Multi-omic and multi-view clustering algorithms: review and cancer benchmark

Abstract Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measureme...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nucleic acids research Ročník 46; číslo 20; s. 10546 - 10562
Hlavní autoři: Rappoport, Nimrod, Shamir, Ron
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 16.11.2018
Témata:
ISSN:0305-1048, 1362-4962, 1362-4962
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field.
AbstractList Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field.
Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field.Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field.
Abstract Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field.
Author Rappoport, Nimrod
Shamir, Ron
AuthorAffiliation Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
AuthorAffiliation_xml – name: Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
Author_xml – sequence: 1
  givenname: Nimrod
  surname: Rappoport
  fullname: Rappoport, Nimrod
  organization: Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
– sequence: 2
  givenname: Ron
  surname: Shamir
  fullname: Shamir, Ron
  email: rshamir@tau.ac.il
  organization: Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30295871$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlLBDEQhYOM6Lhc_AHSF0GE1my9xIMg4gYjXvQcknQyE6c7GZPuEf-9PbaKingqivrq1aPeFhg57zQAewgeI8jIiRPhZDp_LUu2BsaI5DilLMcjMIYEZimCtNwEWzE-QYgoyugG2CQQs6ws0BhM7rq6talvrEqEq5LmvV1a_ZKououtDtZNE1FPfbDtrImnSdDv0xWshFM6JFI7NWtEmO-AdSPqqHc_6jZ4vLp8uLhJJ_fXtxfnk1TRgrapYlJgyTIlKCwYNpWREmJicIFgXsi-q5iRuUCUwFJog1hVUlhhiohhJpdkG5wNuotONrpS2rVB1HwRbO_ilXth-c-JszM-9UueY1IUWdYLHH4IBP_c6djyxkal61o47bvIMUJF_ylC8x7d_37r68jnC3vgaABU8DEGbb4QBPkqH97nw4d8ehj-gpVtRWv9yqet_145GFZ8t_hP-g1gnqOE
CitedBy_id crossref_primary_10_1038_s41598_025_96686_0
crossref_primary_10_1093_jrsssb_qkaf021
crossref_primary_10_1007_s10044_025_01538_2
crossref_primary_10_1016_j_ajhg_2019_10_012
crossref_primary_10_1007_s10620_025_09214_5
crossref_primary_10_1016_j_biotechadv_2024_108400
crossref_primary_10_1093_bib_bbad304
crossref_primary_10_1016_j_eswa_2025_127131
crossref_primary_10_1016_j_semnephrol_2025_151584
crossref_primary_10_1186_s40246_025_00811_z
crossref_primary_10_1007_s10489_023_04580_x
crossref_primary_10_3233_IDT_200044
crossref_primary_10_1016_j_jbi_2023_104406
crossref_primary_10_1016_j_inffus_2024_102488
crossref_primary_10_1016_j_dsp_2024_104713
crossref_primary_10_1109_TAI_2021_3065894
crossref_primary_10_1016_j_csbj_2022_08_003
crossref_primary_10_1371_journal_pcbi_1012275
crossref_primary_10_1186_s12859_020_3453_6
crossref_primary_10_1093_bib_bbaf043
crossref_primary_10_1016_j_csbj_2020_05_021
crossref_primary_10_1093_bib_bbac207
crossref_primary_10_3390_cancers14133215
crossref_primary_10_3389_fgene_2021_718915
crossref_primary_10_1016_j_euroneuro_2023_01_001
crossref_primary_10_1007_s10462_022_10325_y
crossref_primary_10_1016_j_procs_2024_09_180
crossref_primary_10_1038_s41416_025_03139_6
crossref_primary_10_3171_2021_11_FOCUS21571
crossref_primary_10_1111_rda_14029
crossref_primary_10_1093_bib_bbae541
crossref_primary_10_1016_j_gpb_2022_05_007
crossref_primary_10_1186_s12859_024_05749_y
crossref_primary_10_3389_fgene_2019_01353
crossref_primary_10_1016_j_csbj_2021_03_010
crossref_primary_10_1093_bib_bbab398
crossref_primary_10_1093_bib_bbac488
crossref_primary_10_3389_fgene_2023_1179439
crossref_primary_10_1016_j_jtbi_2022_111328
crossref_primary_10_3390_life12020279
crossref_primary_10_3389_fimmu_2024_1398000
crossref_primary_10_3390_biom10040524
crossref_primary_10_1371_journal_pone_0216904
crossref_primary_10_1038_s41467_022_30694_w
crossref_primary_10_3390_cancers11101434
crossref_primary_10_3390_biom12121839
crossref_primary_10_3389_fimmu_2021_723172
crossref_primary_10_1016_j_procs_2025_04_515
crossref_primary_10_1021_acssynbio_4c00864
crossref_primary_10_1109_TCBB_2023_3293472
crossref_primary_10_1080_01621459_2025_2539539
crossref_primary_10_1371_journal_pone_0302461
crossref_primary_10_1016_j_csbj_2021_04_060
crossref_primary_10_1109_TCBB_2021_3106344
crossref_primary_10_21693_1933_088X_23_2_33
crossref_primary_10_1038_s41598_025_15068_8
crossref_primary_10_1093_nar_gkz324
crossref_primary_10_1038_s41366_023_01281_w
crossref_primary_10_1093_bib_bbaa169
crossref_primary_10_1002_wics_1553
crossref_primary_10_1016_j_ymeth_2024_09_016
crossref_primary_10_1016_j_ymeth_2024_09_014
crossref_primary_10_3389_fams_2024_1380996
crossref_primary_10_3389_fgene_2020_574661
crossref_primary_10_3390_biomedicines13092171
crossref_primary_10_1186_s13059_022_02739_2
crossref_primary_10_1016_j_jocs_2024_102460
crossref_primary_10_1002_aisy_202500247
crossref_primary_10_1093_bib_bbad196
crossref_primary_10_1016_j_compbiolchem_2024_108254
crossref_primary_10_3389_fmolb_2022_962799
crossref_primary_10_1038_s41467_020_20430_7
crossref_primary_10_1109_TCBB_2020_3010509
crossref_primary_10_1016_j_cmpb_2025_108603
crossref_primary_10_1038_s41467_025_60822_1
crossref_primary_10_1080_19490976_2023_2297860
crossref_primary_10_1016_j_jaci_2019_05_015
crossref_primary_10_1016_j_csbj_2021_06_030
crossref_primary_10_1038_s41467_024_50426_6
crossref_primary_10_3390_math9091006
crossref_primary_10_37349_eaa_2025_100984
crossref_primary_10_1109_TBME_2022_3190050
crossref_primary_10_1007_s10618_023_00991_z
crossref_primary_10_1186_s12859_025_06245_7
crossref_primary_10_1016_j_pnpbp_2022_110520
crossref_primary_10_1371_journal_pone_0238996
crossref_primary_10_3389_fonc_2022_892207
crossref_primary_10_1371_journal_pcbi_1008405
crossref_primary_10_1186_s12859_020_03567_6
crossref_primary_10_3389_fgene_2022_1032768
crossref_primary_10_1109_TCBB_2021_3063284
crossref_primary_10_1109_RBME_2024_3503761
crossref_primary_10_1093_bib_bbaa102
crossref_primary_10_1111_cgf_14828
crossref_primary_10_3390_app14072728
crossref_primary_10_1016_j_compbiomed_2022_106263
crossref_primary_10_1007_s11831_021_09547_0
crossref_primary_10_1016_j_ejmp_2021_02_024
crossref_primary_10_1038_s41598_024_52087_3
crossref_primary_10_3390_diagnostics11020196
crossref_primary_10_1016_j_knosys_2024_111768
crossref_primary_10_1016_j_crmeth_2023_100461
crossref_primary_10_1016_j_ymeth_2020_08_001
crossref_primary_10_1016_j_csbj_2021_01_009
crossref_primary_10_1080_21655979_2021_1962147
crossref_primary_10_1093_bib_bbae061
crossref_primary_10_1093_bib_bbaf150
crossref_primary_10_3390_cancers13143423
crossref_primary_10_3390_ijms241914888
crossref_primary_10_1371_journal_pcbi_1011842
crossref_primary_10_3390_ijms26030963
crossref_primary_10_3390_antiox12040799
crossref_primary_10_1515_icom_2020_0024
crossref_primary_10_1016_j_engappai_2025_110041
crossref_primary_10_1093_bioinformatics_btae382
crossref_primary_10_1371_journal_pcbi_1011044
crossref_primary_10_3390_cancers14020349
crossref_primary_10_1136_jclinpath_2020_207326
crossref_primary_10_3389_fmolb_2020_590842
crossref_primary_10_1016_j_tifs_2024_104391
crossref_primary_10_1038_s42003_023_04529_3
crossref_primary_10_3168_jds_2024_26210
crossref_primary_10_1515_sagmb_2022_0047
crossref_primary_10_1007_s13755_024_00274_x
crossref_primary_10_1016_j_jbi_2021_103854
crossref_primary_10_1109_TETCI_2024_3406704
crossref_primary_10_1038_s41467_022_32266_4
crossref_primary_10_1186_s12859_024_05652_6
crossref_primary_10_1177_1177932219899051
crossref_primary_10_1186_s12859_021_04296_0
crossref_primary_10_1371_journal_pcbi_1009767
crossref_primary_10_3390_jcm12196207
crossref_primary_10_1093_bioinformatics_btaf122
crossref_primary_10_1016_j_arr_2022_101730
crossref_primary_10_1186_s12014_024_09454_z
crossref_primary_10_31083_j_fbl2912404
crossref_primary_10_1016_j_patcog_2024_111010
crossref_primary_10_1016_j_semperi_2021_151456
crossref_primary_10_2174_1574893618666230406105659
crossref_primary_10_1093_bib_bbae606
crossref_primary_10_1080_01621459_2023_2271199
crossref_primary_10_1016_j_inffus_2025_103322
crossref_primary_10_1080_15384101_2023_2281816
crossref_primary_10_1002_gepi_22497
crossref_primary_10_12677_aam_2024_139399
crossref_primary_10_1109_TNNLS_2023_3244021
crossref_primary_10_1016_j_foodres_2019_108543
crossref_primary_10_2174_1574893618666230519145545
crossref_primary_10_3389_fonc_2020_588221
crossref_primary_10_1007_s10489_025_06515_0
crossref_primary_10_3390_ijms24010004
crossref_primary_10_1007_s11010_024_05041_w
crossref_primary_10_1186_s13073_021_00930_x
crossref_primary_10_1007_s13721_024_00442_9
crossref_primary_10_1016_j_compbiomed_2022_106192
crossref_primary_10_1371_journal_pcbi_1008182
crossref_primary_10_3390_ijms20194781
crossref_primary_10_1186_s13059_020_1932_8
crossref_primary_10_1109_TFUZZ_2019_2928518
crossref_primary_10_1080_1040841X_2020_1828817
crossref_primary_10_1093_bib_bbad025
crossref_primary_10_1109_TPAMI_2025_3582689
crossref_primary_10_1016_j_tifs_2021_02_051
crossref_primary_10_3389_fmolb_2022_962743
crossref_primary_10_1136_bmjopen_2021_053674
crossref_primary_10_1016_j_engappai_2021_104480
crossref_primary_10_1016_j_ijbiomac_2023_128563
crossref_primary_10_4018_IJDWM_319956
crossref_primary_10_1186_s12859_021_04195_4
crossref_primary_10_1016_j_jbc_2025_110216
crossref_primary_10_1186_s12864_023_09833_0
crossref_primary_10_3389_fgene_2022_962870
crossref_primary_10_1093_bib_bbaf355
crossref_primary_10_1016_j_csbj_2022_11_050
crossref_primary_10_1109_TKDE_2023_3238416
crossref_primary_10_1109_TCBB_2022_3143897
crossref_primary_10_1016_j_ijmedinf_2022_104785
crossref_primary_10_1038_s41576_023_00679_6
crossref_primary_10_1128_aem_00092_24
crossref_primary_10_1089_cmb_2024_0927
crossref_primary_10_1371_journal_pcbi_1008878
crossref_primary_10_1016_j_trc_2024_104607
crossref_primary_10_1186_s12859_021_04279_1
crossref_primary_10_1016_j_procs_2024_09_488
crossref_primary_10_1186_s12859_020_03681_5
crossref_primary_10_1093_bioadv_vbac093
crossref_primary_10_2217_epi_2020_0073
crossref_primary_10_1371_journal_pcbi_1007677
crossref_primary_10_3390_toxics11121014
crossref_primary_10_1016_j_compbiomed_2023_107223
crossref_primary_10_1016_j_jbi_2020_103636
crossref_primary_10_1016_j_csbj_2023_04_015
crossref_primary_10_1038_s42003_022_03975_9
crossref_primary_10_1038_s41380_021_01201_2
crossref_primary_10_1093_bib_bbad282
crossref_primary_10_1186_s12864_025_11925_y
crossref_primary_10_1089_omi_2022_0068
crossref_primary_10_1016_j_pneurobio_2023_102480
crossref_primary_10_3389_fcell_2022_752326
crossref_primary_10_1016_j_coemr_2022_100350
crossref_primary_10_3389_fmolb_2023_1301996
crossref_primary_10_3390_metabo10020051
crossref_primary_10_1093_bib_bbac500
crossref_primary_10_1016_j_compbiomed_2022_106085
crossref_primary_10_1371_journal_pcbi_1009044
crossref_primary_10_1146_annurev_biodatasci_020422_050645
crossref_primary_10_1093_bioadv_vbad075
crossref_primary_10_1093_bioadv_vbae164
crossref_primary_10_3389_fgene_2022_854752
crossref_primary_10_1109_TCBB_2021_3139597
crossref_primary_10_1186_s12859_021_04215_3
crossref_primary_10_1016_j_inffus_2023_102155
crossref_primary_10_3389_fonc_2021_629860
crossref_primary_10_1186_s12859_021_04023_9
crossref_primary_10_3390_biom11040565
crossref_primary_10_1093_bib_bbab057
crossref_primary_10_6339_21_JDS1028
crossref_primary_10_1002_bimj_202200238
crossref_primary_10_3389_fgene_2020_610798
crossref_primary_10_1038_s42256_021_00325_y
crossref_primary_10_1093_bib_bbab600
crossref_primary_10_15302_J_QB_022_0289
crossref_primary_10_1093_nar_gkad566
crossref_primary_10_1016_j_eswa_2025_126488
crossref_primary_10_1109_TCBB_2021_3122917
crossref_primary_10_7717_peerj_9646
crossref_primary_10_1002_jcsm_13661
crossref_primary_10_1016_j_entcom_2023_100631
crossref_primary_10_1038_s41598_020_70229_1
crossref_primary_10_3389_fgene_2019_00236
crossref_primary_10_1038_s41598_021_03034_z
crossref_primary_10_1038_s43588_021_00029_8
crossref_primary_10_1186_s12911_022_01938_y
crossref_primary_10_2217_fon_2023_0070
crossref_primary_10_1016_j_ymeth_2023_02_005
crossref_primary_10_3389_fbioe_2020_00268
crossref_primary_10_1093_bib_bbac132
crossref_primary_10_1093_bib_bbac372
crossref_primary_10_1093_nar_gkz422
crossref_primary_10_1155_2021_2292703
crossref_primary_10_1016_j_semcancer_2023_02_005
crossref_primary_10_1371_journal_pcbi_1009224
crossref_primary_10_1080_10408398_2025_2530537
crossref_primary_10_1002_1878_0261_12920
crossref_primary_10_1038_s41598_023_38243_1
crossref_primary_10_1093_nar_gkab394
crossref_primary_10_1038_s41698_025_00917_6
crossref_primary_10_1093_bib_bbae582
crossref_primary_10_1016_j_ymeth_2025_01_016
crossref_primary_10_1002_aisy_202200247
crossref_primary_10_1093_bib_bbac046
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_1111_nmo_14898
crossref_primary_10_1021_acsagscitech_5c00098
crossref_primary_10_1186_s13059_025_03675_7
crossref_primary_10_3390_ijms24043419
crossref_primary_10_1016_j_jprot_2023_104840
crossref_primary_10_1016_j_copbio_2020_02_013
crossref_primary_10_52601_bpr_2024_240053
crossref_primary_10_1186_s40164_022_00333_7
crossref_primary_10_1016_j_inffus_2023_101959
crossref_primary_10_1186_s13023_020_01376_x
crossref_primary_10_1016_j_bbe_2021_10_005
crossref_primary_10_1093_bib_bbae331
crossref_primary_10_1016_j_bbadis_2024_167120
crossref_primary_10_1016_j_phrs_2020_105370
crossref_primary_10_1016_j_eswa_2025_126835
crossref_primary_10_1016_j_crmeth_2021_100152
crossref_primary_10_3390_bioengineering11060587
crossref_primary_10_3389_fonc_2023_1186858
crossref_primary_10_1038_s41416_024_02587_w
crossref_primary_10_1186_s13040_023_00334_0
crossref_primary_10_1080_14789450_2025_2491357
crossref_primary_10_1002_pmic_202400002
crossref_primary_10_3389_fonc_2020_01065
crossref_primary_10_3390_cancers14112797
crossref_primary_10_3389_fgene_2024_1466825
crossref_primary_10_1080_14789450_2020_1724540
crossref_primary_10_3390_data7120179
crossref_primary_10_3390_diagnostics15192425
Cites_doi 10.1016/S1470-2045(15)00620-8
10.1038/nmeth.2810
10.1111/j.2517-6161.1996.tb02080.x
10.2202/1544-6115.1406
10.1038/44565
10.1016/j.neunet.2006.09.011
10.1145/331499.331504
10.1371/journal.pcbi.1005781
10.1186/s12859-015-0854-z
10.1098/rsif.2017.0387
10.1371/journal.pone.0053014
10.1158/1078-0432.CCR-17-0853
10.1093/bioinformatics/bts402
10.3389/fgene.2017.00084
10.1093/bioinformatics/bts595
10.1142/S012906570000034X
10.1093/bioinformatics/bty502
10.1214/12-AOAS597
10.1109/CVPR.2014.31
10.1007/s40484-016-0063-4
10.1002/cem.1071
10.1186/1471-2105-14-245
10.1186/1471-2105-15-162
10.1080/21628130.2015.1016702
10.1186/s13072-016-0075-3
10.1109/TCBB.2014.2377729
10.1371/journal.pcbi.1005752
10.1016/j.inffus.2017.02.007
10.1093/nar/gks725
10.1016/j.ipm.2015.12.007
10.1890/03-0178
10.1162/neco.2006.18.7.1527
10.1109/TPAMI.1984.4767596
10.1016/S0169-7439(01)00155-1
10.1142/S0218001411008683
10.1093/bioinformatics/btt425
10.1093/bioinformatics/btg433
10.1038/nrg1749
10.1016/0377-0427(87)90125-7
10.1038/nrg2934
10.1073/pnas.1208949110
10.1093/bioinformatics/btv244
10.1186/s12859-015-0857-9
10.1145/2601434
10.1093/bioinformatics/btw324
10.1007/s11222-007-9033-z
10.1093/biostatistics/kxs038
10.1016/j.cell.2018.03.022
10.1093/bib/bbv108
10.1093/biomet/28.3-4.321
10.1093/bioinformatics/bts476
10.1101/gr.215129.116
10.1186/1471-2105-10-34
10.1093/bioinformatics/btx464
10.1038/nature14539
10.1371/journal.pcbi.1004071
10.1137/1.9781611972788.74
10.1093/biostatistics/kxx017
10.1371/journal.pcbi.1002227
10.1002/cem.724
10.1111/j.1365-313X.2007.03293.x
10.1093/bioinformatics/btq182
10.1109/TPAMI.2014.2343973
10.1145/1273496.1273642
10.1007/BF02607055
10.1145/1553374.1553391
10.1093/bioinformatics/btp543
10.1093/bioinformatics/btq210
10.1023/A:1023949509487
10.1002/9780470258019
10.1016/j.cell.2014.06.049
10.1002/cem.1388
10.1038/nature07385
10.1038/nrg.2016.49
10.1186/s12864-015-2223-8
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/nar/gky889
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Open Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 10562
ExternalDocumentID PMC6237755
30295871
10_1093_nar_gky889
10.1093/nar/gky889
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
CITATION
OVT
AAPPN
ADIXU
AFULF
BTTYL
M~E
NPM
ROX
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c474t-c9ba2b95ca40792fdfbb023f271067bfbbd9fb6a14308aef19d840d2413f9f6b3
IEDL.DBID TOX
ISICitedReferencesCount 351
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456709700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Sep 30 16:14:35 EDT 2025
Fri Sep 05 10:00:44 EDT 2025
Wed Feb 19 02:36:04 EST 2025
Tue Nov 18 22:22:04 EST 2025
Sat Nov 29 03:24:51 EST 2025
Wed Apr 02 07:01:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-c9ba2b95ca40792fdfbb023f271067bfbbd9fb6a14308aef19d840d2413f9f6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/nar/gky889
PMID 30295871
PQID 2117154346
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6237755
proquest_miscellaneous_2117154346
pubmed_primary_30295871
crossref_primary_10_1093_nar_gky889
crossref_citationtrail_10_1093_nar_gky889
oup_primary_10_1093_nar_gky889
PublicationCentury 2000
PublicationDate 2018-11-16
PublicationDateYYYYMMDD 2018-11-16
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-16
  day: 16
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References de Sa ( key 2018112804022147000_B22) 2005
Wang ( key 2018112804022147000_B17) 2013; 28
Li ( key 2018112804022147000_B59) 2014
Liang ( key 2018112804022147000_B75) 2015; 12
Chikhi ( key 2018112804022147000_B24) 2016; 52
Ahmad ( key 2018112804022147000_B72) 2017; 33
Chaudhuri ( key 2018112804022147000_B87) 2009
Meng ( key 2018112804022147000_B13) 2016; 17
Žitnik ( key 2018112804022147000_B95) 2015; 2
Wang ( key 2018112804022147000_B12) 2016; 4
Nguyen ( key 2018112804022147000_B21) 2017; 27
Mo ( key 2018112804022147000_B64) 2013; 110
Meng ( key 2018112804022147000_B53) 2014; 15
Kalayeh ( key 2018112804022147000_B55) 2014
Shen ( key 2018112804022147000_B15) 2009; 25
Vaske ( key 2018112804022147000_B66) 2010; 26
Hotelling ( key 2018112804022147000_B34) 1936; 28
Žitnik ( key 2018112804022147000_B60) 2015; 37
Tini ( key 2018112804022147000_B14) 2017
Yong ( key 2018112804022147000_B4) 2016; 9
Chen ( key 2018112804022147000_B42) 2013; 14
Prasad ( key 2018112804022147000_B6) 2016; 17
Huang ( key 2018112804022147000_B56) 2014; 8
Bruno ( key 2018112804022147000_B20) 2009
Zhang ( key 2018112804022147000_B57) 2012; 40
Vandin ( key 2018112804022147000_B108) 2015; 11
Kirk ( key 2018112804022147000_B69) 2012; 28
Bylesjö ( key 2018112804022147000_B89) 2007; 52
Savage ( key 2018112804022147000_B67) 2010; 26
Witten ( key 2018112804022147000_B39) 2009; 8
Lock ( key 2018112804022147000_B70) 2013; 29
Network ( key 2018112804022147000_B8) 2008; 455
Rosipal ( key 2018112804022147000_B49) 2001; 2
Rantalainen ( key 2018112804022147000_B50) 2007; 21
Ng ( key 2018112804022147000_B97) 2012; 28
Klami ( key 2018112804022147000_B35) 2013; 13
Seung ( key 2018112804022147000_B93) 1999; 401
Huang ( key 2018112804022147000_B9) 2017; 8
Wang ( key 2018112804022147000_B29) 2014; 11
el Bouhaddani ( key 2018112804022147000_B90) 2016; 17
Löfstedt ( key 2018112804022147000_B52) 2011; 25
Wold ( key 2018112804022147000_B45) 2001; 58
Dray ( key 2018112804022147000_B92) 2003; 84
Jain ( key 2018112804022147000_B5) 1999; 31
Cox ( key 2018112804022147000_B86) 1984
Bach ( key 2018112804022147000_B88) 2006; 688
Zhou ( key 2018112804022147000_B26) 2007
von Luxburg ( key 2018112804022147000_B82) 2007; 17
Li ( key 2018112804022147000_B25) 2015
Li ( key 2018112804022147000_B51) 2012; 28
Hoadley ( key 2018112804022147000_B96) 2018; 173
Guo ( key 2018112804022147000_B62) 2013
Lê Cao ( key 2018112804022147000_B47) 2009; 10
Monti ( key 2018112804022147000_B79) 2003; 52
Geman ( key 2018112804022147000_B98) 1984
Bo ( key 2018112804022147000_B28) 2012
Vega-Pons ( key 2018112804022147000_B81) 2011; 25
Xia ( key 2018112804022147000_B27) 2014
Yuan ( key 2018112804022147000_B68) 2011; 7
Chaudhary ( key 2018112804022147000_B74) 2018; 24
Lee ( key 2018112804022147000_B94) 2001
Wu ( key 2018112804022147000_B16) 2015; 16
Krizhevsky ( key 2018112804022147000_B100) 2012
Zhang ( key 2018112804022147000_B63) 2015
Gabasova ( key 2018112804022147000_B71) 2017; 13
Lê Cao ( key 2018112804022147000_B46) 2008; 7
Bickel ( key 2018112804022147000_B76) 2006; 15
Mo ( key 2018112804022147000_B65) 2018; 19
Parkhomenko ( key 2018112804022147000_B38) 2009; 8
Lin ( key 2018112804022147000_B43) 2013; 14
Bickel ( key 2018112804022147000_B18) 2004
Ching ( key 2018112804022147000_B104) 2018; 15
Hosmer ( key 2018112804022147000_B106) 2008
Speicher ( key 2018112804022147000_B30) 2015; 31
Lock ( key 2018112804022147000_B32) 2013; 7
Lai ( key 2018112804022147000_B36) 2000; 10
Blum ( key 2018112804022147000_B78) 1998
Ngiam ( key 2018112804022147000_B102) 2011
LeCun ( key 2018112804022147000_B99) 2015; 521
Allison ( key 2018112804022147000_B3) 2006; 7
Tibshirani ( key 2018112804022147000_B77) 1996; 58
Liu ( key 2018112804022147000_B54) 2013
Lo Asz ( key 2018112804022147000_B84) 1993
Hofmann ( key 2018112804022147000_B80) 1999
Wang ( key 2018112804022147000_B103) 2016
Zhang ( key 2018112804022147000_B58) 2015
White ( key 2018112804022147000_B61) 2012
Hinton ( key 2018112804022147000_B105) 2006; 18
Long ( key 2018112804022147000_B31) 2008
Rousseeuw ( key 2018112804022147000_B107) 1987; 20
Mohar ( key 2018112804022147000_B83) 1991; 2
Hoadley ( key 2018112804022147000_B19) 2014; 158
Sutskever ( key 2018112804022147000_B101) 2014
Vía ( key 2018112804022147000_B40) 2007; 20
Ozsolak ( key 2018112804022147000_B2) 2011; 12
Aure ( key 2018112804022147000_B109) 2013; 8
Hwang ( key 2018112804022147000_B91) 2004; 20
Zhao ( key 2018112804022147000_B7) 2017; 38
Goodwin ( key 2018112804022147000_B1) 2016; 17
Andrew ( key 2018112804022147000_B37) 2013
Pearl ( key 2018112804022147000_B85) 1988
Coretto ( key 2018112804022147000_B73) 2018
Rohart ( key 2018112804022147000_B44) 2017; 13
Luo ( key 2018112804022147000_B41) 2016
O’Connell ( key 2018112804022147000_B33) 2016; 32
Li ( key 2018112804022147000_B11) 2016
Kumar ( key 2018112804022147000_B23) 2011
Bersanelli ( key 2018112804022147000_B10) 2016; 17
Trygg ( key 2018112804022147000_B48) 2002; 16
30496480 - Nucleic Acids Res. 2019 Jan 25;47(2):1044
References_xml – volume: 17
  start-page: e81
  year: 2016
  ident: key 2018112804022147000_B6
  article-title: Precision oncology: origins, optimism, and potential
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(15)00620-8
– start-page: 19
  year: 2004
  ident: key 2018112804022147000_B18
  article-title: Multi-view clustering
  publication-title: Proc. ICDM 2004
– volume: 11
  start-page: 333
  year: 2014
  ident: key 2018112804022147000_B29
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2810
– year: 2017
  ident: key 2018112804022147000_B14
  article-title: Multi-omics integration-a comparison of unsupervised clustering methodologies
  publication-title: Brief. Bioinformatics
– start-page: 2997
  volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2012
  ident: key 2018112804022147000_B28
  article-title: Unsupervised metric fusion by cross diffusion
– volume: 688
  start-page: 1
  year: 2006
  ident: key 2018112804022147000_B88
  article-title: A probabilistic interpretation of canonical correlation analysis
  publication-title: Dept. Statist. Univ. California Berkeley CA Tech. Rep.
– volume: 58
  start-page: 267
  year: 1996
  ident: key 2018112804022147000_B77
  article-title: Regression Selection and Shrinkage via the Lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 13
  start-page: 723
  year: 2013
  ident: key 2018112804022147000_B35
  article-title: Bayesian canonical correlation analysis
  publication-title: J. Mach. Learn.
– volume: 8
  start-page: 1
  year: 2009
  ident: key 2018112804022147000_B38
  article-title: Sparse canonical correlation analysis with application to genomic data integration
  publication-title: Stat. Applic. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1406
– volume: 401
  start-page: 788
  year: 1999
  ident: key 2018112804022147000_B93
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 20
  start-page: 139
  year: 2007
  ident: key 2018112804022147000_B40
  article-title: A learning algorithm for adaptive canonical correlation analysis of several data sets
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2006.09.011
– volume: 31
  start-page: 264
  year: 1999
  ident: key 2018112804022147000_B5
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 13
  start-page: e1005781
  year: 2017
  ident: key 2018112804022147000_B71
  article-title: Clusternomics: Integrative context-dependent clustering for heterogeneous datasets
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005781
– start-page: 1413
  volume-title: Proc. NIPS ’11
  year: 2011
  ident: key 2018112804022147000_B23
  article-title: Co-regularized multi-view spectral clustering
– volume: 17
  start-page: S11
  year: 2016
  ident: key 2018112804022147000_B90
  article-title: Evaluation of O2PLS in omics data integration
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0854-z
– volume: 15
  start-page: 20170387
  year: 2018
  ident: key 2018112804022147000_B104
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0387
– volume: 8
  start-page: 1
  year: 2013
  ident: key 2018112804022147000_B109
  article-title: Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053014
– volume: 24
  start-page: 1248
  year: 2018
  ident: key 2018112804022147000_B74
  article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0853
– volume: 28
  start-page: i640
  year: 2012
  ident: key 2018112804022147000_B97
  article-title: PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts402
– volume: 8
  start-page: 84
  year: 2017
  ident: key 2018112804022147000_B9
  article-title: More is better: recent progress in multi-omics data integration methods
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00084
– volume: 28
  start-page: 3290
  year: 2012
  ident: key 2018112804022147000_B69
  article-title: Bayesian correlated clustering to integrate multiple datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts595
– start-page: 1673
  volume-title: Proc. NIPS ’12
  year: 2012
  ident: key 2018112804022147000_B61
  article-title: Convex multi-view subspace learning
– volume-title: Analysis of Survival Data
  year: 1984
  ident: key 2018112804022147000_B86
– volume: 28
  start-page: 352
  year: 2013
  ident: key 2018112804022147000_B17
  article-title: Multi-view clustering and feature learning via structured sparsity
  publication-title: Proc. ICML ’13
– volume: 10
  start-page: 365
  year: 2000
  ident: key 2018112804022147000_B36
  article-title: Kernel and Nonlinear Canonical Correlation Analysis
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906570000034X
– year: 2018
  ident: key 2018112804022147000_B73
  article-title: Robust clustering of noisy high-dimensional gene expression data for patients subtyping
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty502
– start-page: 92
  volume-title: Proc. COLT ’98
  year: 1998
  ident: key 2018112804022147000_B78
  article-title: Combining labeled and unlabeled data with co-training
– volume: 7
  start-page: 523
  year: 2013
  ident: key 2018112804022147000_B32
  article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS597
– start-page: 2149
  year: 2014
  ident: key 2018112804022147000_B27
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
  publication-title: AAAI Conf. Artif. Intell.
– start-page: 184
  volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2014
  ident: key 2018112804022147000_B55
  article-title: NMF-KNN: Image annotation using weighted multi-view non-negative matrix factorization
  doi: 10.1109/CVPR.2014.31
– start-page: 3104
  volume-title: Proc. NIPS’14
  year: 2014
  ident: key 2018112804022147000_B101
  article-title: Sequence to sequence learning with neural networks
– volume: 4
  start-page: 58
  year: 2016
  ident: key 2018112804022147000_B12
  article-title: Integrative clustering methods of multi-omics data for molecule-based cancer classifications
  publication-title: Quant. Biol.
  doi: 10.1007/s40484-016-0063-4
– volume: 21
  start-page: 376
  year: 2007
  ident: key 2018112804022147000_B50
  article-title: Kernel-based orthogonal projections to latent structures (K-OPLS)
  publication-title: J. Chemometrics
  doi: 10.1002/cem.1071
– volume: 14
  start-page: 245
  year: 2013
  ident: key 2018112804022147000_B43
  article-title: Group sparse canonical correlation analysis for genomic data integration
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-245
– volume: 7
  year: 2008
  ident: key 2018112804022147000_B46
  article-title: A sparse PLS for variable selection when integrating omics data
  publication-title: Stat.Applic. Genet.Mol. Biol.
– volume: 15
  start-page: 162
  year: 2014
  ident: key 2018112804022147000_B53
  article-title: A multivariate approach to the integration of multi-omics datasets
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-162
– volume: 2
  start-page: 47
  year: 2015
  ident: key 2018112804022147000_B95
  article-title: Survival regression by data fusion
  publication-title: Syst. Biomed.
  doi: 10.1080/21628130.2015.1016702
– volume: 9
  start-page: 26
  year: 2016
  ident: key 2018112804022147000_B4
  article-title: Profiling genome-wide DNA methylation
  publication-title: Epigenet. Chromatin
  doi: 10.1186/s13072-016-0075-3
– volume: 12
  start-page: 928
  year: 2015
  ident: key 2018112804022147000_B75
  article-title: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinformatics
  doi: 10.1109/TCBB.2014.2377729
– volume: 13
  start-page: e1005752
  year: 2017
  ident: key 2018112804022147000_B44
  article-title: mixOmics: An R package for ‘omics feature selection and multiple data integration
  publication-title: PLoS Computat. Biol.
  doi: 10.1371/journal.pcbi.1005752
– volume: 38
  start-page: 43
  year: 2017
  ident: key 2018112804022147000_B7
  article-title: Multi-view learning overview: Recent progress and new challenges
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.02.007
– volume: 40
  start-page: 9379
  year: 2012
  ident: key 2018112804022147000_B57
  article-title: Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks725
– volume: 52
  start-page: 618
  year: 2016
  ident: key 2018112804022147000_B24
  article-title: Multi-view clustering via spectral partitioning and local refinement
  publication-title: Inform. Process. Manage.
  doi: 10.1016/j.ipm.2015.12.007
– volume: 84
  start-page: 3078
  year: 2003
  ident: key 2018112804022147000_B92
  article-title: Co-inertia analysis and the linking of ecological data tables
  publication-title: Ecology
  doi: 10.1890/03-0178
– volume: 18
  start-page: 1527
  year: 2006
  ident: key 2018112804022147000_B105
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– start-page: 2750
  volume-title: Proc. AAAI 15
  year: 2015
  ident: key 2018112804022147000_B25
  article-title: Large-scale multi-view spectral clustering with bipartite graph
– start-page: 1
  year: 1993
  ident: key 2018112804022147000_B84
  article-title: Random walks on graphs: a survey
  publication-title: Combinatorics
– volume: 2
  start-page: 97
  year: 2001
  ident: key 2018112804022147000_B49
  article-title: Kernel partial least squares regression in reproducing kernel Hilbert space
  publication-title: J. Mach. Learn. Res.
– start-page: 721
  year: 1984
  ident: key 2018112804022147000_B98
  article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6
  doi: 10.1109/TPAMI.1984.4767596
– start-page: 1083
  year: 2016
  ident: key 2018112804022147000_B103
  article-title: On deep multi-view representation learning: objectives and optimization
  publication-title: Proc. ICML ’16
– volume: 58
  start-page: 109
  year: 2001
  ident: key 2018112804022147000_B45
  article-title: PLS-regression: A basic tool of chemometrics
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 25
  start-page: 337
  year: 2011
  ident: key 2018112804022147000_B81
  article-title: A Survey of clustering ensemble algorithms
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001411008683
– start-page: 1582
  volume-title: Proc. ICCV ’15
  year: 2015
  ident: key 2018112804022147000_B63
  article-title: Low-rank tensor constrained multiview subspace clustering
– volume: 29
  start-page: 2610
  year: 2013
  ident: key 2018112804022147000_B70
  article-title: Bayesian consensus clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt425
– volume: 8
  start-page: Article28
  year: 2009
  ident: key 2018112804022147000_B39
  article-title: Extensions of sparse canonical correlation analysis with applications to genomic data
  publication-title: Stat. Applic. Genet. Mol. Biol.
– volume: 20
  start-page: 487
  year: 2004
  ident: key 2018112804022147000_B91
  article-title: Inverse modeling using multi-block PLS to determine the environmental conditions that provide optimal cellular function
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg433
– volume: 7
  start-page: 55
  year: 2006
  ident: key 2018112804022147000_B3
  article-title: Microarray data analysis: From disarray to consolidation and consensus
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1749
– volume: 20
  start-page: 53
  year: 1987
  ident: key 2018112804022147000_B107
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 12
  start-page: 87
  year: 2011
  ident: key 2018112804022147000_B2
  article-title: RNA sequencing: advances, challenges and opportunities
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2934
– volume: 110
  start-page: 4245
  year: 2013
  ident: key 2018112804022147000_B64
  article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1208949110
– volume: 31
  start-page: i268
  year: 2015
  ident: key 2018112804022147000_B30
  article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv244
– volume: 17
  start-page: S15
  year: 2016
  ident: key 2018112804022147000_B10
  article-title: Methods for the integration of multi-omics data: mathematical aspects
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0857-9
– volume: 8
  start-page: 1
  year: 2014
  ident: key 2018112804022147000_B56
  article-title: Robust Manifold Nonnegative Matrix Factorization
  publication-title: ACM Trans. Knowledge Discov. Data
  doi: 10.1145/2601434
– volume: 32
  start-page: 2877
  year: 2016
  ident: key 2018112804022147000_B33
  article-title: R. JIVE for exploration of multi-source molecular data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw324
– start-page: 289
  volume-title: Proc. UAI ’99
  year: 1999
  ident: key 2018112804022147000_B80
  article-title: Probabilistic latent semantic analysis
– volume: 17
  start-page: 395
  year: 2007
  ident: key 2018112804022147000_B82
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 14
  start-page: 244
  year: 2013
  ident: key 2018112804022147000_B42
  article-title: Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxs038
– volume: 173
  start-page: 291
  year: 2018
  ident: key 2018112804022147000_B96
  article-title: Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.022
– start-page: 20
  volume-title: Proceedings of the Workshop on Learning with Multiple Views, 22nd ICML
  year: 2005
  ident: key 2018112804022147000_B22
  article-title: Spectral Clustering with Two Views
– start-page: 1247
  volume-title: Proc. ICML ’13
  year: 2013
  ident: key 2018112804022147000_B37
  article-title: Deep canonical correlation analysis
– volume-title: Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference
  year: 1988
  ident: key 2018112804022147000_B85
– start-page: 1968
  volume-title: Proc. AAAI ’14
  year: 2014
  ident: key 2018112804022147000_B59
  article-title: Partial multi-view clustering
– start-page: 252
  volume-title: Proc. ICDM ’13
  year: 2013
  ident: key 2018112804022147000_B54
  article-title: Multi-View Clustering via Joint Nonnegative Matrix Factorization
– volume: 17
  start-page: 628
  year: 2016
  ident: key 2018112804022147000_B13
  article-title: Dimension reduction techniques for the integrative analysis of multi-omics data
  publication-title: Brief. Bioinformatics
  doi: 10.1093/bib/bbv108
– volume: 28
  start-page: 321
  year: 1936
  ident: key 2018112804022147000_B34
  article-title: Relations between two sets of variates
  publication-title: Biometrika
  doi: 10.1093/biomet/28.3-4.321
– volume: 28
  start-page: 2458
  year: 2012
  ident: key 2018112804022147000_B51
  article-title: Identifying multi-layer gene regulatory modules from multi-dimensional genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts476
– volume: 27
  start-page: 2025
  year: 2017
  ident: key 2018112804022147000_B21
  article-title: A novel approach for data integration and disease subtyping
  publication-title: Genome Res.
  doi: 10.1101/gr.215129.116
– volume: 10
  start-page: 34
  year: 2009
  ident: key 2018112804022147000_B47
  article-title: Sparse canonical methods for biological data integration: application to a cross-platform study
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-34
– volume: 33
  start-page: 3558
  year: 2017
  ident: key 2018112804022147000_B72
  article-title: Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx464
– volume: 521
  start-page: 436
  year: 2015
  ident: key 2018112804022147000_B99
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 11
  start-page: 1
  year: 2015
  ident: key 2018112804022147000_B108
  article-title: Accurate Computation of Survival Statistics in Genome-Wide Studies
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004071
– start-page: 325
  year: 2016
  ident: key 2018112804022147000_B11
  article-title: A review on machine learning principles for multi-view biological data integration
  publication-title: Brief. Bioinformatics
– start-page: 822
  volume-title: Proceedings of the 2008 SIAM International Conference on Data Mining
  year: 2008
  ident: key 2018112804022147000_B31
  article-title: A General Model for Multiple View Unsupervised Learning
  doi: 10.1137/1.9781611972788.74
– volume: 19
  start-page: 71
  year: 2018
  ident: key 2018112804022147000_B65
  article-title: A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx017
– volume: 7
  start-page: e1002227
  year: 2011
  ident: key 2018112804022147000_B68
  article-title: Patient-specific data fusion defines prognostic cancer subtypes
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002227
– volume: 16
  start-page: 283
  year: 2002
  ident: key 2018112804022147000_B48
  article-title: O2-PLS for qualitative and quantitative analysis in multivariate calibration
  publication-title: J. Chemometrics
  doi: 10.1002/cem.724
– volume: 52
  start-page: 1181
  year: 2007
  ident: key 2018112804022147000_B89
  article-title: Data integration in plant biology: The O2PLS method for combined modeling of transcript and metabolite data
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03293.x
– start-page: 387
  year: 2013
  ident: key 2018112804022147000_B62
  article-title: Convex subspace representation learning from multi-view data
  publication-title: AAAI 2013
– start-page: 736
  volume-title: Proc. ACM SIGIR ’09
  year: 2009
  ident: key 2018112804022147000_B20
  article-title: Multiview clustering: A late fusion approach using latent models categories and subject descriptors
– start-page: 1460
  volume-title: Proc. ICDE 2016
  year: 2016
  ident: key 2018112804022147000_B41
  article-title: Tensor canonical correlation analysis for multi-view dimension reduction
– volume: 26
  start-page: i237
  year: 2010
  ident: key 2018112804022147000_B66
  article-title: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq182
– volume: 37
  start-page: 41
  year: 2015
  ident: key 2018112804022147000_B60
  article-title: Data fusion by matrix factorization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2343973
– volume: 2
  start-page: 871
  year: 1991
  ident: key 2018112804022147000_B83
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory Combinatorics Applic.
– start-page: 535
  year: 2001
  ident: key 2018112804022147000_B94
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Adv. Neural Inf. Proc. Syst.
– start-page: 1097
  volume-title: Proc. NIPS ’12
  year: 2012
  ident: key 2018112804022147000_B100
  article-title: ImageNet classification with deep Convolutional neural Networks
– start-page: 1159
  volume-title: Proc. ICML ’07
  year: 2007
  ident: key 2018112804022147000_B26
  article-title: Spectral clustering and transductive learning with multiple views
  doi: 10.1145/1273496.1273642
– volume: 15
  start-page: 271
  year: 2006
  ident: key 2018112804022147000_B76
  article-title: Regularization in statistics
  publication-title: Test
  doi: 10.1007/BF02607055
– start-page: 1
  volume-title: Proc. ICML ’09
  year: 2009
  ident: key 2018112804022147000_B87
  article-title: Multi-view clustering via canonical correlation analysis
  doi: 10.1145/1553374.1553391
– volume: 25
  start-page: 2906
  year: 2009
  ident: key 2018112804022147000_B15
  article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp543
– volume: 26
  start-page: i158
  year: 2010
  ident: key 2018112804022147000_B67
  article-title: Discovering transcriptional modules by Bayesian data integration
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq210
– volume: 52
  start-page: 91
  year: 2003
  ident: key 2018112804022147000_B79
  article-title: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
  publication-title: Mach. Learn.
  doi: 10.1023/A:1023949509487
– volume-title: Applied Survival Analysis: Regression Modeling of Time-to-Event Data
  year: 2008
  ident: key 2018112804022147000_B106
  doi: 10.1002/9780470258019
– volume: 158
  start-page: 929
  year: 2014
  ident: key 2018112804022147000_B19
  article-title: Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.049
– volume: 25
  start-page: 441
  year: 2011
  ident: key 2018112804022147000_B52
  article-title: OnPLS-a novel multiblock method for the modelling of predictive and orthogonal variation
  publication-title: J. Chemometrics
  doi: 10.1002/cem.1388
– start-page: 3174
  volume-title: Proc. AAAI ’15
  year: 2015
  ident: key 2018112804022147000_B58
  article-title: Constrained NMF-based multi-view clustering on unmapped data
– volume: 455
  start-page: 1061
  year: 2008
  ident: key 2018112804022147000_B8
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
  doi: 10.1038/nature07385
– start-page: 689
  year: 2011
  ident: key 2018112804022147000_B102
  article-title: Multimodal deep learning
  publication-title: Proc. ICML ’11
– volume: 17
  start-page: 333
  year: 2016
  ident: key 2018112804022147000_B1
  article-title: Coming of age: ten years of next-generation sequencing technologies
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.49
– volume: 16
  start-page: 1022
  year: 2015
  ident: key 2018112804022147000_B16
  article-title: Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: Application to cancer molecular classification
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2223-8
– reference: 30496480 - Nucleic Acids Res. 2019 Jan 25;47(2):1044
SSID ssj0014154
Score 2.6851184
SecondaryResourceType review_article
Snippet Abstract Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven...
Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10546
SubjectTerms Survey and Summary
Title Multi-omic and multi-view clustering algorithms: review and cancer benchmark
URI https://www.ncbi.nlm.nih.gov/pubmed/30295871
https://www.proquest.com/docview/2117154346
https://pubmed.ncbi.nlm.nih.gov/PMC6237755
Volume 46
WOSCitedRecordID wos000456709700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Open Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60CHrx_aiPsqIIHhZN89hdbyIWD6IeFHoL-8ja0jaVtBX8985u2mJE1GPIJCwzAzOzM983AKdBpJlgVlClWUgjYTlVGFaoTEygI8niwHh2_Xv28MDbbfE0HaIZ_dDCF-FFLouL194H5w6mF8Tc7Sl4fmzPewUYgkqSKM-pGfEZCWnl00rYqUDZvmSU3wcjv0Sa1to_z7gOq9NUklyXtt-AhSzfhK3rHMvowQc5I36409-ab8LyzWyx2xbce9AtdXBkInND_EwhdS0CovsTR5yA4YzI_uuw6I47g9EVKfEtXlg7LymIQufuDGTR24aX1u3zzR2dLlWgOmLRmGqhZFOJWEss5UTTGqsUxm3bZI5MTuGTEVYlEvOoSy4zGwiDNaBx7TcrbKLCHajlwzzbA5JgOmEYk2hOE4WJlbE1kc4MZ1xngTF1OJ_pPNVTxnG3-KKflp3vMEW1paXa6nAyl30reTZ-lGqg6X4VOJ5ZNUWtuuaHzLPhZJRiocsCh6NN6rBbWnn-n_CyKWKsHOvAKvafCzgO7uqbvNvxXNyYPTIWx_t_HewAVjDV4g7FGCSHUBsXk-wIlvT7uDsqGrDI2rzh7wMa3rk_AbQN-Nk
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omic+and+multi-view+clustering+algorithms%3A+review+and+cancer+benchmark&rft.jtitle=Nucleic+acids+research&rft.au=Rappoport%2C+Nimrod&rft.au=Shamir%2C+Ron&rft.date=2018-11-16&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=46&rft.issue=20&rft.spage=10546&rft_id=info:doi/10.1093%2Fnar%2Fgky889&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon