Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders
Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 10; číslo 1; s. 10971 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
03.07.2020
Nature Publishing Group |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need to be analyzed and compared. A large number of clinical studies is nowadays conducted in the context of drug development in pharmaceutical research. However, legal and ethical constraints typically do not allow for sharing sensitive patient data. In consequence there exist data “silos”, which slow down the overall scientific progress in translational research. In this paper, we suggest the idea of a virtual cohort (VC) to address this limitation. Our key idea is to describe a longitudinal patient cohort with the help of a generative statistical model, namely a modular Bayesian Network, in which individual modules are represented as sparse autoencoder networks. We show that with the help of such a model we can simulate subjects that are highly similar to real ones. Our approach allows for incorporating arbitrary multi-scale, multi-modal data without making specific distribution assumptions. Moreover, we demonstrate the possibility to simulate interventions (e.g. via a treatment) in the VC. Overall, our proposed approach opens the possibility to build sufficiently realistic VCs for multiple disease areas in the future. |
|---|---|
| AbstractList | Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need to be analyzed and compared. A large number of clinical studies is nowadays conducted in the context of drug development in pharmaceutical research. However, legal and ethical constraints typically do not allow for sharing sensitive patient data. In consequence there exist data "silos", which slow down the overall scientific progress in translational research. In this paper, we suggest the idea of a virtual cohort (VC) to address this limitation. Our key idea is to describe a longitudinal patient cohort with the help of a generative statistical model, namely a modular Bayesian Network, in which individual modules are represented as sparse autoencoder networks. We show that with the help of such a model we can simulate subjects that are highly similar to real ones. Our approach allows for incorporating arbitrary multi-scale, multi-modal data without making specific distribution assumptions. Moreover, we demonstrate the possibility to simulate interventions (e.g. via a treatment) in the VC. Overall, our proposed approach opens the possibility to build sufficiently realistic VCs for multiple disease areas in the future. Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need to be analyzed and compared. A large number of clinical studies is nowadays conducted in the context of drug development in pharmaceutical research. However, legal and ethical constraints typically do not allow for sharing sensitive patient data. In consequence there exist data "silos", which slow down the overall scientific progress in translational research. In this paper, we suggest the idea of a virtual cohort (VC) to address this limitation. Our key idea is to describe a longitudinal patient cohort with the help of a generative statistical model, namely a modular Bayesian Network, in which individual modules are represented as sparse autoencoder networks. We show that with the help of such a model we can simulate subjects that are highly similar to real ones. Our approach allows for incorporating arbitrary multi-scale, multi-modal data without making specific distribution assumptions. Moreover, we demonstrate the possibility to simulate interventions (e.g. via a treatment) in the VC. Overall, our proposed approach opens the possibility to build sufficiently realistic VCs for multiple disease areas in the future.Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need to be analyzed and compared. A large number of clinical studies is nowadays conducted in the context of drug development in pharmaceutical research. However, legal and ethical constraints typically do not allow for sharing sensitive patient data. In consequence there exist data "silos", which slow down the overall scientific progress in translational research. In this paper, we suggest the idea of a virtual cohort (VC) to address this limitation. Our key idea is to describe a longitudinal patient cohort with the help of a generative statistical model, namely a modular Bayesian Network, in which individual modules are represented as sparse autoencoder networks. We show that with the help of such a model we can simulate subjects that are highly similar to real ones. Our approach allows for incorporating arbitrary multi-scale, multi-modal data without making specific distribution assumptions. Moreover, we demonstrate the possibility to simulate interventions (e.g. via a treatment) in the VC. Overall, our proposed approach opens the possibility to build sufficiently realistic VCs for multiple disease areas in the future. |
| ArticleNumber | 10971 |
| Author | Sahay, Akrishta Vrooman, Henri Karki, Reagon Emon, Mohammad Asif Sood, Meemansa Hofmann-Apitius, Martin Fröhlich, Holger |
| Author_xml | – sequence: 1 givenname: Meemansa surname: Sood fullname: Sood, Meemansa organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn – sequence: 2 givenname: Akrishta surname: Sahay fullname: Sahay, Akrishta organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn – sequence: 3 givenname: Reagon surname: Karki fullname: Karki, Reagon organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn – sequence: 4 givenname: Mohammad Asif surname: Emon fullname: Emon, Mohammad Asif organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn – sequence: 5 givenname: Henri surname: Vrooman fullname: Vrooman, Henri organization: Department of Radiology and Medical Informatics, Erasmus MC, University Medical Center Rotterdam – sequence: 6 givenname: Martin orcidid: 0000-0001-9012-6720 surname: Hofmann-Apitius fullname: Hofmann-Apitius, Martin organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn – sequence: 7 givenname: Holger orcidid: 0000-0002-5328-1243 surname: Fröhlich fullname: Fröhlich, Holger email: holger.froehlich@scai.fraunhofer.de organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, UCB Biosciences GmbH |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32620927$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UstuFDEQtFAQeZAf4IAsceHAgMf2vC5IEPGSIiEhOFs9ds_iZdZe3J6gXPh2nOwGQg7xxW13ValaXcfsIMSAjD2pxctaqP4V6boZ-kpIUbWdKpV-wI6k0E0llZQHt-pDdkq0FuU0ctD18IgdKtlKMcjuiP3-gjB7yt5y8ptlhuxj4HHiFz7lBWZe_rKvyMKML_aPTXSlsS1QDJnnBGu0OSaPxBfyYcXfwiWSh8AD5l8x_SAOwXHaQiLksORYYbDRYaLH7OEEM-Hp_j5h396_-3r2sTr__OHT2ZvzyupO58pC47TuUKlhBKsQW9eM3TiVeUarYQCJehqlG_uhce0kbWsdWjtMo0PVO6dO2Oud7nYZN-hsMZ5gNtvkN5AuTQRv_u8E_92s4oXplGrqXhSB53uBFH8uSNlsPFmcZwgYFzJSS1E3rWzaAn12B7qOSwplvIKqh66XZX8F9fS2o79WblZTAP0OYFMkSjgZ6_P1eopBP5tamKsgmF0QTAmCuQ6C0YUq71Bv1O8lqR2JCjisMP2zfQ_rD2kFyqA |
| CitedBy_id | crossref_primary_10_1038_s41746_022_00666_x crossref_primary_10_1371_journal_pone_0280609 crossref_primary_10_1038_s41531_025_00983_4 crossref_primary_10_1038_s41598_024_62102_2 crossref_primary_10_1016_j_jbi_2021_103837 crossref_primary_10_1016_j_ecoinf_2022_101624 |
| Cites_doi | 10.1016/j.neuroimage.2012.10.065 10.1038/ng1165 10.1007/BFb0053999 10.1186/1471-2105-12-77 10.1126/science.1127647 10.1142/S0129065797000227 10.1002/mds.10248 10.1093/biomet/63.3.581 10.1016/j.neuroimage.2006.01.021 10.1016/j.jalz.2017.07.212 10.1111/cts.12492 10.1023/A:1010933404324 10.1038/s41598-018-29433-3 10.1093/bioinformatics/btr597 10.1080/0022250X.2013.877898 10.1007/s10994-006-6889-7 10.18547/gcb.2016.vol2.iss1.e32 10.1016/j.ijar.2019.10.003 10.18637/jss.v035.i03 10.1038/aps.2014.57 10.4097/kjae.2013.64.5.402 10.1038/mp.2013.19 10.1093/bib/bby043 10.1371/journal.pone.0178982 10.1002/sim.7381 10.1016/j.pneurobio.2011.09.005 10.1201/9781420011319 10.1145/2976749.2978318 10.1109/CBD.2016.052 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
| DOI | 10.1038/s41598-020-67398-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| ExternalDocumentID | PMC7335180 32620927 10_1038_s41598_020_67398_4 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Innovative Medicines Initiative (IMI) grantid: 115568 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: ; grantid: 115568 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c474t-ca5d447e339bac3ee6d5b7bf294bc4a9a2e4fb2db895d6f2c6cdecc9fbde38dd3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546533700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Nov 04 01:33:41 EST 2025 Thu Oct 02 03:57:43 EDT 2025 Tue Oct 07 07:36:38 EDT 2025 Mon Jul 21 05:59:45 EDT 2025 Sat Nov 29 05:33:02 EST 2025 Tue Nov 18 21:22:22 EST 2025 Fri Feb 21 02:38:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-ca5d447e339bac3ee6d5b7bf294bc4a9a2e4fb2db895d6f2c6cdecc9fbde38dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5328-1243 0000-0001-9012-6720 |
| OpenAccessLink | https://www.proquest.com/docview/2419782038?pq-origsite=%requestingapplication% |
| PMID | 32620927 |
| PQID | 2419782038 |
| PQPubID | 2041939 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7335180 proquest_miscellaneous_2420156256 proquest_journals_2419782038 pubmed_primary_32620927 crossref_citationtrail_10_1038_s41598_020_67398_4 crossref_primary_10_1038_s41598_020_67398_4 springer_journals_10_1038_s41598_020_67398_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-03 |
| PublicationDateYYYYMMDD | 2020-07-03 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Conrado (CR6) 2018; 11 Gedeon (CR17) 1997; 8 Heckerman, Geiger, Chickering (CR38) 1995; 20 Spirtes, Glymour, Scheines (CR27) 2000 Scutari, Graafland, Gutiérrez (CR37) 2019; 115 Chickering, Heckerman, Meek (CR28) 2004; 5 CR16 Ramaker, Marinus, Stiggelbout, Van Hilten (CR19) 2002; 17 Ramanan (CR18) 2014; 19 CR35 Bernal-Rusiel, Greve, Reuter, Fischl, Sabuncu (CR5) 2013; 66 Kang (CR24) 2013; 64 Pappalardo, Russo, Tshinanu, Viceconti (CR8) 2018; 20 CR32 Scutari (CR33) 2010; 35 Tsamardinos, Brown, Aliferis (CR34) 2006; 65 Henrion, Lemmer, Kanal (CR40) 1988 Hayete (CR3) 2017; 12 Aliferis, Statnikov, Tsamardinos, Mani, Koutsoukos (CR36) 2010; 11 Breiman (CR13) 2001; 45 Qiu, Li, Zhou, Lu (CR4) 2014; 35 Hinton, Salakhutdinov (CR30) 2006; 313 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR31) 2014; 15 Li, Luo (CR1) 2017; 36 Ahmad, Fröhlich (CR9) 2016; 2 Robin (CR14) 2011; 12 CR29 Mustillo, Kwon (CR25) 2015; 39 Desikan (CR41) 2006; 31 Pearl (CR20) 2000 Ghahramani, Giles, Gori (CR22) 1998 Initiative (CR12) 2011; 95 Khanna (CR2) 2018; 8 CR21 Segal (CR11) 2003; 34 Koller, Friedman (CR10) 2009 Rubin (CR23) 1976; 63 Vermunt (CR7) 2017; 13 Raghu, Poon, Benos (CR39) 2018; 92 Greenacre, Blasius (CR15) 2006 Stekhoven, Buehlmann (CR26) 2012; 28 DJ Conrado (67398_CR6) 2018; 11 DB Rubin (67398_CR23) 1976; 63 N Srivastava (67398_CR31) 2014; 15 JL Bernal-Rusiel (67398_CR5) 2013; 66 Z Ghahramani (67398_CR22) 1998 M Scutari (67398_CR33) 2010; 35 VK Ramanan (67398_CR18) 2014; 19 67398_CR21 H Kang (67398_CR24) 2013; 64 P Spirtes (67398_CR27) 2000 CF Aliferis (67398_CR36) 2010; 11 S Mustillo (67398_CR25) 2015; 39 TD Gedeon (67398_CR17) 1997; 8 67398_CR16 GE Hinton (67398_CR30) 2006; 313 J Pearl (67398_CR20) 2000 RS Desikan (67398_CR41) 2006; 31 VK Raghu (67398_CR39) 2018; 92 DJ Stekhoven (67398_CR26) 2012; 28 E Segal (67398_CR11) 2003; 34 S Khanna (67398_CR2) 2018; 8 F Pappalardo (67398_CR8) 2018; 20 67398_CR35 67398_CR32 PPM Initiative (67398_CR12) 2011; 95 I Tsamardinos (67398_CR34) 2006; 65 B Hayete (67398_CR3) 2017; 12 M Scutari (67398_CR37) 2019; 115 M Henrion (67398_CR40) 1988 D Koller (67398_CR10) 2009 M Greenacre (67398_CR15) 2006 C Ramaker (67398_CR19) 2002; 17 X Robin (67398_CR14) 2011; 12 DM Chickering (67398_CR28) 2004; 5 D Heckerman (67398_CR38) 1995; 20 K Li (67398_CR1) 2017; 36 L Vermunt (67398_CR7) 2017; 13 Y Qiu (67398_CR4) 2014; 35 A Ahmad (67398_CR9) 2016; 2 67398_CR29 L Breiman (67398_CR13) 2001; 45 |
| References_xml | – volume: 66 start-page: 249 year: 2013 end-page: 260 ident: CR5 article-title: Statistical analysis of longitudinal neuroimage data with linear mixed effects models publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.065 – volume: 34 start-page: 166 year: 2003 end-page: 176 ident: CR11 article-title: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data publication-title: Nat. Genet. doi: 10.1038/ng1165 – ident: CR16 – start-page: 168 year: 1998 end-page: 197 ident: CR22 article-title: Learning dynamic Bayesian networks publication-title: Adaptive Processing of Sequences and Data Structures doi: 10.1007/BFb0053999 – volume: 12 start-page: 77 year: 2011 ident: CR14 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinform. doi: 10.1186/1471-2105-12-77 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR30 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – year: 2000 ident: CR27 publication-title: Causation, Prediction, and Search – volume: 8 start-page: 209 year: 1997 end-page: 218 ident: CR17 article-title: Data mining of inputs: analysing magnitude and functional measures publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065797000227 – ident: CR35 – ident: CR29 – volume: 17 start-page: 867 year: 2002 end-page: 876 ident: CR19 article-title: Systematic evaluation of rating scales for impairment and disability in Parkinson’s Disease publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.10248 – year: 2000 ident: CR20 publication-title: Causality: Models, Reasoning and Inference – volume: 63 start-page: 581 year: 1976 end-page: 592 ident: CR23 article-title: Inference and missing data publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: CR41 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – ident: CR21 – year: 2009 ident: CR10 publication-title: Probabilistic Graphical Models: Principles and Technique – volume: 13 start-page: P585 year: 2017 end-page: P586 ident: CR7 article-title: Duration of Alzheimer’s Disease in the preclinical, prodromal and dementia stage: a multi-state model analysis publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc. doi: 10.1016/j.jalz.2017.07.212 – volume: 11 start-page: 63 year: 2018 end-page: 70 ident: CR6 article-title: Dopamine transporter neuroimaging as an enrichment biomarker in Early Parkinson’s Disease clinical trials: a disease progression modeling analysis publication-title: Clin. Transl. Sci. doi: 10.1111/cts.12492 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR13 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 92 start-page: 48 year: 2018 end-page: 65 ident: CR39 article-title: Evaluation of causal structure learning methods on mixed data types publication-title: Proc. Mach. Learn. Res. – volume: 8 start-page: 11173 year: 2018 ident: CR2 article-title: Using multi-scale genetic, neuroimaging and clinical data for predicting Alzheimer’s dissease and reconstruction of relevant biological mechanisms publication-title: Sci. Rep. doi: 10.1038/s41598-018-29433-3 – volume: 28 start-page: 112 year: 2012 end-page: 118 ident: CR26 article-title: MissForest–non-parametric missing value imputation for mixed-type data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – volume: 39 start-page: 73 year: 2015 end-page: 91 ident: CR25 article-title: Auxiliary variables in multiple imputation when data are missing not at random publication-title: J. Math. Sociol. doi: 10.1080/0022250X.2013.877898 – volume: 65 start-page: 31 year: 2006 end-page: 78 ident: CR34 article-title: The Max-Min Hill-Climbing Bayesian network structure learning algorithm publication-title: Mach. Learn. doi: 10.1007/s10994-006-6889-7 – volume: 11 start-page: 171 year: 2010 end-page: 234 ident: CR36 article-title: Local causal and markov blanket induction for causal discovery and feature selection for classification. Part I: algorithms and empirical evaluation publication-title: J. Mach. Learn. Res. – start-page: 149 year: 1988 end-page: 163 ident: CR40 article-title: Propagating uncertainty in Bayesian networks by probabilistic logic sampling publication-title: Machine Intelligence and Pattern Recognition – volume: 2 start-page: 32 year: 2016 ident: CR9 article-title: Integrating heterogeneous omics data via statistical inference and learning techniques publication-title: Genom. Comput. Biol. doi: 10.18547/gcb.2016.vol2.iss1.e32 – volume: 5 start-page: 1287 year: 2004 end-page: 1330 ident: CR28 article-title: Large-sample learning of Bayesian networks is NP-Hard publication-title: J. Mach. Learn. Res. – volume: 115 start-page: 235 year: 2019 end-page: 253 ident: CR37 article-title: Who learns better Bayesian network structures: accuracy and speed of structure learning algorithms publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2019.10.003 – ident: CR32 – volume: 20 start-page: 197 year: 1995 end-page: 243 ident: CR38 article-title: Learning Bayesian networks: the combination of knowledge and statistical data publication-title: Mach. Learn. – volume: 35 start-page: 1 year: 2010 end-page: 22 ident: CR33 article-title: Learning Bayesian networks with the bnlearn R package publication-title: J. Stat. Softw. doi: 10.18637/jss.v035.i03 – volume: 35 start-page: 1111 year: 2014 end-page: 1120 ident: CR4 article-title: Alzheimer’s disease progression model based on integrated biomarkers and clinical measures publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2014.57 – volume: 64 start-page: 402 year: 2013 end-page: 406 ident: CR24 article-title: The prevention and handling of the missing data publication-title: Korean J. Anesthesiol. doi: 10.4097/kjae.2013.64.5.402 – volume: 19 start-page: 351 year: 2014 end-page: 357 ident: CR18 article-title: APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study publication-title: Mol. Psych. doi: 10.1038/mp.2013.19 – volume: 20 start-page: 1699 issue: 5 year: 2018 end-page: 1708 ident: CR8 article-title: In silico clinical trials: concepts and early adoptions publication-title: Brief. Bioinform. doi: 10.1093/bib/bby043 – volume: 12 start-page: e0178982 year: 2017 ident: CR3 article-title: A Bayesian mathematical model of motor and cognitive outcomes in Parkinson’s Disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0178982 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR31 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 3560 year: 2017 end-page: 3572 ident: CR1 article-title: Functional joint model for longitudinal and time-to-event data: an application to Alzheimer’s Disease publication-title: Stat. Med. doi: 10.1002/sim.7381 – volume: 95 start-page: 629 year: 2011 end-page: 635 ident: CR12 article-title: The Parkinson Progression Marker Initiative (PPMI) publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2011.09.005 – year: 2006 ident: CR15 publication-title: Multiple Correspondence Analysis and Related Methods doi: 10.1201/9781420011319 – volume: 39 start-page: 73 year: 2015 ident: 67398_CR25 publication-title: J. Math. Sociol. doi: 10.1080/0022250X.2013.877898 – volume: 8 start-page: 209 year: 1997 ident: 67398_CR17 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065797000227 – volume: 45 start-page: 5 year: 2001 ident: 67398_CR13 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 35 start-page: 1 year: 2010 ident: 67398_CR33 publication-title: J. Stat. Softw. doi: 10.18637/jss.v035.i03 – volume: 20 start-page: 1699 issue: 5 year: 2018 ident: 67398_CR8 publication-title: Brief. Bioinform. doi: 10.1093/bib/bby043 – volume: 65 start-page: 31 year: 2006 ident: 67398_CR34 publication-title: Mach. Learn. doi: 10.1007/s10994-006-6889-7 – volume: 92 start-page: 48 year: 2018 ident: 67398_CR39 publication-title: Proc. Mach. Learn. Res. – volume: 28 start-page: 112 year: 2012 ident: 67398_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – ident: 67398_CR29 – start-page: 149 volume-title: Machine Intelligence and Pattern Recognition year: 1988 ident: 67398_CR40 – volume: 35 start-page: 1111 year: 2014 ident: 67398_CR4 publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2014.57 – volume: 11 start-page: 63 year: 2018 ident: 67398_CR6 publication-title: Clin. Transl. Sci. doi: 10.1111/cts.12492 – volume-title: Multiple Correspondence Analysis and Related Methods year: 2006 ident: 67398_CR15 doi: 10.1201/9781420011319 – volume: 8 start-page: 11173 year: 2018 ident: 67398_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-018-29433-3 – volume: 34 start-page: 166 year: 2003 ident: 67398_CR11 publication-title: Nat. Genet. doi: 10.1038/ng1165 – volume: 13 start-page: P585 year: 2017 ident: 67398_CR7 publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc. doi: 10.1016/j.jalz.2017.07.212 – volume: 5 start-page: 1287 year: 2004 ident: 67398_CR28 publication-title: J. Mach. Learn. Res. – volume-title: Causation, Prediction, and Search year: 2000 ident: 67398_CR27 – ident: 67398_CR16 – volume: 36 start-page: 3560 year: 2017 ident: 67398_CR1 publication-title: Stat. Med. doi: 10.1002/sim.7381 – volume: 2 start-page: 32 year: 2016 ident: 67398_CR9 publication-title: Genom. Comput. Biol. doi: 10.18547/gcb.2016.vol2.iss1.e32 – volume: 12 start-page: e0178982 year: 2017 ident: 67398_CR3 publication-title: PLoS ONE doi: 10.1371/journal.pone.0178982 – volume: 115 start-page: 235 year: 2019 ident: 67398_CR37 publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2019.10.003 – volume: 12 start-page: 77 year: 2011 ident: 67398_CR14 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-12-77 – volume-title: Causality: Models, Reasoning and Inference year: 2000 ident: 67398_CR20 – ident: 67398_CR21 doi: 10.1145/2976749.2978318 – ident: 67398_CR32 – volume: 66 start-page: 249 year: 2013 ident: 67398_CR5 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.065 – volume: 19 start-page: 351 year: 2014 ident: 67398_CR18 publication-title: Mol. Psych. doi: 10.1038/mp.2013.19 – volume: 20 start-page: 197 year: 1995 ident: 67398_CR38 publication-title: Mach. Learn. – volume-title: Probabilistic Graphical Models: Principles and Technique year: 2009 ident: 67398_CR10 – start-page: 168 volume-title: Adaptive Processing of Sequences and Data Structures year: 1998 ident: 67398_CR22 doi: 10.1007/BFb0053999 – volume: 17 start-page: 867 year: 2002 ident: 67398_CR19 publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.10248 – volume: 63 start-page: 581 year: 1976 ident: 67398_CR23 publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 64 start-page: 402 year: 2013 ident: 67398_CR24 publication-title: Korean J. Anesthesiol. doi: 10.4097/kjae.2013.64.5.402 – volume: 31 start-page: 968 year: 2006 ident: 67398_CR41 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 95 start-page: 629 year: 2011 ident: 67398_CR12 publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2011.09.005 – volume: 313 start-page: 504 year: 2006 ident: 67398_CR30 publication-title: Science doi: 10.1126/science.1127647 – ident: 67398_CR35 doi: 10.1109/CBD.2016.052 – volume: 15 start-page: 1929 year: 2014 ident: 67398_CR31 publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 171 year: 2010 ident: 67398_CR36 publication-title: J. Mach. Learn. Res. |
| SSID | ssj0000529419 |
| Score | 2.3706315 |
| Snippet | Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10971 |
| SubjectTerms | 692/308/153 692/308/575 Alzheimer Disease - diagnostic imaging Alzheimer Disease - genetics Alzheimer's disease Bayes Theorem Bayesian analysis Brain - diagnostic imaging Brain research Cognitive ability Cohort Studies Computer Simulation Databases, Factual - statistics & numerical data Deep Learning Disease Progression Drug development Humanities and Social Sciences Humans Longitudinal Studies Mathematical models Medical imaging Models, Statistical multidisciplinary Parkinson Disease - diagnosis Parkinson's disease Patients Polymorphism, Single Nucleotide Science Science (multidisciplinary) Simulation Statistical models Translation Translational Research, Biomedical - methods Translational Research, Biomedical - statistics & numerical data User-Computer Interface |
| Title | Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders |
| URI | https://link.springer.com/article/10.1038/s41598-020-67398-4 https://www.ncbi.nlm.nih.gov/pubmed/32620927 https://www.proquest.com/docview/2419782038 https://www.proquest.com/docview/2420156256 https://pubmed.ncbi.nlm.nih.gov/PMC7335180 |
| Volume | 10 |
| WOSCitedRecordID | wos000546533700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CFSQufDMCozISNxZttZ04OSGGNoHEqmgCqZwix3agaEtG007ahb-d9xw3U5nYhYvVyrZS9z37Oe_j9wN4g0YOrYKQ8cQmOpaZ6Ync49Ta2ubcpsp51pLPajrNZrO8CA63LqRVrs9Ef1Db1pCPfA8tTU7YbiJ7d_4rJtYoiq4GCo3bMCLabNJzNVODj4WiWDgt1Mrg1L0O7RXVlHGf846f5KY9unbJvJ4r-VfA1Nuhowf_u4KHcD_cQNn7XmUewS3XPIa7PSfl5RP4feIIExE7WTc_C-RerK3ZxXxBtSbMpyDGHcrW7YYvZ63FjgDRynABP30sAF_CGeXVf2cH-tJRtSZr-qzzjunGMjzMFp1jerVsY8LTpJzqp_D16PDLh49xIGmIjVRyGRudWCmVEyKvtBHOpTapVFXjP18ZqXPNnawrbqssT2xac5Mai2qT15V1IrNWPIOtpm3cc2B5UglZy3qSVA5f-zItNVpwzblO8FFCRzBZi6o0AcGciDROSx9JF1nZi7dE8ZZevKWM4O0w57zH77hx9M5adGXYy115JbcIXg_duAsptKIb165oDKeadLw_RrDdK8zwOEGY_zlXEagNVRoGEML3Zk8z_-GRvpUQySTbj2B3rXRXP-vfq3hx8ypewj1OG4B81GIHtpaLlXsFd8zFct4txn4H-TYbw-jgcFqcjL2jAttjXlCrsB0Vn46Lb38A16Euqw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE43atZ1NfECIV9VVt6sVKlJ7Co7ttEE0KZvdor3wk_iNzORVLRW99cAtkZ3Edj7P2J7HB_ASlRxqBSH9vg20LyNTE7n7A2tTq7gdhK5iLRmF43G0v68mK_C7jYUht8pWJlaC2haGzsg3UNMoyu0morcnP3xijSLrakuhUcNixy1-4patfDP8iP_3Fedbn_Y-bPsNq4BvZChnvtGBlTJ0QqhEG-HcwAZJmKRcycRIrTR3Mk24TSIV2EHKzcBY7KdKE-tEZK3A916BVYlg3-zB6mS4OznoTnXIboYNbaJzsLEbJWpIimLjlZc9XsllDXhuWXveO_MvE22l-bZu_W9jdhtuNmts9q6eFHdgxeV34VrNurm4B78-O8r6iIWszI4b-jJWpOw0m1I0DaucLP0S0evWm5vjwmJBk4SW4YB9q6wdmSsZRQ4csvd64SgeleW1X33JdG4Ziutp6ZiezwqfMoaS1_h9-HIpnX8AvbzI3SNgKkiETGXaDxKHG9tIS41rFM25DvBTQnvQb6ERmyZHO1GFfI8rXwERxTWcYoRTXMEplh687p45qTOUXFh7rYVK3EirMj7DiQcvumKUM2Q80rkr5lSHU9Q9rpA9eFgDtPucIFYDxUMPwiXodhUoh_lySZ4dVbnMQyGCfrTpwXoL8rNm_bsXjy_uxXO4vr23O4pHw_HOE7jBafLRibxYg95sOndP4ao5nWXl9Fkzfxl8vWz4_wFV4Iy0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRceD8CBYwEJxqVtZ2HDwhR2hVVq9WqAqm31LEdGkSTstkt2gs_jF_HTF7VUtFbD9wS2Uls5_OM7Xl8AK9QyaFWENIf2kD7MjYNkbsfWptZxW0YuZq1ZD8aj-PDQzVZgd9dLAy5VXYysRbUtjR0Rr6JmkZRbjcRb2atW8Rke_T-9IdPDFJkae3oNBqI7LnFT9y-Ve92t_Ffv-Z8tPP54ye_ZRjwjYzkzDc6sFJGTgiVaiOcC22QRmnGlUyN1EpzJ7OU2zRWgQ0zbkJjsc8qS60TsbUC33sNViOBm54BrG7tjCcH_QkP2dCw0W2kDjW8Qm1JEW289rjHK7msDS8scS96av5lrq214Oj2_zx-d-BWu_ZmH5rJchdWXHEPbjRsnIv78OvAUTZILGRVftLSmrEyY2f5lKJsWO186VeIarfR3pyUFgva5LQMB-9bbQXJXcUoouAr29ILR3GqrGj87SumC8tQjE8rx_R8VvqUSZS8yR_Alyvp_EMYFGXhHgNTQSpkJrNhkDrc8MZaaly7aM51gJ8S2oNhB5PEtLnbiULke1L7EIg4aaCVILSSGlqJ9OBN_8xpk7nk0trrHWySVopVyTlmPHjZF6P8IaOSLlw5pzqcovFx5ezBowas_ecEsR0oHnkQLcG4r0C5zZdLivy4znEeCREM47cebHSAP2_Wv3vx5PJevIA1xHyyvzveewo3Oc1DOqgX6zCYTefuGVw3Z7O8mj5vpzKDo6tG_x8GVpVO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+simulation+of+virtual+multi-scale%2C+multi-modal+patient+trajectories+using+Bayesian+networks+and+sparse+auto-encoders&rft.jtitle=Scientific+reports&rft.au=Sood%2C+Meemansa&rft.au=Sahay%2C+Akrishta&rft.au=Karki%2C+Reagon&rft.au=Emon%2C+Mohammad+Asif&rft.date=2020-07-03&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-67398-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_67398_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |