Multi-omic and multi-view clustering algorithms: review and cancer benchmark
Abstract Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measureme...
Uloženo v:
| Vydáno v: | Nucleic acids research Ročník 46; číslo 20; s. 10546 - 10562 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press
16.11.2018
|
| Témata: | |
| ISSN: | 0305-1048, 1362-4962, 1362-4962 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Abstract
Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field. |
|---|---|
| AbstractList | Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field. Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field.Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field. Abstract Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable for biological and medical research. The decreasing cost and development of additional high throughput methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential to reveal further systems-level insights, but raises computational and biological challenges. Here, we review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our review covers methods developed specifically for omic data as well as generic multi-view methods developed in the machine learning community for joint clustering of multiple data types. In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different cancer types, providing the first systematic comparison of leading multi-omics and multi-view clustering algorithms. The results highlight key issues regarding the use of single- versus multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of approximated p-values for gauging solution quality. Due to the growing use of multi-omics data, we expect these issues to be important for future progress in the field. |
| Author | Rappoport, Nimrod Shamir, Ron |
| AuthorAffiliation | Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel |
| AuthorAffiliation_xml | – name: Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel |
| Author_xml | – sequence: 1 givenname: Nimrod surname: Rappoport fullname: Rappoport, Nimrod organization: Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel – sequence: 2 givenname: Ron surname: Shamir fullname: Shamir, Ron email: rshamir@tau.ac.il organization: Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30295871$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUlLBDEQhYOM6Lhc_AHSF0GE1my9xIMg4gYjXvQcknQyE6c7GZPuEf-9PbaKingqivrq1aPeFhg57zQAewgeI8jIiRPhZDp_LUu2BsaI5DilLMcjMIYEZimCtNwEWzE-QYgoyugG2CQQs6ws0BhM7rq6talvrEqEq5LmvV1a_ZKououtDtZNE1FPfbDtrImnSdDv0xWshFM6JFI7NWtEmO-AdSPqqHc_6jZ4vLp8uLhJJ_fXtxfnk1TRgrapYlJgyTIlKCwYNpWREmJicIFgXsi-q5iRuUCUwFJog1hVUlhhiohhJpdkG5wNuotONrpS2rVB1HwRbO_ilXth-c-JszM-9UueY1IUWdYLHH4IBP_c6djyxkal61o47bvIMUJF_ylC8x7d_37r68jnC3vgaABU8DEGbb4QBPkqH97nw4d8ehj-gpVtRWv9yqet_145GFZ8t_hP-g1gnqOE |
| CitedBy_id | crossref_primary_10_1038_s41598_025_96686_0 crossref_primary_10_1093_jrsssb_qkaf021 crossref_primary_10_1007_s10044_025_01538_2 crossref_primary_10_1016_j_ajhg_2019_10_012 crossref_primary_10_1007_s10620_025_09214_5 crossref_primary_10_1016_j_biotechadv_2024_108400 crossref_primary_10_1093_bib_bbad304 crossref_primary_10_1016_j_eswa_2025_127131 crossref_primary_10_1016_j_semnephrol_2025_151584 crossref_primary_10_1186_s40246_025_00811_z crossref_primary_10_1007_s10489_023_04580_x crossref_primary_10_3233_IDT_200044 crossref_primary_10_1016_j_jbi_2023_104406 crossref_primary_10_1016_j_inffus_2024_102488 crossref_primary_10_1016_j_dsp_2024_104713 crossref_primary_10_1109_TAI_2021_3065894 crossref_primary_10_1016_j_csbj_2022_08_003 crossref_primary_10_1371_journal_pcbi_1012275 crossref_primary_10_1186_s12859_020_3453_6 crossref_primary_10_1093_bib_bbaf043 crossref_primary_10_1016_j_csbj_2020_05_021 crossref_primary_10_1093_bib_bbac207 crossref_primary_10_3390_cancers14133215 crossref_primary_10_3389_fgene_2021_718915 crossref_primary_10_1016_j_euroneuro_2023_01_001 crossref_primary_10_1007_s10462_022_10325_y crossref_primary_10_1016_j_procs_2024_09_180 crossref_primary_10_1038_s41416_025_03139_6 crossref_primary_10_3171_2021_11_FOCUS21571 crossref_primary_10_1111_rda_14029 crossref_primary_10_1093_bib_bbae541 crossref_primary_10_1016_j_gpb_2022_05_007 crossref_primary_10_1186_s12859_024_05749_y crossref_primary_10_3389_fgene_2019_01353 crossref_primary_10_1016_j_csbj_2021_03_010 crossref_primary_10_1093_bib_bbab398 crossref_primary_10_1093_bib_bbac488 crossref_primary_10_3389_fgene_2023_1179439 crossref_primary_10_1016_j_jtbi_2022_111328 crossref_primary_10_3390_life12020279 crossref_primary_10_3389_fimmu_2024_1398000 crossref_primary_10_3390_biom10040524 crossref_primary_10_1371_journal_pone_0216904 crossref_primary_10_1038_s41467_022_30694_w crossref_primary_10_3390_cancers11101434 crossref_primary_10_3390_biom12121839 crossref_primary_10_3389_fimmu_2021_723172 crossref_primary_10_1016_j_procs_2025_04_515 crossref_primary_10_1021_acssynbio_4c00864 crossref_primary_10_1109_TCBB_2023_3293472 crossref_primary_10_1080_01621459_2025_2539539 crossref_primary_10_1371_journal_pone_0302461 crossref_primary_10_1016_j_csbj_2021_04_060 crossref_primary_10_1109_TCBB_2021_3106344 crossref_primary_10_21693_1933_088X_23_2_33 crossref_primary_10_1038_s41598_025_15068_8 crossref_primary_10_1093_nar_gkz324 crossref_primary_10_1038_s41366_023_01281_w crossref_primary_10_1093_bib_bbaa169 crossref_primary_10_1002_wics_1553 crossref_primary_10_1016_j_ymeth_2024_09_016 crossref_primary_10_1016_j_ymeth_2024_09_014 crossref_primary_10_3389_fams_2024_1380996 crossref_primary_10_3389_fgene_2020_574661 crossref_primary_10_3390_biomedicines13092171 crossref_primary_10_1186_s13059_022_02739_2 crossref_primary_10_1016_j_jocs_2024_102460 crossref_primary_10_1002_aisy_202500247 crossref_primary_10_1093_bib_bbad196 crossref_primary_10_1016_j_compbiolchem_2024_108254 crossref_primary_10_3389_fmolb_2022_962799 crossref_primary_10_1038_s41467_020_20430_7 crossref_primary_10_1109_TCBB_2020_3010509 crossref_primary_10_1016_j_cmpb_2025_108603 crossref_primary_10_1038_s41467_025_60822_1 crossref_primary_10_1080_19490976_2023_2297860 crossref_primary_10_1016_j_jaci_2019_05_015 crossref_primary_10_1016_j_csbj_2021_06_030 crossref_primary_10_1038_s41467_024_50426_6 crossref_primary_10_3390_math9091006 crossref_primary_10_37349_eaa_2025_100984 crossref_primary_10_1109_TBME_2022_3190050 crossref_primary_10_1007_s10618_023_00991_z crossref_primary_10_1186_s12859_025_06245_7 crossref_primary_10_1016_j_pnpbp_2022_110520 crossref_primary_10_1371_journal_pone_0238996 crossref_primary_10_3389_fonc_2022_892207 crossref_primary_10_1371_journal_pcbi_1008405 crossref_primary_10_1186_s12859_020_03567_6 crossref_primary_10_3389_fgene_2022_1032768 crossref_primary_10_1109_TCBB_2021_3063284 crossref_primary_10_1109_RBME_2024_3503761 crossref_primary_10_1093_bib_bbaa102 crossref_primary_10_1111_cgf_14828 crossref_primary_10_3390_app14072728 crossref_primary_10_1016_j_compbiomed_2022_106263 crossref_primary_10_1007_s11831_021_09547_0 crossref_primary_10_1016_j_ejmp_2021_02_024 crossref_primary_10_1038_s41598_024_52087_3 crossref_primary_10_3390_diagnostics11020196 crossref_primary_10_1016_j_knosys_2024_111768 crossref_primary_10_1016_j_crmeth_2023_100461 crossref_primary_10_1016_j_ymeth_2020_08_001 crossref_primary_10_1016_j_csbj_2021_01_009 crossref_primary_10_1080_21655979_2021_1962147 crossref_primary_10_1093_bib_bbae061 crossref_primary_10_1093_bib_bbaf150 crossref_primary_10_3390_cancers13143423 crossref_primary_10_3390_ijms241914888 crossref_primary_10_1371_journal_pcbi_1011842 crossref_primary_10_3390_ijms26030963 crossref_primary_10_3390_antiox12040799 crossref_primary_10_1515_icom_2020_0024 crossref_primary_10_1016_j_engappai_2025_110041 crossref_primary_10_1093_bioinformatics_btae382 crossref_primary_10_1371_journal_pcbi_1011044 crossref_primary_10_3390_cancers14020349 crossref_primary_10_1136_jclinpath_2020_207326 crossref_primary_10_3389_fmolb_2020_590842 crossref_primary_10_1016_j_tifs_2024_104391 crossref_primary_10_1038_s42003_023_04529_3 crossref_primary_10_3168_jds_2024_26210 crossref_primary_10_1515_sagmb_2022_0047 crossref_primary_10_1007_s13755_024_00274_x crossref_primary_10_1016_j_jbi_2021_103854 crossref_primary_10_1109_TETCI_2024_3406704 crossref_primary_10_1038_s41467_022_32266_4 crossref_primary_10_1186_s12859_024_05652_6 crossref_primary_10_1177_1177932219899051 crossref_primary_10_1186_s12859_021_04296_0 crossref_primary_10_1371_journal_pcbi_1009767 crossref_primary_10_3390_jcm12196207 crossref_primary_10_1093_bioinformatics_btaf122 crossref_primary_10_1016_j_arr_2022_101730 crossref_primary_10_1186_s12014_024_09454_z crossref_primary_10_31083_j_fbl2912404 crossref_primary_10_1016_j_patcog_2024_111010 crossref_primary_10_1016_j_semperi_2021_151456 crossref_primary_10_2174_1574893618666230406105659 crossref_primary_10_1093_bib_bbae606 crossref_primary_10_1080_01621459_2023_2271199 crossref_primary_10_1016_j_inffus_2025_103322 crossref_primary_10_1080_15384101_2023_2281816 crossref_primary_10_1002_gepi_22497 crossref_primary_10_12677_aam_2024_139399 crossref_primary_10_1109_TNNLS_2023_3244021 crossref_primary_10_1016_j_foodres_2019_108543 crossref_primary_10_2174_1574893618666230519145545 crossref_primary_10_3389_fonc_2020_588221 crossref_primary_10_1007_s10489_025_06515_0 crossref_primary_10_3390_ijms24010004 crossref_primary_10_1007_s11010_024_05041_w crossref_primary_10_1186_s13073_021_00930_x crossref_primary_10_1007_s13721_024_00442_9 crossref_primary_10_1016_j_compbiomed_2022_106192 crossref_primary_10_1371_journal_pcbi_1008182 crossref_primary_10_3390_ijms20194781 crossref_primary_10_1186_s13059_020_1932_8 crossref_primary_10_1109_TFUZZ_2019_2928518 crossref_primary_10_1080_1040841X_2020_1828817 crossref_primary_10_1093_bib_bbad025 crossref_primary_10_1109_TPAMI_2025_3582689 crossref_primary_10_1016_j_tifs_2021_02_051 crossref_primary_10_3389_fmolb_2022_962743 crossref_primary_10_1136_bmjopen_2021_053674 crossref_primary_10_1016_j_engappai_2021_104480 crossref_primary_10_1016_j_ijbiomac_2023_128563 crossref_primary_10_4018_IJDWM_319956 crossref_primary_10_1186_s12859_021_04195_4 crossref_primary_10_1016_j_jbc_2025_110216 crossref_primary_10_1186_s12864_023_09833_0 crossref_primary_10_3389_fgene_2022_962870 crossref_primary_10_1093_bib_bbaf355 crossref_primary_10_1016_j_csbj_2022_11_050 crossref_primary_10_1109_TKDE_2023_3238416 crossref_primary_10_1109_TCBB_2022_3143897 crossref_primary_10_1016_j_ijmedinf_2022_104785 crossref_primary_10_1038_s41576_023_00679_6 crossref_primary_10_1128_aem_00092_24 crossref_primary_10_1089_cmb_2024_0927 crossref_primary_10_1371_journal_pcbi_1008878 crossref_primary_10_1016_j_trc_2024_104607 crossref_primary_10_1186_s12859_021_04279_1 crossref_primary_10_1016_j_procs_2024_09_488 crossref_primary_10_1186_s12859_020_03681_5 crossref_primary_10_1093_bioadv_vbac093 crossref_primary_10_2217_epi_2020_0073 crossref_primary_10_1371_journal_pcbi_1007677 crossref_primary_10_3390_toxics11121014 crossref_primary_10_1016_j_compbiomed_2023_107223 crossref_primary_10_1016_j_jbi_2020_103636 crossref_primary_10_1016_j_csbj_2023_04_015 crossref_primary_10_1038_s42003_022_03975_9 crossref_primary_10_1038_s41380_021_01201_2 crossref_primary_10_1093_bib_bbad282 crossref_primary_10_1186_s12864_025_11925_y crossref_primary_10_1089_omi_2022_0068 crossref_primary_10_1016_j_pneurobio_2023_102480 crossref_primary_10_3389_fcell_2022_752326 crossref_primary_10_1016_j_coemr_2022_100350 crossref_primary_10_3389_fmolb_2023_1301996 crossref_primary_10_3390_metabo10020051 crossref_primary_10_1093_bib_bbac500 crossref_primary_10_1016_j_compbiomed_2022_106085 crossref_primary_10_1371_journal_pcbi_1009044 crossref_primary_10_1146_annurev_biodatasci_020422_050645 crossref_primary_10_1093_bioadv_vbad075 crossref_primary_10_1093_bioadv_vbae164 crossref_primary_10_3389_fgene_2022_854752 crossref_primary_10_1109_TCBB_2021_3139597 crossref_primary_10_1186_s12859_021_04215_3 crossref_primary_10_1016_j_inffus_2023_102155 crossref_primary_10_3389_fonc_2021_629860 crossref_primary_10_1186_s12859_021_04023_9 crossref_primary_10_3390_biom11040565 crossref_primary_10_1093_bib_bbab057 crossref_primary_10_6339_21_JDS1028 crossref_primary_10_1002_bimj_202200238 crossref_primary_10_3389_fgene_2020_610798 crossref_primary_10_1038_s42256_021_00325_y crossref_primary_10_1093_bib_bbab600 crossref_primary_10_15302_J_QB_022_0289 crossref_primary_10_1093_nar_gkad566 crossref_primary_10_1016_j_eswa_2025_126488 crossref_primary_10_1109_TCBB_2021_3122917 crossref_primary_10_7717_peerj_9646 crossref_primary_10_1002_jcsm_13661 crossref_primary_10_1016_j_entcom_2023_100631 crossref_primary_10_1038_s41598_020_70229_1 crossref_primary_10_3389_fgene_2019_00236 crossref_primary_10_1038_s41598_021_03034_z crossref_primary_10_1038_s43588_021_00029_8 crossref_primary_10_1186_s12911_022_01938_y crossref_primary_10_2217_fon_2023_0070 crossref_primary_10_1016_j_ymeth_2023_02_005 crossref_primary_10_3389_fbioe_2020_00268 crossref_primary_10_1093_bib_bbac132 crossref_primary_10_1093_bib_bbac372 crossref_primary_10_1093_nar_gkz422 crossref_primary_10_1155_2021_2292703 crossref_primary_10_1016_j_semcancer_2023_02_005 crossref_primary_10_1371_journal_pcbi_1009224 crossref_primary_10_1080_10408398_2025_2530537 crossref_primary_10_1002_1878_0261_12920 crossref_primary_10_1038_s41598_023_38243_1 crossref_primary_10_1093_nar_gkab394 crossref_primary_10_1038_s41698_025_00917_6 crossref_primary_10_1093_bib_bbae582 crossref_primary_10_1016_j_ymeth_2025_01_016 crossref_primary_10_1002_aisy_202200247 crossref_primary_10_1093_bib_bbac046 crossref_primary_10_1016_j_biotechadv_2021_107739 crossref_primary_10_1111_nmo_14898 crossref_primary_10_1021_acsagscitech_5c00098 crossref_primary_10_1186_s13059_025_03675_7 crossref_primary_10_3390_ijms24043419 crossref_primary_10_1016_j_jprot_2023_104840 crossref_primary_10_1016_j_copbio_2020_02_013 crossref_primary_10_52601_bpr_2024_240053 crossref_primary_10_1186_s40164_022_00333_7 crossref_primary_10_1016_j_inffus_2023_101959 crossref_primary_10_1186_s13023_020_01376_x crossref_primary_10_1016_j_bbe_2021_10_005 crossref_primary_10_1093_bib_bbae331 crossref_primary_10_1016_j_bbadis_2024_167120 crossref_primary_10_1016_j_phrs_2020_105370 crossref_primary_10_1016_j_eswa_2025_126835 crossref_primary_10_1016_j_crmeth_2021_100152 crossref_primary_10_3390_bioengineering11060587 crossref_primary_10_3389_fonc_2023_1186858 crossref_primary_10_1038_s41416_024_02587_w crossref_primary_10_1186_s13040_023_00334_0 crossref_primary_10_1080_14789450_2025_2491357 crossref_primary_10_1002_pmic_202400002 crossref_primary_10_3389_fonc_2020_01065 crossref_primary_10_3390_cancers14112797 crossref_primary_10_3389_fgene_2024_1466825 crossref_primary_10_1080_14789450_2020_1724540 crossref_primary_10_3390_data7120179 crossref_primary_10_3390_diagnostics15192425 |
| Cites_doi | 10.1016/S1470-2045(15)00620-8 10.1038/nmeth.2810 10.1111/j.2517-6161.1996.tb02080.x 10.2202/1544-6115.1406 10.1038/44565 10.1016/j.neunet.2006.09.011 10.1145/331499.331504 10.1371/journal.pcbi.1005781 10.1186/s12859-015-0854-z 10.1098/rsif.2017.0387 10.1371/journal.pone.0053014 10.1158/1078-0432.CCR-17-0853 10.1093/bioinformatics/bts402 10.3389/fgene.2017.00084 10.1093/bioinformatics/bts595 10.1142/S012906570000034X 10.1093/bioinformatics/bty502 10.1214/12-AOAS597 10.1109/CVPR.2014.31 10.1007/s40484-016-0063-4 10.1002/cem.1071 10.1186/1471-2105-14-245 10.1186/1471-2105-15-162 10.1080/21628130.2015.1016702 10.1186/s13072-016-0075-3 10.1109/TCBB.2014.2377729 10.1371/journal.pcbi.1005752 10.1016/j.inffus.2017.02.007 10.1093/nar/gks725 10.1016/j.ipm.2015.12.007 10.1890/03-0178 10.1162/neco.2006.18.7.1527 10.1109/TPAMI.1984.4767596 10.1016/S0169-7439(01)00155-1 10.1142/S0218001411008683 10.1093/bioinformatics/btt425 10.1093/bioinformatics/btg433 10.1038/nrg1749 10.1016/0377-0427(87)90125-7 10.1038/nrg2934 10.1073/pnas.1208949110 10.1093/bioinformatics/btv244 10.1186/s12859-015-0857-9 10.1145/2601434 10.1093/bioinformatics/btw324 10.1007/s11222-007-9033-z 10.1093/biostatistics/kxs038 10.1016/j.cell.2018.03.022 10.1093/bib/bbv108 10.1093/biomet/28.3-4.321 10.1093/bioinformatics/bts476 10.1101/gr.215129.116 10.1186/1471-2105-10-34 10.1093/bioinformatics/btx464 10.1038/nature14539 10.1371/journal.pcbi.1004071 10.1137/1.9781611972788.74 10.1093/biostatistics/kxx017 10.1371/journal.pcbi.1002227 10.1002/cem.724 10.1111/j.1365-313X.2007.03293.x 10.1093/bioinformatics/btq182 10.1109/TPAMI.2014.2343973 10.1145/1273496.1273642 10.1007/BF02607055 10.1145/1553374.1553391 10.1093/bioinformatics/btp543 10.1093/bioinformatics/btq210 10.1023/A:1023949509487 10.1002/9780470258019 10.1016/j.cell.2014.06.049 10.1002/cem.1388 10.1038/nature07385 10.1038/nrg.2016.49 10.1186/s12864-015-2223-8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018 |
| Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018 |
| DBID | TOX AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1093/nar/gky889 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1362-4962 |
| EndPage | 10562 |
| ExternalDocumentID | PMC6237755 30295871 10_1093_nar_gky889 10.1093/nar/gky889 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX CITATION OVT AAPPN ADIXU AFULF BTTYL M~E NPM ROX 7X8 ESTFP 5PM |
| ID | FETCH-LOGICAL-c474t-c9ba2b95ca40792fdfbb023f271067bfbbd9fb6a14308aef19d840d2413f9f6b3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 351 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456709700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-1048 1362-4962 |
| IngestDate | Tue Sep 30 16:14:35 EDT 2025 Fri Sep 05 10:00:44 EDT 2025 Wed Feb 19 02:36:04 EST 2025 Tue Nov 18 22:22:04 EST 2025 Sat Nov 29 03:24:51 EST 2025 Wed Apr 02 07:01:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-c9ba2b95ca40792fdfbb023f271067bfbbd9fb6a14308aef19d840d2413f9f6b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1093/nar/gky889 |
| PMID | 30295871 |
| PQID | 2117154346 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6237755 proquest_miscellaneous_2117154346 pubmed_primary_30295871 crossref_primary_10_1093_nar_gky889 crossref_citationtrail_10_1093_nar_gky889 oup_primary_10_1093_nar_gky889 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-16 |
| PublicationDateYYYYMMDD | 2018-11-16 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nucleic acids research |
| PublicationTitleAlternate | Nucleic Acids Res |
| PublicationYear | 2018 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | de Sa ( key 2018112804022147000_B22) 2005 Wang ( key 2018112804022147000_B17) 2013; 28 Li ( key 2018112804022147000_B59) 2014 Liang ( key 2018112804022147000_B75) 2015; 12 Chikhi ( key 2018112804022147000_B24) 2016; 52 Ahmad ( key 2018112804022147000_B72) 2017; 33 Chaudhuri ( key 2018112804022147000_B87) 2009 Meng ( key 2018112804022147000_B13) 2016; 17 Žitnik ( key 2018112804022147000_B95) 2015; 2 Wang ( key 2018112804022147000_B12) 2016; 4 Nguyen ( key 2018112804022147000_B21) 2017; 27 Mo ( key 2018112804022147000_B64) 2013; 110 Meng ( key 2018112804022147000_B53) 2014; 15 Kalayeh ( key 2018112804022147000_B55) 2014 Shen ( key 2018112804022147000_B15) 2009; 25 Vaske ( key 2018112804022147000_B66) 2010; 26 Hotelling ( key 2018112804022147000_B34) 1936; 28 Žitnik ( key 2018112804022147000_B60) 2015; 37 Tini ( key 2018112804022147000_B14) 2017 Yong ( key 2018112804022147000_B4) 2016; 9 Chen ( key 2018112804022147000_B42) 2013; 14 Prasad ( key 2018112804022147000_B6) 2016; 17 Huang ( key 2018112804022147000_B56) 2014; 8 Bruno ( key 2018112804022147000_B20) 2009 Zhang ( key 2018112804022147000_B57) 2012; 40 Vandin ( key 2018112804022147000_B108) 2015; 11 Kirk ( key 2018112804022147000_B69) 2012; 28 Bylesjö ( key 2018112804022147000_B89) 2007; 52 Savage ( key 2018112804022147000_B67) 2010; 26 Witten ( key 2018112804022147000_B39) 2009; 8 Lock ( key 2018112804022147000_B70) 2013; 29 Network ( key 2018112804022147000_B8) 2008; 455 Rosipal ( key 2018112804022147000_B49) 2001; 2 Rantalainen ( key 2018112804022147000_B50) 2007; 21 Ng ( key 2018112804022147000_B97) 2012; 28 Klami ( key 2018112804022147000_B35) 2013; 13 Seung ( key 2018112804022147000_B93) 1999; 401 Huang ( key 2018112804022147000_B9) 2017; 8 Wang ( key 2018112804022147000_B29) 2014; 11 el Bouhaddani ( key 2018112804022147000_B90) 2016; 17 Löfstedt ( key 2018112804022147000_B52) 2011; 25 Wold ( key 2018112804022147000_B45) 2001; 58 Dray ( key 2018112804022147000_B92) 2003; 84 Jain ( key 2018112804022147000_B5) 1999; 31 Cox ( key 2018112804022147000_B86) 1984 Bach ( key 2018112804022147000_B88) 2006; 688 Zhou ( key 2018112804022147000_B26) 2007 von Luxburg ( key 2018112804022147000_B82) 2007; 17 Li ( key 2018112804022147000_B25) 2015 Li ( key 2018112804022147000_B51) 2012; 28 Hoadley ( key 2018112804022147000_B96) 2018; 173 Guo ( key 2018112804022147000_B62) 2013 Lê Cao ( key 2018112804022147000_B47) 2009; 10 Monti ( key 2018112804022147000_B79) 2003; 52 Geman ( key 2018112804022147000_B98) 1984 Bo ( key 2018112804022147000_B28) 2012 Vega-Pons ( key 2018112804022147000_B81) 2011; 25 Xia ( key 2018112804022147000_B27) 2014 Yuan ( key 2018112804022147000_B68) 2011; 7 Chaudhary ( key 2018112804022147000_B74) 2018; 24 Lee ( key 2018112804022147000_B94) 2001 Wu ( key 2018112804022147000_B16) 2015; 16 Krizhevsky ( key 2018112804022147000_B100) 2012 Zhang ( key 2018112804022147000_B63) 2015 Gabasova ( key 2018112804022147000_B71) 2017; 13 Lê Cao ( key 2018112804022147000_B46) 2008; 7 Bickel ( key 2018112804022147000_B76) 2006; 15 Mo ( key 2018112804022147000_B65) 2018; 19 Parkhomenko ( key 2018112804022147000_B38) 2009; 8 Lin ( key 2018112804022147000_B43) 2013; 14 Bickel ( key 2018112804022147000_B18) 2004 Ching ( key 2018112804022147000_B104) 2018; 15 Hosmer ( key 2018112804022147000_B106) 2008 Speicher ( key 2018112804022147000_B30) 2015; 31 Lock ( key 2018112804022147000_B32) 2013; 7 Lai ( key 2018112804022147000_B36) 2000; 10 Blum ( key 2018112804022147000_B78) 1998 Ngiam ( key 2018112804022147000_B102) 2011 LeCun ( key 2018112804022147000_B99) 2015; 521 Allison ( key 2018112804022147000_B3) 2006; 7 Tibshirani ( key 2018112804022147000_B77) 1996; 58 Liu ( key 2018112804022147000_B54) 2013 Lo Asz ( key 2018112804022147000_B84) 1993 Hofmann ( key 2018112804022147000_B80) 1999 Wang ( key 2018112804022147000_B103) 2016 Zhang ( key 2018112804022147000_B58) 2015 White ( key 2018112804022147000_B61) 2012 Hinton ( key 2018112804022147000_B105) 2006; 18 Long ( key 2018112804022147000_B31) 2008 Rousseeuw ( key 2018112804022147000_B107) 1987; 20 Mohar ( key 2018112804022147000_B83) 1991; 2 Hoadley ( key 2018112804022147000_B19) 2014; 158 Sutskever ( key 2018112804022147000_B101) 2014 Vía ( key 2018112804022147000_B40) 2007; 20 Ozsolak ( key 2018112804022147000_B2) 2011; 12 Aure ( key 2018112804022147000_B109) 2013; 8 Hwang ( key 2018112804022147000_B91) 2004; 20 Zhao ( key 2018112804022147000_B7) 2017; 38 Goodwin ( key 2018112804022147000_B1) 2016; 17 Andrew ( key 2018112804022147000_B37) 2013 Pearl ( key 2018112804022147000_B85) 1988 Coretto ( key 2018112804022147000_B73) 2018 Rohart ( key 2018112804022147000_B44) 2017; 13 Luo ( key 2018112804022147000_B41) 2016 O’Connell ( key 2018112804022147000_B33) 2016; 32 Li ( key 2018112804022147000_B11) 2016 Kumar ( key 2018112804022147000_B23) 2011 Bersanelli ( key 2018112804022147000_B10) 2016; 17 Trygg ( key 2018112804022147000_B48) 2002; 16 30496480 - Nucleic Acids Res. 2019 Jan 25;47(2):1044 |
| References_xml | – volume: 17 start-page: e81 year: 2016 ident: key 2018112804022147000_B6 article-title: Precision oncology: origins, optimism, and potential publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(15)00620-8 – start-page: 19 year: 2004 ident: key 2018112804022147000_B18 article-title: Multi-view clustering publication-title: Proc. ICDM 2004 – volume: 11 start-page: 333 year: 2014 ident: key 2018112804022147000_B29 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat. Methods doi: 10.1038/nmeth.2810 – year: 2017 ident: key 2018112804022147000_B14 article-title: Multi-omics integration-a comparison of unsupervised clustering methodologies publication-title: Brief. Bioinformatics – start-page: 2997 volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition year: 2012 ident: key 2018112804022147000_B28 article-title: Unsupervised metric fusion by cross diffusion – volume: 688 start-page: 1 year: 2006 ident: key 2018112804022147000_B88 article-title: A probabilistic interpretation of canonical correlation analysis publication-title: Dept. Statist. Univ. California Berkeley CA Tech. Rep. – volume: 58 start-page: 267 year: 1996 ident: key 2018112804022147000_B77 article-title: Regression Selection and Shrinkage via the Lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 13 start-page: 723 year: 2013 ident: key 2018112804022147000_B35 article-title: Bayesian canonical correlation analysis publication-title: J. Mach. Learn. – volume: 8 start-page: 1 year: 2009 ident: key 2018112804022147000_B38 article-title: Sparse canonical correlation analysis with application to genomic data integration publication-title: Stat. Applic. Genet. Mol. Biol. doi: 10.2202/1544-6115.1406 – volume: 401 start-page: 788 year: 1999 ident: key 2018112804022147000_B93 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 20 start-page: 139 year: 2007 ident: key 2018112804022147000_B40 article-title: A learning algorithm for adaptive canonical correlation analysis of several data sets publication-title: Neural Netw. doi: 10.1016/j.neunet.2006.09.011 – volume: 31 start-page: 264 year: 1999 ident: key 2018112804022147000_B5 article-title: Data clustering: a review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – volume: 13 start-page: e1005781 year: 2017 ident: key 2018112804022147000_B71 article-title: Clusternomics: Integrative context-dependent clustering for heterogeneous datasets publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1005781 – start-page: 1413 volume-title: Proc. NIPS ’11 year: 2011 ident: key 2018112804022147000_B23 article-title: Co-regularized multi-view spectral clustering – volume: 17 start-page: S11 year: 2016 ident: key 2018112804022147000_B90 article-title: Evaluation of O2PLS in omics data integration publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0854-z – volume: 15 start-page: 20170387 year: 2018 ident: key 2018112804022147000_B104 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0387 – volume: 8 start-page: 1 year: 2013 ident: key 2018112804022147000_B109 article-title: Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data publication-title: PLoS ONE doi: 10.1371/journal.pone.0053014 – volume: 24 start-page: 1248 year: 2018 ident: key 2018112804022147000_B74 article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0853 – volume: 28 start-page: i640 year: 2012 ident: key 2018112804022147000_B97 article-title: PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts402 – volume: 8 start-page: 84 year: 2017 ident: key 2018112804022147000_B9 article-title: More is better: recent progress in multi-omics data integration methods publication-title: Front. Genet. doi: 10.3389/fgene.2017.00084 – volume: 28 start-page: 3290 year: 2012 ident: key 2018112804022147000_B69 article-title: Bayesian correlated clustering to integrate multiple datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts595 – start-page: 1673 volume-title: Proc. NIPS ’12 year: 2012 ident: key 2018112804022147000_B61 article-title: Convex multi-view subspace learning – volume-title: Analysis of Survival Data year: 1984 ident: key 2018112804022147000_B86 – volume: 28 start-page: 352 year: 2013 ident: key 2018112804022147000_B17 article-title: Multi-view clustering and feature learning via structured sparsity publication-title: Proc. ICML ’13 – volume: 10 start-page: 365 year: 2000 ident: key 2018112804022147000_B36 article-title: Kernel and Nonlinear Canonical Correlation Analysis publication-title: Int. J. Neural Syst. doi: 10.1142/S012906570000034X – year: 2018 ident: key 2018112804022147000_B73 article-title: Robust clustering of noisy high-dimensional gene expression data for patients subtyping publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty502 – start-page: 92 volume-title: Proc. COLT ’98 year: 1998 ident: key 2018112804022147000_B78 article-title: Combining labeled and unlabeled data with co-training – volume: 7 start-page: 523 year: 2013 ident: key 2018112804022147000_B32 article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS597 – start-page: 2149 year: 2014 ident: key 2018112804022147000_B27 article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition publication-title: AAAI Conf. Artif. Intell. – start-page: 184 volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition year: 2014 ident: key 2018112804022147000_B55 article-title: NMF-KNN: Image annotation using weighted multi-view non-negative matrix factorization doi: 10.1109/CVPR.2014.31 – start-page: 3104 volume-title: Proc. NIPS’14 year: 2014 ident: key 2018112804022147000_B101 article-title: Sequence to sequence learning with neural networks – volume: 4 start-page: 58 year: 2016 ident: key 2018112804022147000_B12 article-title: Integrative clustering methods of multi-omics data for molecule-based cancer classifications publication-title: Quant. Biol. doi: 10.1007/s40484-016-0063-4 – volume: 21 start-page: 376 year: 2007 ident: key 2018112804022147000_B50 article-title: Kernel-based orthogonal projections to latent structures (K-OPLS) publication-title: J. Chemometrics doi: 10.1002/cem.1071 – volume: 14 start-page: 245 year: 2013 ident: key 2018112804022147000_B43 article-title: Group sparse canonical correlation analysis for genomic data integration publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-245 – volume: 7 year: 2008 ident: key 2018112804022147000_B46 article-title: A sparse PLS for variable selection when integrating omics data publication-title: Stat.Applic. Genet.Mol. Biol. – volume: 15 start-page: 162 year: 2014 ident: key 2018112804022147000_B53 article-title: A multivariate approach to the integration of multi-omics datasets publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-162 – volume: 2 start-page: 47 year: 2015 ident: key 2018112804022147000_B95 article-title: Survival regression by data fusion publication-title: Syst. Biomed. doi: 10.1080/21628130.2015.1016702 – volume: 9 start-page: 26 year: 2016 ident: key 2018112804022147000_B4 article-title: Profiling genome-wide DNA methylation publication-title: Epigenet. Chromatin doi: 10.1186/s13072-016-0075-3 – volume: 12 start-page: 928 year: 2015 ident: key 2018112804022147000_B75 article-title: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach publication-title: IEEE/ACM Trans. Comput. Biol. Bioinformatics doi: 10.1109/TCBB.2014.2377729 – volume: 13 start-page: e1005752 year: 2017 ident: key 2018112804022147000_B44 article-title: mixOmics: An R package for ‘omics feature selection and multiple data integration publication-title: PLoS Computat. Biol. doi: 10.1371/journal.pcbi.1005752 – volume: 38 start-page: 43 year: 2017 ident: key 2018112804022147000_B7 article-title: Multi-view learning overview: Recent progress and new challenges publication-title: Information Fusion doi: 10.1016/j.inffus.2017.02.007 – volume: 40 start-page: 9379 year: 2012 ident: key 2018112804022147000_B57 article-title: Discovery of multi-dimensional modules by integrative analysis of cancer genomic data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks725 – volume: 52 start-page: 618 year: 2016 ident: key 2018112804022147000_B24 article-title: Multi-view clustering via spectral partitioning and local refinement publication-title: Inform. Process. Manage. doi: 10.1016/j.ipm.2015.12.007 – volume: 84 start-page: 3078 year: 2003 ident: key 2018112804022147000_B92 article-title: Co-inertia analysis and the linking of ecological data tables publication-title: Ecology doi: 10.1890/03-0178 – volume: 18 start-page: 1527 year: 2006 ident: key 2018112804022147000_B105 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – start-page: 2750 volume-title: Proc. AAAI 15 year: 2015 ident: key 2018112804022147000_B25 article-title: Large-scale multi-view spectral clustering with bipartite graph – start-page: 1 year: 1993 ident: key 2018112804022147000_B84 article-title: Random walks on graphs: a survey publication-title: Combinatorics – volume: 2 start-page: 97 year: 2001 ident: key 2018112804022147000_B49 article-title: Kernel partial least squares regression in reproducing kernel Hilbert space publication-title: J. Mach. Learn. Res. – start-page: 721 year: 1984 ident: key 2018112804022147000_B98 article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images publication-title: IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6 doi: 10.1109/TPAMI.1984.4767596 – start-page: 1083 year: 2016 ident: key 2018112804022147000_B103 article-title: On deep multi-view representation learning: objectives and optimization publication-title: Proc. ICML ’16 – volume: 58 start-page: 109 year: 2001 ident: key 2018112804022147000_B45 article-title: PLS-regression: A basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – volume: 25 start-page: 337 year: 2011 ident: key 2018112804022147000_B81 article-title: A Survey of clustering ensemble algorithms publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001411008683 – start-page: 1582 volume-title: Proc. ICCV ’15 year: 2015 ident: key 2018112804022147000_B63 article-title: Low-rank tensor constrained multiview subspace clustering – volume: 29 start-page: 2610 year: 2013 ident: key 2018112804022147000_B70 article-title: Bayesian consensus clustering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt425 – volume: 8 start-page: Article28 year: 2009 ident: key 2018112804022147000_B39 article-title: Extensions of sparse canonical correlation analysis with applications to genomic data publication-title: Stat. Applic. Genet. Mol. Biol. – volume: 20 start-page: 487 year: 2004 ident: key 2018112804022147000_B91 article-title: Inverse modeling using multi-block PLS to determine the environmental conditions that provide optimal cellular function publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg433 – volume: 7 start-page: 55 year: 2006 ident: key 2018112804022147000_B3 article-title: Microarray data analysis: From disarray to consolidation and consensus publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1749 – volume: 20 start-page: 53 year: 1987 ident: key 2018112804022147000_B107 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 12 start-page: 87 year: 2011 ident: key 2018112804022147000_B2 article-title: RNA sequencing: advances, challenges and opportunities publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2934 – volume: 110 start-page: 4245 year: 2013 ident: key 2018112804022147000_B64 article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1208949110 – volume: 31 start-page: i268 year: 2015 ident: key 2018112804022147000_B30 article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv244 – volume: 17 start-page: S15 year: 2016 ident: key 2018112804022147000_B10 article-title: Methods for the integration of multi-omics data: mathematical aspects publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0857-9 – volume: 8 start-page: 1 year: 2014 ident: key 2018112804022147000_B56 article-title: Robust Manifold Nonnegative Matrix Factorization publication-title: ACM Trans. Knowledge Discov. Data doi: 10.1145/2601434 – volume: 32 start-page: 2877 year: 2016 ident: key 2018112804022147000_B33 article-title: R. JIVE for exploration of multi-source molecular data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw324 – start-page: 289 volume-title: Proc. UAI ’99 year: 1999 ident: key 2018112804022147000_B80 article-title: Probabilistic latent semantic analysis – volume: 17 start-page: 395 year: 2007 ident: key 2018112804022147000_B82 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 14 start-page: 244 year: 2013 ident: key 2018112804022147000_B42 article-title: Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis publication-title: Biostatistics doi: 10.1093/biostatistics/kxs038 – volume: 173 start-page: 291 year: 2018 ident: key 2018112804022147000_B96 article-title: Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer publication-title: Cell doi: 10.1016/j.cell.2018.03.022 – start-page: 20 volume-title: Proceedings of the Workshop on Learning with Multiple Views, 22nd ICML year: 2005 ident: key 2018112804022147000_B22 article-title: Spectral Clustering with Two Views – start-page: 1247 volume-title: Proc. ICML ’13 year: 2013 ident: key 2018112804022147000_B37 article-title: Deep canonical correlation analysis – volume-title: Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference year: 1988 ident: key 2018112804022147000_B85 – start-page: 1968 volume-title: Proc. AAAI ’14 year: 2014 ident: key 2018112804022147000_B59 article-title: Partial multi-view clustering – start-page: 252 volume-title: Proc. ICDM ’13 year: 2013 ident: key 2018112804022147000_B54 article-title: Multi-View Clustering via Joint Nonnegative Matrix Factorization – volume: 17 start-page: 628 year: 2016 ident: key 2018112804022147000_B13 article-title: Dimension reduction techniques for the integrative analysis of multi-omics data publication-title: Brief. Bioinformatics doi: 10.1093/bib/bbv108 – volume: 28 start-page: 321 year: 1936 ident: key 2018112804022147000_B34 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.1093/biomet/28.3-4.321 – volume: 28 start-page: 2458 year: 2012 ident: key 2018112804022147000_B51 article-title: Identifying multi-layer gene regulatory modules from multi-dimensional genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts476 – volume: 27 start-page: 2025 year: 2017 ident: key 2018112804022147000_B21 article-title: A novel approach for data integration and disease subtyping publication-title: Genome Res. doi: 10.1101/gr.215129.116 – volume: 10 start-page: 34 year: 2009 ident: key 2018112804022147000_B47 article-title: Sparse canonical methods for biological data integration: application to a cross-platform study publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-34 – volume: 33 start-page: 3558 year: 2017 ident: key 2018112804022147000_B72 article-title: Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx464 – volume: 521 start-page: 436 year: 2015 ident: key 2018112804022147000_B99 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 11 start-page: 1 year: 2015 ident: key 2018112804022147000_B108 article-title: Accurate Computation of Survival Statistics in Genome-Wide Studies publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1004071 – start-page: 325 year: 2016 ident: key 2018112804022147000_B11 article-title: A review on machine learning principles for multi-view biological data integration publication-title: Brief. Bioinformatics – start-page: 822 volume-title: Proceedings of the 2008 SIAM International Conference on Data Mining year: 2008 ident: key 2018112804022147000_B31 article-title: A General Model for Multiple View Unsupervised Learning doi: 10.1137/1.9781611972788.74 – volume: 19 start-page: 71 year: 2018 ident: key 2018112804022147000_B65 article-title: A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data publication-title: Biostatistics doi: 10.1093/biostatistics/kxx017 – volume: 7 start-page: e1002227 year: 2011 ident: key 2018112804022147000_B68 article-title: Patient-specific data fusion defines prognostic cancer subtypes publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002227 – volume: 16 start-page: 283 year: 2002 ident: key 2018112804022147000_B48 article-title: O2-PLS for qualitative and quantitative analysis in multivariate calibration publication-title: J. Chemometrics doi: 10.1002/cem.724 – volume: 52 start-page: 1181 year: 2007 ident: key 2018112804022147000_B89 article-title: Data integration in plant biology: The O2PLS method for combined modeling of transcript and metabolite data publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03293.x – start-page: 387 year: 2013 ident: key 2018112804022147000_B62 article-title: Convex subspace representation learning from multi-view data publication-title: AAAI 2013 – start-page: 736 volume-title: Proc. ACM SIGIR ’09 year: 2009 ident: key 2018112804022147000_B20 article-title: Multiview clustering: A late fusion approach using latent models categories and subject descriptors – start-page: 1460 volume-title: Proc. ICDE 2016 year: 2016 ident: key 2018112804022147000_B41 article-title: Tensor canonical correlation analysis for multi-view dimension reduction – volume: 26 start-page: i237 year: 2010 ident: key 2018112804022147000_B66 article-title: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq182 – volume: 37 start-page: 41 year: 2015 ident: key 2018112804022147000_B60 article-title: Data fusion by matrix factorization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2343973 – volume: 2 start-page: 871 year: 1991 ident: key 2018112804022147000_B83 article-title: The Laplacian spectrum of graphs publication-title: Graph Theory Combinatorics Applic. – start-page: 535 year: 2001 ident: key 2018112804022147000_B94 article-title: Algorithms for non-negative matrix factorization publication-title: Adv. Neural Inf. Proc. Syst. – start-page: 1097 volume-title: Proc. NIPS ’12 year: 2012 ident: key 2018112804022147000_B100 article-title: ImageNet classification with deep Convolutional neural Networks – start-page: 1159 volume-title: Proc. ICML ’07 year: 2007 ident: key 2018112804022147000_B26 article-title: Spectral clustering and transductive learning with multiple views doi: 10.1145/1273496.1273642 – volume: 15 start-page: 271 year: 2006 ident: key 2018112804022147000_B76 article-title: Regularization in statistics publication-title: Test doi: 10.1007/BF02607055 – start-page: 1 volume-title: Proc. ICML ’09 year: 2009 ident: key 2018112804022147000_B87 article-title: Multi-view clustering via canonical correlation analysis doi: 10.1145/1553374.1553391 – volume: 25 start-page: 2906 year: 2009 ident: key 2018112804022147000_B15 article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp543 – volume: 26 start-page: i158 year: 2010 ident: key 2018112804022147000_B67 article-title: Discovering transcriptional modules by Bayesian data integration publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq210 – volume: 52 start-page: 91 year: 2003 ident: key 2018112804022147000_B79 article-title: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data publication-title: Mach. Learn. doi: 10.1023/A:1023949509487 – volume-title: Applied Survival Analysis: Regression Modeling of Time-to-Event Data year: 2008 ident: key 2018112804022147000_B106 doi: 10.1002/9780470258019 – volume: 158 start-page: 929 year: 2014 ident: key 2018112804022147000_B19 article-title: Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin publication-title: Cell doi: 10.1016/j.cell.2014.06.049 – volume: 25 start-page: 441 year: 2011 ident: key 2018112804022147000_B52 article-title: OnPLS-a novel multiblock method for the modelling of predictive and orthogonal variation publication-title: J. Chemometrics doi: 10.1002/cem.1388 – start-page: 3174 volume-title: Proc. AAAI ’15 year: 2015 ident: key 2018112804022147000_B58 article-title: Constrained NMF-based multi-view clustering on unmapped data – volume: 455 start-page: 1061 year: 2008 ident: key 2018112804022147000_B8 article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways publication-title: Nature doi: 10.1038/nature07385 – start-page: 689 year: 2011 ident: key 2018112804022147000_B102 article-title: Multimodal deep learning publication-title: Proc. ICML ’11 – volume: 17 start-page: 333 year: 2016 ident: key 2018112804022147000_B1 article-title: Coming of age: ten years of next-generation sequencing technologies publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.49 – volume: 16 start-page: 1022 year: 2015 ident: key 2018112804022147000_B16 article-title: Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: Application to cancer molecular classification publication-title: BMC Genomics doi: 10.1186/s12864-015-2223-8 – reference: 30496480 - Nucleic Acids Res. 2019 Jan 25;47(2):1044 |
| SSID | ssj0014154 |
| Score | 2.68516 |
| SecondaryResourceType | review_article |
| Snippet | Abstract
Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven... Recent high throughput experimental methods have been used to collect large biomedical omics datasets. Clustering of single omic datasets has proven invaluable... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10546 |
| SubjectTerms | Survey and Summary |
| Title | Multi-omic and multi-view clustering algorithms: review and cancer benchmark |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30295871 https://www.proquest.com/docview/2117154346 https://pubmed.ncbi.nlm.nih.gov/PMC6237755 |
| Volume | 46 |
| WOSCitedRecordID | wos000456709700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60CHrx_aiPElEED8F9J_EmYvEg6kGhtyXJbmyx3cq2Ffz3TrJtcUXU47Kzu2Emy3yTmfkG4DT3sixGv0hNHOQ0Yp5HVcQYTfDPM0mofKYdiesdu7_nnY54nBbRjH5I4YvwopDlxcvrB-e2Tc-PuZ1T8PTQmecK0AVVJFGOUzPiMxLS2qM1t1NrZfuCKL8XRn7xNO21f65xHVanUJJcVbbfgIW82IStqwLD6MEHOSOuuNOdmm_C8vVssNsW3LmmW2rbkYksMuJqCqlNERDdn1jiBHRnRPZfhmVv3B2MLknV3-KEtd0lJVG4ubsDWb5uw3P75un6lk6HKlAdsWhMtVAyUCLWEkM5EZjMKIV-2wTMkskpvMqEUYlEHOVxmRtfZBgDZjb9ZoRJVLgDjWJY5HtAQhX6RgdaaEQxgeRK5YgIEOCFAr-iZBPOZzpP9ZRx3A6-6KdV5jtMUW1ppbYmnMxl3yqejR-lWmi6XwWOZ1ZNUas2-SGLfDgZpRjoMt_20SZN2K2sPH9P6AUixsixCaxm_7mA5eCu3yl6XcfFjeiRsTje_2thB7CCUIvbLkY_OYTGuJzkR7Ck38e9UdmCRdbhLXce0HKb-xPUX_f1 |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omic+and+multi-view+clustering+algorithms%3A+review+and+cancer+benchmark&rft.jtitle=Nucleic+acids+research&rft.au=Rappoport%2C+Nimrod&rft.au=Shamir%2C+Ron&rft.date=2018-11-16&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=46&rft.issue=20&rft.spage=10546&rft_id=info:doi/10.1093%2Fnar%2Fgky889&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |