdkq0FuU0ctD18IgdKtlKMcjuiP3-gjB7yt5y8ptlhuxj4HHiFz7lBWZe_rKvyMKML_aPTXSlsS1QDJnnBGu0OSaPxBfyYcXfwiWSh8AD5l8x_SAOwXHaQiLksORYYbDRYaLH7OEEM-Hp_j5h396_-3r2sTr__OHT2ZvzyupO58pC47TuUKlhBKsQW9eM3TiVeUarYQCJehqlG_uhce0kbWsdWjtMo0PVO6dO2Oud7nYZN-hsMZ5gNtvkN5AuTQRv_u8E_92s4oXplGrqXhSB53uBFH8uSNlsPFmcZwgYFzJSS1E3rWzaAn12B7qOSwplvIKqh66XZX8F9fS2o79WblZTAP0OYFMkSjgZ6_P1eopBP5tamKsgmF0QTAmCuQ6C0YUq71Bv1O8lqR2JCjisMP2zfQ_rD2kFyqA
CitedBy_id crossref_primary_10_1038_s41746_022_00666_x
crossref_primary_10_1371_journal_pone_0280609
crossref_primary_10_1038_s41531_025_00983_4
crossref_primary_10_1038_s41598_024_62102_2
crossref_primary_10_1016_j_jbi_2021_103837
crossref_primary_10_1016_j_ecoinf_2022_101624
Cites_doi 10.1016/j.neuroimage.2012.10.065
10.1038/ng1165
10.1007/BFb0053999
10.1186/1471-2105-12-77
10.1126/science.1127647
10.1142/S0129065797000227
10.1002/mds.10248
10.1093/biomet/63.3.581
10.1016/j.neuroimage.2006.01.021
10.1016/j.jalz.2017.07.212
10.1111/cts.12492
10.1023/A:1010933404324
10.1038/s41598-018-29433-3
10.1093/bioinformatics/btr597
10.1080/0022250X.2013.877898
10.1007/s10994-006-6889-7
10.18547/gcb.2016.vol2.iss1.e32
10.1016/j.ijar.2019.10.003
10.18637/jss.v035.i03
10.1038/aps.2014.57
10.4097/kjae.2013.64.5.402
10.1038/mp.2013.19
10.1093/bib/bby043
10.1371/journal.pone.0178982
10.1002/sim.7381
10.1016/j.pneurobio.2011.09.005
10.1201/9781420011319
10.1145/2976749.2978318
10.1109/CBD.2016.052
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-020-67398-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central (subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7335180
32620927
10_1038_s41598_020_67398_4
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Innovative Medicines Initiative (IMI)
  grantid: 115568
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: ;
  grantid: 115568
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-ca5d447e339bac3ee6d5b7bf294bc4a9a2e4fb2db895d6f2c6cdecc9fbde38dd3
IEDL.DBID 7X7
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546533700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:33:41 EST 2025
Thu Oct 02 03:57:43 EDT 2025
Tue Oct 07 07:36:38 EDT 2025
Mon Jul 21 05:59:45 EDT 2025
Sat Nov 29 05:33:02 EST 2025
Tue Nov 18 21:22:22 EST 2025
Fri Feb 21 02:38:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ca5d447e339bac3ee6d5b7bf294bc4a9a2e4fb2db895d6f2c6cdecc9fbde38dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5328-1243
0000-0001-9012-6720
OpenAccessLink https://www.proquest.com/docview/2419782038?pq-origsite=%requestingapplication%
PMID 32620927
PQID 2419782038
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7335180
proquest_miscellaneous_2420156256
proquest_journals_2419782038
pubmed_primary_32620927
crossref_citationtrail_10_1038_s41598_020_67398_4
crossref_primary_10_1038_s41598_020_67398_4
springer_journals_10_1038_s41598_020_67398_4
PublicationCentury 2000
PublicationDate 2020-07-03
PublicationDateYYYYMMDD 2020-07-03
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Conrado (CR6) 2018; 11
Gedeon (CR17) 1997; 8
Heckerman, Geiger, Chickering (CR38) 1995; 20
Spirtes, Glymour, Scheines (CR27) 2000
Scutari, Graafland, Gutiérrez (CR37) 2019; 115
Chickering, Heckerman, Meek (CR28) 2004; 5
CR16
Ramaker, Marinus, Stiggelbout, Van Hilten (CR19) 2002; 17
Ramanan (CR18) 2014; 19
CR35
Bernal-Rusiel, Greve, Reuter, Fischl, Sabuncu (CR5) 2013; 66
Kang (CR24) 2013; 64
Pappalardo, Russo, Tshinanu, Viceconti (CR8) 2018; 20
CR32
Scutari (CR33) 2010; 35
Tsamardinos, Brown, Aliferis (CR34) 2006; 65
Henrion, Lemmer, Kanal (CR40) 1988
Hayete (CR3) 2017; 12
Aliferis, Statnikov, Tsamardinos, Mani, Koutsoukos (CR36) 2010; 11
Breiman (CR13) 2001; 45
Qiu, Li, Zhou, Lu (CR4) 2014; 35
Hinton, Salakhutdinov (CR30) 2006; 313
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR31) 2014; 15
Li, Luo (CR1) 2017; 36
Ahmad, Fröhlich (CR9) 2016; 2
Robin (CR14) 2011; 12
CR29
Mustillo, Kwon (CR25) 2015; 39
Desikan (CR41) 2006; 31
Pearl (CR20) 2000
Ghahramani, Giles, Gori (CR22) 1998
Initiative (CR12) 2011; 95
Khanna (CR2) 2018; 8
CR21
Segal (CR11) 2003; 34
Koller, Friedman (CR10) 2009
Rubin (CR23) 1976; 63
Vermunt (CR7) 2017; 13
Raghu, Poon, Benos (CR39) 2018; 92
Greenacre, Blasius (CR15) 2006
Stekhoven, Buehlmann (CR26) 2012; 28
DJ Conrado (67398_CR6) 2018; 11
DB Rubin (67398_CR23) 1976; 63
N Srivastava (67398_CR31) 2014; 15
JL Bernal-Rusiel (67398_CR5) 2013; 66
Z Ghahramani (67398_CR22) 1998
M Scutari (67398_CR33) 2010; 35
VK Ramanan (67398_CR18) 2014; 19
67398_CR21
H Kang (67398_CR24) 2013; 64
P Spirtes (67398_CR27) 2000
CF Aliferis (67398_CR36) 2010; 11
S Mustillo (67398_CR25) 2015; 39
TD Gedeon (67398_CR17) 1997; 8
67398_CR16
GE Hinton (67398_CR30) 2006; 313
J Pearl (67398_CR20) 2000
RS Desikan (67398_CR41) 2006; 31
VK Raghu (67398_CR39) 2018; 92
DJ Stekhoven (67398_CR26) 2012; 28
E Segal (67398_CR11) 2003; 34
S Khanna (67398_CR2) 2018; 8
F Pappalardo (67398_CR8) 2018; 20
67398_CR35
67398_CR32
PPM Initiative (67398_CR12) 2011; 95
I Tsamardinos (67398_CR34) 2006; 65
B Hayete (67398_CR3) 2017; 12
M Scutari (67398_CR37) 2019; 115
M Henrion (67398_CR40) 1988
D Koller (67398_CR10) 2009
M Greenacre (67398_CR15) 2006
C Ramaker (67398_CR19) 2002; 17
X Robin (67398_CR14) 2011; 12
DM Chickering (67398_CR28) 2004; 5
D Heckerman (67398_CR38) 1995; 20
K Li (67398_CR1) 2017; 36
L Vermunt (67398_CR7) 2017; 13
Y Qiu (67398_CR4) 2014; 35
A Ahmad (67398_CR9) 2016; 2
67398_CR29
L Breiman (67398_CR13) 2001; 45
References_xml – volume: 66
  start-page: 249
  year: 2013
  end-page: 260
  ident: CR5
  article-title: Statistical analysis of longitudinal neuroimage data with linear mixed effects models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.065
– volume: 34
  start-page: 166
  year: 2003
  end-page: 176
  ident: CR11
  article-title: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
  publication-title: Nat. Genet.
  doi: 10.1038/ng1165
– ident: CR16
– start-page: 168
  year: 1998
  end-page: 197
  ident: CR22
  article-title: Learning dynamic Bayesian networks
  publication-title: Adaptive Processing of Sequences and Data Structures
  doi: 10.1007/BFb0053999
– volume: 12
  start-page: 77
  year: 2011
  ident: CR14
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-12-77
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR30
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– year: 2000
  ident: CR27
  publication-title: Causation, Prediction, and Search
– volume: 8
  start-page: 209
  year: 1997
  end-page: 218
  ident: CR17
  article-title: Data mining of inputs: analysing magnitude and functional measures
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065797000227
– ident: CR35
– ident: CR29
– volume: 17
  start-page: 867
  year: 2002
  end-page: 876
  ident: CR19
  article-title: Systematic evaluation of rating scales for impairment and disability in Parkinson’s Disease
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.10248
– year: 2000
  ident: CR20
  publication-title: Causality: Models, Reasoning and Inference
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  ident: CR23
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: CR41
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: CR21
– year: 2009
  ident: CR10
  publication-title: Probabilistic Graphical Models: Principles and Technique
– volume: 13
  start-page: P585
  year: 2017
  end-page: P586
  ident: CR7
  article-title: Duration of Alzheimer’s Disease in the preclinical, prodromal and dementia stage: a multi-state model analysis
  publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc.
  doi: 10.1016/j.jalz.2017.07.212
– volume: 11
  start-page: 63
  year: 2018
  end-page: 70
  ident: CR6
  article-title: Dopamine transporter neuroimaging as an enrichment biomarker in Early Parkinson’s Disease clinical trials: a disease progression modeling analysis
  publication-title: Clin. Transl. Sci.
  doi: 10.1111/cts.12492
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR13
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 92
  start-page: 48
  year: 2018
  end-page: 65
  ident: CR39
  article-title: Evaluation of causal structure learning methods on mixed data types
  publication-title: Proc. Mach. Learn. Res.
– volume: 8
  start-page: 11173
  year: 2018
  ident: CR2
  article-title: Using multi-scale genetic, neuroimaging and clinical data for predicting Alzheimer’s dissease and reconstruction of relevant biological mechanisms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29433-3
– volume: 28
  start-page: 112
  year: 2012
  end-page: 118
  ident: CR26
  article-title: MissForest–non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 39
  start-page: 73
  year: 2015
  end-page: 91
  ident: CR25
  article-title: Auxiliary variables in multiple imputation when data are missing not at random
  publication-title: J. Math. Sociol.
  doi: 10.1080/0022250X.2013.877898
– volume: 65
  start-page: 31
  year: 2006
  end-page: 78
  ident: CR34
  article-title: The Max-Min Hill-Climbing Bayesian network structure learning algorithm
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6889-7
– volume: 11
  start-page: 171
  year: 2010
  end-page: 234
  ident: CR36
  article-title: Local causal and markov blanket induction for causal discovery and feature selection for classification. Part I: algorithms and empirical evaluation
  publication-title: J. Mach. Learn. Res.
– start-page: 149
  year: 1988
  end-page: 163
  ident: CR40
  article-title: Propagating uncertainty in Bayesian networks by probabilistic logic sampling
  publication-title: Machine Intelligence and Pattern Recognition
– volume: 2
  start-page: 32
  year: 2016
  ident: CR9
  article-title: Integrating heterogeneous omics data via statistical inference and learning techniques
  publication-title: Genom. Comput. Biol.
  doi: 10.18547/gcb.2016.vol2.iss1.e32
– volume: 5
  start-page: 1287
  year: 2004
  end-page: 1330
  ident: CR28
  article-title: Large-sample learning of Bayesian networks is NP-Hard
  publication-title: J. Mach. Learn. Res.
– volume: 115
  start-page: 235
  year: 2019
  end-page: 253
  ident: CR37
  article-title: Who learns better Bayesian network structures: accuracy and speed of structure learning algorithms
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2019.10.003
– ident: CR32
– volume: 20
  start-page: 197
  year: 1995
  end-page: 243
  ident: CR38
  article-title: Learning Bayesian networks: the combination of knowledge and statistical data
  publication-title: Mach. Learn.
– volume: 35
  start-page: 1
  year: 2010
  end-page: 22
  ident: CR33
  article-title: Learning Bayesian networks with the bnlearn R package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v035.i03
– volume: 35
  start-page: 1111
  year: 2014
  end-page: 1120
  ident: CR4
  article-title: Alzheimer’s disease progression model based on integrated biomarkers and clinical measures
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2014.57
– volume: 64
  start-page: 402
  year: 2013
  end-page: 406
  ident: CR24
  article-title: The prevention and handling of the missing data
  publication-title: Korean J. Anesthesiol.
  doi: 10.4097/kjae.2013.64.5.402
– volume: 19
  start-page: 351
  year: 2014
  end-page: 357
  ident: CR18
  article-title: APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study
  publication-title: Mol. Psych.
  doi: 10.1038/mp.2013.19
– volume: 20
  start-page: 1699
  issue: 5
  year: 2018
  end-page: 1708
  ident: CR8
  article-title: In silico clinical trials: concepts and early adoptions
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bby043
– volume: 12
  start-page: e0178982
  year: 2017
  ident: CR3
  article-title: A Bayesian mathematical model of motor and cognitive outcomes in Parkinson’s Disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178982
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR31
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 3560
  year: 2017
  end-page: 3572
  ident: CR1
  article-title: Functional joint model for longitudinal and time-to-event data: an application to Alzheimer’s Disease
  publication-title: Stat. Med.
  doi: 10.1002/sim.7381
– volume: 95
  start-page: 629
  year: 2011
  end-page: 635
  ident: CR12
  article-title: The Parkinson Progression Marker Initiative (PPMI)
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2011.09.005
– year: 2006
  ident: CR15
  publication-title: Multiple Correspondence Analysis and Related Methods
  doi: 10.1201/9781420011319
– volume: 39
  start-page: 73
  year: 2015
  ident: 67398_CR25
  publication-title: J. Math. Sociol.
  doi: 10.1080/0022250X.2013.877898
– volume: 8
  start-page: 209
  year: 1997
  ident: 67398_CR17
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065797000227
– volume: 45
  start-page: 5
  year: 2001
  ident: 67398_CR13
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 35
  start-page: 1
  year: 2010
  ident: 67398_CR33
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v035.i03
– volume: 20
  start-page: 1699
  issue: 5
  year: 2018
  ident: 67398_CR8
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bby043
– volume: 65
  start-page: 31
  year: 2006
  ident: 67398_CR34
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6889-7
– volume: 92
  start-page: 48
  year: 2018
  ident: 67398_CR39
  publication-title: Proc. Mach. Learn. Res.
– volume: 28
  start-page: 112
  year: 2012
  ident: 67398_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– ident: 67398_CR29
– start-page: 149
  volume-title: Machine Intelligence and Pattern Recognition
  year: 1988
  ident: 67398_CR40
– volume: 35
  start-page: 1111
  year: 2014
  ident: 67398_CR4
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2014.57
– volume: 11
  start-page: 63
  year: 2018
  ident: 67398_CR6
  publication-title: Clin. Transl. Sci.
  doi: 10.1111/cts.12492
– volume-title: Multiple Correspondence Analysis and Related Methods
  year: 2006
  ident: 67398_CR15
  doi: 10.1201/9781420011319
– volume: 8
  start-page: 11173
  year: 2018
  ident: 67398_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29433-3
– volume: 34
  start-page: 166
  year: 2003
  ident: 67398_CR11
  publication-title: Nat. Genet.
  doi: 10.1038/ng1165
– volume: 13
  start-page: P585
  year: 2017
  ident: 67398_CR7
  publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc.
  doi: 10.1016/j.jalz.2017.07.212
– volume: 5
  start-page: 1287
  year: 2004
  ident: 67398_CR28
  publication-title: J. Mach. Learn. Res.
– volume-title: Causation, Prediction, and Search
  year: 2000
  ident: 67398_CR27
– ident: 67398_CR16
– volume: 36
  start-page: 3560
  year: 2017
  ident: 67398_CR1
  publication-title: Stat. Med.
  doi: 10.1002/sim.7381
– volume: 2
  start-page: 32
  year: 2016
  ident: 67398_CR9
  publication-title: Genom. Comput. Biol.
  doi: 10.18547/gcb.2016.vol2.iss1.e32
– volume: 12
  start-page: e0178982
  year: 2017
  ident: 67398_CR3
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178982
– volume: 115
  start-page: 235
  year: 2019
  ident: 67398_CR37
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2019.10.003
– volume: 12
  start-page: 77
  year: 2011
  ident: 67398_CR14
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-12-77
– volume-title: Causality: Models, Reasoning and Inference
  year: 2000
  ident: 67398_CR20
– ident: 67398_CR21
  doi: 10.1145/2976749.2978318
– ident: 67398_CR32
– volume: 66
  start-page: 249
  year: 2013
  ident: 67398_CR5
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.065
– volume: 19
  start-page: 351
  year: 2014
  ident: 67398_CR18
  publication-title: Mol. Psych.
  doi: 10.1038/mp.2013.19
– volume: 20
  start-page: 197
  year: 1995
  ident: 67398_CR38
  publication-title: Mach. Learn.
– volume-title: Probabilistic Graphical Models: Principles and Technique
  year: 2009
  ident: 67398_CR10
– start-page: 168
  volume-title: Adaptive Processing of Sequences and Data Structures
  year: 1998
  ident: 67398_CR22
  doi: 10.1007/BFb0053999
– volume: 17
  start-page: 867
  year: 2002
  ident: 67398_CR19
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.10248
– volume: 63
  start-page: 581
  year: 1976
  ident: 67398_CR23
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 64
  start-page: 402
  year: 2013
  ident: 67398_CR24
  publication-title: Korean J. Anesthesiol.
  doi: 10.4097/kjae.2013.64.5.402
– volume: 31
  start-page: 968
  year: 2006
  ident: 67398_CR41
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 95
  start-page: 629
  year: 2011
  ident: 67398_CR12
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2011.09.005
– volume: 313
  start-page: 504
  year: 2006
  ident: 67398_CR30
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 67398_CR35
  doi: 10.1109/CBD.2016.052
– volume: 15
  start-page: 1929
  year: 2014
  ident: 67398_CR31
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 171
  year: 2010
  ident: 67398_CR36
  publication-title: J. Mach. Learn. Res.
SSID ssj0000529419
Score 2.3705428
Snippet Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10971
SubjectTerms 692/308/153
692/308/575
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - genetics
Alzheimer's disease
Bayes Theorem
Bayesian analysis
Brain - diagnostic imaging
Brain research
Cognitive ability
Cohort Studies
Computer Simulation
Databases, Factual - statistics & numerical data
Deep Learning
Disease Progression
Drug development
Humanities and Social Sciences
Humans
Longitudinal Studies
Mathematical models
Medical imaging
Models, Statistical
multidisciplinary
Parkinson Disease - diagnosis
Parkinson's disease
Patients
Polymorphism, Single Nucleotide
Science
Science (multidisciplinary)
Simulation
Statistical models
Translation
Translational Research, Biomedical - methods
Translational Research, Biomedical - statistics & numerical data
User-Computer Interface
Title Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders
URI https://link.springer.com/article/10.1038/s41598-020-67398-4
https://www.ncbi.nlm.nih.gov/pubmed/32620927
https://www.proquest.com/docview/2419782038
https://www.proquest.com/docview/2420156256
https://pubmed.ncbi.nlm.nih.gov/PMC7335180
Volume 10
WOSCitedRecordID wos000546533700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagC1IvvCmBsjISN2o1sb1xckIUtQKJrqIK0HKK7Ngpi2hSNruVeuG3M-N4Uy0VvXCxEo2txJmxx5nHN4S8zmtttRKcpbXKmXSxY7pOKqa0FdylcWa96eLrJzWdZrNZXgSDWxfCKtd7ot-obVuhjXwfNE2O2G4ie3v-i2HVKPSuhhIat8kIy2ajnKuZGmws6MWCYSFXBobud6CvMKeM-5h3uJKb-ujaIfN6rORfDlOvh47u_-8MHpB74QRK3_Ui85Dccs0jcrevSXn5mPw-cYiJCETazc9CcS_a1vRivsBcE-pDEFkHvHV74eastUAIEK0UJvDD-wLgJ5xiXP0pPdCXDrM1adNHnXdUN5bCZrboHNWrZcsQTxNjqp-QL0eHn99_YKFIA6ukkktW6YmVUjkhcqMr4VxqJ0aZGr68qaTONXeyNtyaLJ_YtOZVWlkQm7w21onMWvGUbDVt454RWsN-EGvNE8MTmbjYgII1ItWZBplJuItIsmZVWQUEcyyk8bP0nnSRlT17S2Bv6dlbyoi8Gcac9_gdN_beXbOuDGu5K6_4FpFXAxlWIbpWdOPaFfbhmJMO58eI7PQCMzxOIOZ_zlVE1IYoDR0Q4XuT0sy_e6RvJcQkyeKI7K2F7uq1_j2L5zfP4gXZ5rgA0EYtdsnWcrFyL8md6mI57xZjv4J8m43J6OBwWpyMvaEC2mNeYKugHRUfj4tvfwBi5S7u
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE42a2N48DgjxqrrqdrVCBZVTsGMHgmhSNrtFe-En8RuZyataKnrrgVuicRI7-WbGmSfA0zhTRoWCu0EWxq60nnVV5qduqIzgNvAiU5suPo7DySQ6OIina_C7y4WhsMpOJtaC2pQp2ci3UNPEVNtNRC-PfrjUNYq8q10LjQYWu3b5E3_Zqhejt_h9n3G-_W7_zY7bdhVwUxnKuZuqoZEytELEWqXC2sAMdagzHkudShUrbmWmudFRPDRBxtMgNbjOONPGisgYgfe9AOsSwe4NYH062pt-6q065DfDibbZOTjZrQo1JGWx8TrKHo_kqgY8ta09HZ35l4u21nzb1_63d3YdrrZ7bPaqYYobsGaLm3Cp6bq5vAW_3luq-ohEVuWHbfsyVmbsOJ9RNg2rgyzdCtFrN9uTw9IgoS1Cy_CFfau9HbmtGGUOfGGv1dJSPiormrj6iqnCMBTXs8oytZiXLlUMpajx2_DhXBZ_BwZFWdh7wDKUeJ5S3Nfcl771NG4htAhUpJArfG4d8DtoJGlbo51ahXxP6lgBESUNnBKEU1LDKZEOPO-vOWoqlJw5eqODStJKqyo5wYkDT3oyyhlyHqnClgsawynrHnfIDtxtANo_TlBXg5iHDoQr0O0HUA3zVUqRf61rmYdCDP3Ic2CzA_nJtP69ivtnr-IxXN7Z3xsn49Fk9wFc4cR8ZJEXGzCYzxb2IVxMj-d5NXvU8i-Dz-cN_z_GW4z3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU0Bc2JdAASPBiUZNbE-cHBCitCOqVqNRBai31IkdmoomZTJTNBd-GL-O97JVQ0VvPXBLZCexne8t9tsAXkeZNloJ7gaZilxpPevqzE9dpY3gNvBCUx9dfN1T43F4cBBNVuB3FwtDbpUdT6wZtSlTOiPfQEkTUW43EW5krVvEZGv0_vSHSxWkyNLaldNoILJrFz9x-1a929nCf_2G89H254-f3LbCgJtKJWduqodGSmWFiBKdCmsDM0xUkvFIJqnUkeZWZgk3SRgNTZDxNEgNzjnKEmNFaIzA916DVSVw0zOA1c3t8WS_P-EhGxoOuo3UoYFXKC0poo3XHvd4JZel4QUV96Kn5l_m2loKju78z-t3F263ujf70BDLPVixxX240VTjXDyAX_uWskFiI6vyk7asGSszdpZPKcqG1c6XboWotuvtzUlpsKFNTstw8Y5rK0huK0YRBd_Ypl5YilNlReNvXzFdGIZsfFpZpuez0qVMouRN_hC-XMnkH8GgKAv7BFiGnNDTmvsJ96VvvQRVi0QEOtRILT63DvgdTOK0zd1OJUS-x7UPgQjjBloxQiuuoRVLB972z5w2mUsu7b3WwSZuuVgVn2PGgVd9M_IfMirpwpZz6sMpGh81ZwceN2DtPyeo2kHElQNqCcZ9B8ptvtxS5Ed1jnMlxNAPPQfWO8CfD-vfs3h6-Sxewk3EfLy3M959Brc40SEd1Is1GMymc_scrqdns7yavmhJmcHhVaP_D4zelZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+simulation+of+virtual+multi-scale%2C+multi-modal+patient+trajectories+using+Bayesian+networks+and+sparse+auto-encoders&rft.jtitle=Scientific+reports&rft.au=Sood%2C+Meemansa&rft.au=Sahay%2C+Akrishta&rft.au=Karki%2C+Reagon&rft.au=Emon%2C+Mohammad+Asif&rft.date=2020-07-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-67398-4&rft.externalDocID=10_1038_s41598_020_67398_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon