A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19

This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 78; H. 7; S. 10250 - 10274
Hauptverfasser: Hassan, Md Rafiul, Ismail, Walaa N., Chowdhury, Ahmad, Hossain, Sharara, Huda, Shamsul, Hassan, Mohammad Mehedi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2022
Springer Nature B.V
Schlagworte:
ISSN:0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies.
AbstractList This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies.
This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies.This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies.
Author Chowdhury, Ahmad
Hassan, Md Rafiul
Hossain, Sharara
Ismail, Walaa N.
Huda, Shamsul
Hassan, Mohammad Mehedi
Author_xml – sequence: 1
  givenname: Md Rafiul
  surname: Hassan
  fullname: Hassan, Md Rafiul
  organization: College of Arts and Sciences, University of Maine at Presque Isle
– sequence: 2
  givenname: Walaa N.
  surname: Ismail
  fullname: Ismail, Walaa N.
  organization: Faculty of Computers and Information, Minia University
– sequence: 3
  givenname: Ahmad
  surname: Chowdhury
  fullname: Chowdhury, Ahmad
  organization: Imagine Consulting Services LLC
– sequence: 4
  givenname: Sharara
  surname: Hossain
  fullname: Hossain, Sharara
  organization: Simply Retrofits
– sequence: 5
  givenname: Shamsul
  surname: Huda
  fullname: Huda, Shamsul
  organization: School of Information Technology, Deakin University
– sequence: 6
  givenname: Mohammad Mehedi
  orcidid: 0000-0002-3479-3606
  surname: Hassan
  fullname: Hassan, Mohammad Mehedi
  email: mmhassan@ksu.edu.sa
  organization: Department of Information Systems, College of Computer and Information Sciences, King Saud University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35079199$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEYhYmpsbfVP-DCkLhxg_I5wMakuX41adqNuiUMA1PqzHAFpsZ_L_XWql10AyGc53BezhE4WNLiAXhO8GuCsXxTCKFUIkwJwpxSivgjsCFCsnZU_ABssKYYKcHpITgq5QpjzJlkT8AhE1hqovUGzCcwZDv7Hyl_gynA0S--RgftNKYc6-WMelv8ALfn5zAtcF6nGpF1zpcC_TB66NK8W2tcRhhShnataba1AYOv3tXYmOa6vfh6-g4R_RQ8DnYq_tntfgy-fHj_efsJnV18PN2enCHHJa_IKec5USo4pqhgfa8w144GIULXeass6TrXCcvCILHTgmoXFA1a9YFTIgI7Bm_3vru1n_3g_FKzncwux9nmnybZaP6_WeKlGdO1UVJ2TMtm8OrWIKfvqy_VzLE4P0128WkthnaUaiE70jXpy3vSq7TmpY3XVIJ2BLelqV78m-guyp8mmoDuBS6nUrIPdxKCzU3dZl-3aXWb33Ub3iB1D3Kx2ptfb1PF6WGU7dHS3llGn__GfoD6Bf2Jvlw
CitedBy_id crossref_primary_10_1007_s00521_022_08021_7
crossref_primary_10_3389_fphy_2023_1153637
crossref_primary_10_3390_electronics12030750
crossref_primary_10_1109_TSC_2023_3336846
crossref_primary_10_3390_math11051216
crossref_primary_10_1016_j_heliyon_2024_e25746
crossref_primary_10_1007_s00521_023_09194_5
crossref_primary_10_1007_s11042_024_20153_7
crossref_primary_10_1038_s41598_024_62435_y
crossref_primary_10_1515_nleng_2025_0098
Cites_doi 10.1016/j.asoc.2019.01.019
10.1148/ryct.2020200034
10.1148/radiol.2020200432
10.1109/ACCESS.2020.2994762
10.1007/s12098-020-03263-6
10.1109/ICCV.2017.154
10.1007/s00330-021-07715-1
10.1109/TCYB.2020.2983860
10.1016/j.future.2019.01.048
10.1049/mia2.12083
10.1109/CEC.2019.8790197
10.20944/preprints202003.0300.v1
10.1007/s10044-021-00984-y
10.1109/TCBB.2021.3065361
10.1038/s41586-020-2008-3
10.1101/2020.03.12.20027185
10.1016/j.patrec.2005.10.010
10.1007/s13246-020-00865-4
10.1038/s41598-019-56847-4
10.1109/PATMOS.2018.8463997
10.1109/MNET.011.2000713
10.1007/s00500-019-04387-4
10.1016/j.eng.2020.04.010
10.23919/EuMC48046.2021.9337992
10.1007/978-981-15-9589-9_5
10.1016/S0140-6736(20)30183-5
10.3390/app11010312
10.1056/NEJMp2006141
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1007/s11227-021-04222-4
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Computer Science Collection

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 10274
ExternalDocumentID PMC8776397
35079199
10_1007_s11227_021_04222_4
Genre Journal Article
GrantInformation_xml – fundername: king saud university
  grantid: RSP 2021/18
  funderid: http://dx.doi.org/10.13039/501100002383
– fundername: ;
  grantid: RSP 2021/18
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c474t-c8ce4188fc38253bb8049c2f55f66ea8a166c65a3fd70c9529cf82f98bf4215f3
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744931700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Tue Nov 04 01:58:05 EST 2025
Wed Oct 01 14:22:24 EDT 2025
Thu Sep 25 00:54:15 EDT 2025
Wed Feb 19 02:25:01 EST 2025
Tue Nov 18 19:39:50 EST 2025
Sat Nov 29 04:27:41 EST 2025
Fri Feb 21 02:45:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords COVID-19
CNN
Classification
Genetic Algorithm
Multi-access edge
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-c8ce4188fc38253bb8049c2f55f66ea8a166c65a3fd70c9529cf82f98bf4215f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3479-3606
OpenAccessLink http://dx.doi.org/10.1007/s11227-021-04222-4
PMID 35079199
PQID 2652610526
PQPubID 2043774
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8776397
proquest_miscellaneous_2622957616
proquest_journals_2652610526
pubmed_primary_35079199
crossref_primary_10_1007_s11227_021_04222_4
crossref_citationtrail_10_1007_s11227_021_04222_4
springer_journals_10_1007_s11227_021_04222_4
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationTitleAlternate J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FalaschiZDannaPSArioliRPaschéAZagariaDPercivaleITriccaSBariniMAquiliniFAndreoniSChest CT accuracy in diagnosing COVID-19 during the peak of the Italian epidemic: A retrospective correlation with RT-PCR testing and analysis of discordant casesEuropean journal of radiology2020130109192
WuFZhaoSYuBChenYMWangWSongZGHuYTaoZWTianJHPeiYYA new coronavirus associated with human respiratory disease in chinaNature2020579779826526910.1038/s41586-020-2008-3
Akada T, Fujimori K (2021) Designing microwave circuits using genetic algorithms accelerated by convolutional neural networks. In: 2020 50th European Microwave Conference (EuMC), IEEE, pp 61–64
Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, et al. (2017) Population based training of neural networks. arXiv preprint arXiv:171109846
ToramanSAlakusTBTurkogluIConvolutional capsnet: A novel artificial neural network approach to detect covid-19 disease from x-ray images using capsule networksChaos, Solitons Fractals20201401101224124779
Hemdan EED, Shouman MA, Karar ME (2020) Covidx-net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images. arXiv preprint arXiv:200311055
CabadaRZRangelHREstradaMLBLopezHMCHyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systemsSoft Comput202024107593760210.1007/s00500-019-04387-4
SunYXueBZhangMYenGGLvJAutomatically designing CNN architectures using the genetic algorithm for image classificationIEEE Trans Cybern20205093840385410.1109/TCYB.2020.2983860
OzturkTTaloMYildirimEABalogluUBYildirimOAcharyaURAutomated detection of COVID-19 cases using deep neural networks with X-ray imagesComput Biol Med2020121103792
Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X (2020) Deep learning-based detection for COVID-19 from chest CT using weak label. MedRxiv
Sethy PK, Behera SK, Ratha PK, Biswas P (2020) Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Int J Math, Eng Manag Sci
Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. (2021) A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). Euro Radiol pp 1–9
ChatterjeeRMaitraTIslamSHHassanMMAlamriAFortinoGA novel machine learning based feature selection for motor imagery eeg signal classification in internet of medical things environmentFuture Gener Comput Syst20199841943410.1016/j.future.2019.01.048
WaheedAGoyalMGuptaDKhannaAAl-TurjmanFPinheiroPRCovidgan: data augmentation using auxiliary classifier gan for improved COVID-19 detectionIEEE Access20208919169192310.1109/ACCESS.2020.2994762
LoussaiefSAbdelkrimAConvolutional neural network hyper-parameters optimization based on genetic algorithmsInt J Adv Comput Sci Appl2018910252266
Blanco R, Malagón P, Cilla JJ, Moya JM (2018) Multiclass network attack classifier using cnn tuned with genetic algorithms. 2018 28th International symposium on power and timing modeling. Optimization and Simulation (PATMOS), IEEE, pp 177–182
NgMYLeeEYYangJYangFLiXWangHLuiMMsLoCSYImaging profile of the COVID-19 infection: radiologic findings and literature reviewRadiol Cardiothorac Imagin202021e20003410.1148/ryct.2020200034
ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med202043263564010.1007/s13246-020-00865-4
FawcettTAn introduction to ROC analysisPattern Recognit Letters2006278861874229762610.1016/j.patrec.2005.10.010
Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Wang R, Zhao H, Zha Y et al (2021) Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with ct images. IEEE/ACM Trans Comput Biol Bioinform
LeiSHuHChenBLinZTianJYangWTangPQiuXAnalytical scannable-shaped beam pattern synthesis via superposition principleIET Microw, Antennas Propag202115660060510.1049/mia2.12083
Joseph Paul Cohen LD Paul Morrison (2020) Covid-19 image data collection. arXiv preprint arXiv:200311597
RanneyMLGriffethVJhaAKCritical supply shortages-the need for ventilators and personal protective equipment during the COVID-19 pandemicNew Engl J Med202038218e4110.1056/NEJMp2006141
HassanMRHassanMMAltafMYeasarMSHossainMIFatemaKShaharinRAhmedAFB5g-enabled distributed artificial intelligence on edges for COVID-19 pandemic outbreak predictionIEEE Netw2021353485510.1109/MNET.011.2000713
PanwarHGuptaPSiddiquiMKMorales-MenendezRSinghVApplication of deep learning for fast detection of COVID-19 in X-rays using nCOVnetChaos, Solitons Fractals20201381099444110001
HuangCWangYLiXRenLZhaoJHuYZhangLFanGXuJGuXClinical features of patients infected with 2019 novel coronavirus in Wuhan, chinaThe lancet20203951022349750610.1016/S0140-6736(20)30183-5
Sajja PS (2021) Examples and applications on genetic algorithms. In: Illustrated Computational Intelligence, Springer, pp 155–189
XiaoXHuangHWangWUnderwater wireless sensor networks: An energy-efficient clustering routing protocol based on data fusion and genetic algorithmsAppl Sci202111131210.3390/app11010312
Bakhshi A, Noman N, Chen Z, Zamani M, Chalup S (2019) Fast automatic optimisation of CNN architectures for image classification using genetic algorithm. In: 2019 IEEE congress on evolutionary computation (CEC), IEEE, pp 1283–1290
WangLLinZQWongACovid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray imagesSci Rep2020101112
WuJMTTsaiMHHuangYZIslamSHHassanMMAlelaiwiAFortinoGApplying an ensemble convolutional neural network with savitzky-golay filter to construct a phonocardiogram prediction modelAppl Soft Comput201978294010.1016/j.asoc.2019.01.019
SinghalTA review of coronavirus disease-2019 (COVID-19)The Indian J Pediatr202087428128610.1007/s12098-020-03263-6
Narin A, Kaya C, Pamuk Z (2020) Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:200310849
XuXJiangXMaCDuPLiXLvSYuLNiQChenYSuJA deep learning system to screen novel coronavirus disease 2019 pneumoniaEngineering20206101122112910.1016/j.eng.2020.04.010
Xie L, Yuille A (2017) Genetic CNN. In: Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, IEEE, pp 1388–1397
Article published on News18 (2020) Know the result time of COVID-19 rt-pcr test and why it takes long. https://www.news18.com/news/india/know-the-result-time-of-covid-19-rt-pcr-test-and-why-it-takes-long-3142547.html
WangZSobeyAA comparative review between genetic algorithm use in composite optimisation and the state-of-the-art in evolutionary computationComposite Struct2020233111739
FangYZhangHXieJLinMYingLPangPJiWSensitivity of chest CT for COVID-19: comparison to RT-PCRRadiology20202962E115E11710.1148/radiol.2020200432
Xiao X, Yan M, Basodi S, Ji C, Pan Y (2020) Efficient hyperparameter optimization in deep learning using a variable length genetic algorithm. arXiv preprint arXiv:200612703
L Wang (4222_CR30) 2020; 10
RZ Cabada (4222_CR5) 2020; 24
JMT Wu (4222_CR34) 2019; 78
Y Fang (4222_CR9) 2020; 296
R Chatterjee (4222_CR6) 2019; 98
Z Wang (4222_CR32) 2020; 233
Y Sun (4222_CR27) 2020; 50
4222_CR3
4222_CR26
4222_CR1
4222_CR7
4222_CR23
C Huang (4222_CR13) 2020; 395
4222_CR4
4222_CR24
A Waheed (4222_CR29) 2020; 8
X Xiao (4222_CR36) 2021; 11
T Fawcett (4222_CR10) 2006; 27
Z Falaschi (4222_CR8) 2020; 130
ID Apostolopoulos (4222_CR2) 2020; 43
X Xu (4222_CR38) 2020; 6
T Ozturk (4222_CR20) 2020; 121
S Toraman (4222_CR28) 2020; 140
4222_CR31
F Wu (4222_CR33) 2020; 579
MR Hassan (4222_CR11) 2021; 35
T Singhal (4222_CR25) 2020; 87
4222_CR15
4222_CR37
4222_CR18
4222_CR39
4222_CR12
S Lei (4222_CR16) 2021; 15
MY Ng (4222_CR19) 2020; 2
4222_CR14
H Panwar (4222_CR21) 2020; 138
ML Ranney (4222_CR22) 2020; 382
4222_CR35
S Loussaief (4222_CR17) 2018; 9
36779081 - J Supercomput. 2023 Feb 7;:1-2
References_xml – reference: CabadaRZRangelHREstradaMLBLopezHMCHyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systemsSoft Comput202024107593760210.1007/s00500-019-04387-4
– reference: OzturkTTaloMYildirimEABalogluUBYildirimOAcharyaURAutomated detection of COVID-19 cases using deep neural networks with X-ray imagesComput Biol Med2020121103792
– reference: FalaschiZDannaPSArioliRPaschéAZagariaDPercivaleITriccaSBariniMAquiliniFAndreoniSChest CT accuracy in diagnosing COVID-19 during the peak of the Italian epidemic: A retrospective correlation with RT-PCR testing and analysis of discordant casesEuropean journal of radiology2020130109192
– reference: WuFZhaoSYuBChenYMWangWSongZGHuYTaoZWTianJHPeiYYA new coronavirus associated with human respiratory disease in chinaNature2020579779826526910.1038/s41586-020-2008-3
– reference: WuJMTTsaiMHHuangYZIslamSHHassanMMAlelaiwiAFortinoGApplying an ensemble convolutional neural network with savitzky-golay filter to construct a phonocardiogram prediction modelAppl Soft Comput201978294010.1016/j.asoc.2019.01.019
– reference: Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, et al. (2017) Population based training of neural networks. arXiv preprint arXiv:171109846
– reference: XiaoXHuangHWangWUnderwater wireless sensor networks: An energy-efficient clustering routing protocol based on data fusion and genetic algorithmsAppl Sci202111131210.3390/app11010312
– reference: Akada T, Fujimori K (2021) Designing microwave circuits using genetic algorithms accelerated by convolutional neural networks. In: 2020 50th European Microwave Conference (EuMC), IEEE, pp 61–64
– reference: Xie L, Yuille A (2017) Genetic CNN. In: Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, IEEE, pp 1388–1397
– reference: PanwarHGuptaPSiddiquiMKMorales-MenendezRSinghVApplication of deep learning for fast detection of COVID-19 in X-rays using nCOVnetChaos, Solitons Fractals20201381099444110001
– reference: FawcettTAn introduction to ROC analysisPattern Recognit Letters2006278861874229762610.1016/j.patrec.2005.10.010
– reference: Hemdan EED, Shouman MA, Karar ME (2020) Covidx-net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images. arXiv preprint arXiv:200311055
– reference: Xiao X, Yan M, Basodi S, Ji C, Pan Y (2020) Efficient hyperparameter optimization in deep learning using a variable length genetic algorithm. arXiv preprint arXiv:200612703
– reference: WangLLinZQWongACovid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray imagesSci Rep2020101112
– reference: Article published on News18 (2020) Know the result time of COVID-19 rt-pcr test and why it takes long. https://www.news18.com/news/india/know-the-result-time-of-covid-19-rt-pcr-test-and-why-it-takes-long-3142547.html
– reference: ToramanSAlakusTBTurkogluIConvolutional capsnet: A novel artificial neural network approach to detect covid-19 disease from x-ray images using capsule networksChaos, Solitons Fractals20201401101224124779
– reference: Bakhshi A, Noman N, Chen Z, Zamani M, Chalup S (2019) Fast automatic optimisation of CNN architectures for image classification using genetic algorithm. In: 2019 IEEE congress on evolutionary computation (CEC), IEEE, pp 1283–1290
– reference: Blanco R, Malagón P, Cilla JJ, Moya JM (2018) Multiclass network attack classifier using cnn tuned with genetic algorithms. 2018 28th International symposium on power and timing modeling. Optimization and Simulation (PATMOS), IEEE, pp 177–182
– reference: SinghalTA review of coronavirus disease-2019 (COVID-19)The Indian J Pediatr202087428128610.1007/s12098-020-03263-6
– reference: Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X (2020) Deep learning-based detection for COVID-19 from chest CT using weak label. MedRxiv
– reference: ChatterjeeRMaitraTIslamSHHassanMMAlamriAFortinoGA novel machine learning based feature selection for motor imagery eeg signal classification in internet of medical things environmentFuture Gener Comput Syst20199841943410.1016/j.future.2019.01.048
– reference: LeiSHuHChenBLinZTianJYangWTangPQiuXAnalytical scannable-shaped beam pattern synthesis via superposition principleIET Microw, Antennas Propag202115660060510.1049/mia2.12083
– reference: FangYZhangHXieJLinMYingLPangPJiWSensitivity of chest CT for COVID-19: comparison to RT-PCRRadiology20202962E115E11710.1148/radiol.2020200432
– reference: RanneyMLGriffethVJhaAKCritical supply shortages-the need for ventilators and personal protective equipment during the COVID-19 pandemicNew Engl J Med202038218e4110.1056/NEJMp2006141
– reference: Sethy PK, Behera SK, Ratha PK, Biswas P (2020) Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Int J Math, Eng Manag Sci
– reference: WaheedAGoyalMGuptaDKhannaAAl-TurjmanFPinheiroPRCovidgan: data augmentation using auxiliary classifier gan for improved COVID-19 detectionIEEE Access20208919169192310.1109/ACCESS.2020.2994762
– reference: Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. (2021) A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). Euro Radiol pp 1–9
– reference: HassanMRHassanMMAltafMYeasarMSHossainMIFatemaKShaharinRAhmedAFB5g-enabled distributed artificial intelligence on edges for COVID-19 pandemic outbreak predictionIEEE Netw2021353485510.1109/MNET.011.2000713
– reference: Sajja PS (2021) Examples and applications on genetic algorithms. In: Illustrated Computational Intelligence, Springer, pp 155–189
– reference: SunYXueBZhangMYenGGLvJAutomatically designing CNN architectures using the genetic algorithm for image classificationIEEE Trans Cybern20205093840385410.1109/TCYB.2020.2983860
– reference: Joseph Paul Cohen LD Paul Morrison (2020) Covid-19 image data collection. arXiv preprint arXiv:200311597
– reference: LoussaiefSAbdelkrimAConvolutional neural network hyper-parameters optimization based on genetic algorithmsInt J Adv Comput Sci Appl2018910252266
– reference: HuangCWangYLiXRenLZhaoJHuYZhangLFanGXuJGuXClinical features of patients infected with 2019 novel coronavirus in Wuhan, chinaThe lancet20203951022349750610.1016/S0140-6736(20)30183-5
– reference: Narin A, Kaya C, Pamuk Z (2020) Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:200310849
– reference: Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Wang R, Zhao H, Zha Y et al (2021) Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with ct images. IEEE/ACM Trans Comput Biol Bioinform
– reference: ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med202043263564010.1007/s13246-020-00865-4
– reference: NgMYLeeEYYangJYangFLiXWangHLuiMMsLoCSYImaging profile of the COVID-19 infection: radiologic findings and literature reviewRadiol Cardiothorac Imagin202021e20003410.1148/ryct.2020200034
– reference: WangZSobeyAA comparative review between genetic algorithm use in composite optimisation and the state-of-the-art in evolutionary computationComposite Struct2020233111739
– reference: XuXJiangXMaCDuPLiXLvSYuLNiQChenYSuJA deep learning system to screen novel coronavirus disease 2019 pneumoniaEngineering20206101122112910.1016/j.eng.2020.04.010
– volume: 78
  start-page: 29
  year: 2019
  ident: 4222_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.01.019
– ident: 4222_CR15
– volume: 2
  start-page: e200034
  issue: 1
  year: 2020
  ident: 4222_CR19
  publication-title: Radiol Cardiothorac Imagin
  doi: 10.1148/ryct.2020200034
– volume: 296
  start-page: E115
  issue: 2
  year: 2020
  ident: 4222_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2020200432
– volume: 8
  start-page: 91916
  year: 2020
  ident: 4222_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994762
– volume: 9
  start-page: 252
  issue: 10
  year: 2018
  ident: 4222_CR17
  publication-title: Int J Adv Comput Sci Appl
– volume: 140
  start-page: 122
  issue: 110
  year: 2020
  ident: 4222_CR28
  publication-title: Chaos, Solitons Fractals
– volume: 87
  start-page: 281
  issue: 4
  year: 2020
  ident: 4222_CR25
  publication-title: The Indian J Pediatr
  doi: 10.1007/s12098-020-03263-6
– ident: 4222_CR37
  doi: 10.1109/ICCV.2017.154
– ident: 4222_CR31
  doi: 10.1007/s00330-021-07715-1
– volume: 50
  start-page: 3840
  issue: 9
  year: 2020
  ident: 4222_CR27
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.2983860
– volume: 98
  start-page: 419
  year: 2019
  ident: 4222_CR6
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.01.048
– volume: 130
  start-page: 192
  issue: 109
  year: 2020
  ident: 4222_CR8
  publication-title: European journal of radiology
– volume: 15
  start-page: 600
  issue: 6
  year: 2021
  ident: 4222_CR16
  publication-title: IET Microw, Antennas Propag
  doi: 10.1049/mia2.12083
– ident: 4222_CR3
  doi: 10.1109/CEC.2019.8790197
– ident: 4222_CR24
  doi: 10.20944/preprints202003.0300.v1
– ident: 4222_CR18
  doi: 10.1007/s10044-021-00984-y
– volume: 233
  start-page: 739
  issue: 111
  year: 2020
  ident: 4222_CR32
  publication-title: Composite Struct
– ident: 4222_CR26
  doi: 10.1109/TCBB.2021.3065361
– volume: 579
  start-page: 265
  issue: 7798
  year: 2020
  ident: 4222_CR33
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– ident: 4222_CR39
  doi: 10.1101/2020.03.12.20027185
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 4222_CR10
  publication-title: Pattern Recognit Letters
  doi: 10.1016/j.patrec.2005.10.010
– volume: 43
  start-page: 635
  issue: 2
  year: 2020
  ident: 4222_CR2
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-020-00865-4
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 4222_CR30
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– ident: 4222_CR4
  doi: 10.1109/PATMOS.2018.8463997
– ident: 4222_CR35
– ident: 4222_CR14
– ident: 4222_CR12
– volume: 35
  start-page: 48
  issue: 3
  year: 2021
  ident: 4222_CR11
  publication-title: IEEE Netw
  doi: 10.1109/MNET.011.2000713
– volume: 138
  start-page: 944
  issue: 109
  year: 2020
  ident: 4222_CR21
  publication-title: Chaos, Solitons Fractals
– volume: 24
  start-page: 7593
  issue: 10
  year: 2020
  ident: 4222_CR5
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04387-4
– volume: 6
  start-page: 1122
  issue: 10
  year: 2020
  ident: 4222_CR38
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.04.010
– ident: 4222_CR1
  doi: 10.23919/EuMC48046.2021.9337992
– ident: 4222_CR23
  doi: 10.1007/978-981-15-9589-9_5
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  ident: 4222_CR13
  publication-title: The lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 11
  start-page: 312
  issue: 1
  year: 2021
  ident: 4222_CR36
  publication-title: Appl Sci
  doi: 10.3390/app11010312
– ident: 4222_CR7
– volume: 382
  start-page: e41
  issue: 18
  year: 2020
  ident: 4222_CR22
  publication-title: New Engl J Med
  doi: 10.1056/NEJMp2006141
– volume: 121
  start-page: 792
  issue: 103
  year: 2020
  ident: 4222_CR20
  publication-title: Comput Biol Med
– reference: 36779081 - J Supercomput. 2023 Feb 7;:1-2
SSID ssj0004373
Score 2.4015772
Snippet This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10250
SubjectTerms 5G mobile communication
Artificial intelligence
Artificial neural networks
Automation
Cell phones
Cloud computing
Compilers
Computer Science
Coronaviruses
COVID-19
Disease transmission
Edge computing
Genetic algorithms
Image classification
Image quality
Interpreters
Mobile computing
Processor Architectures
Programming Languages
Task complexity
Title A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
URI https://link.springer.com/article/10.1007/s11227-021-04222-4
https://www.ncbi.nlm.nih.gov/pubmed/35079199
https://www.proquest.com/docview/2652610526
https://www.proquest.com/docview/2622957616
https://pubmed.ncbi.nlm.nih.gov/PMC8776397
Volume 78
WOSCitedRecordID wos000744931700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xwQMvjM-tsE1G4g0s1Y4d249TYRovBQmY-hY5TswqbcnUpvz93LlJqzJAgmefHX_c2Xe5u98BvJGh1FkQJa9RGeYqyoqX44CXYUAD15QR7bdxKjZhplM7m7nPfVLYcoh2H1yS6abeJrsJKQ2nkALCrZJc7cF9TWgzZKN_udxmQ2Zrv7JDw8hqJftUmd-Psfsc3dEx74ZK_uIvTc_Q-cH_LeAxPOrVTna25pMncK9unsLBUNKB9RL-DG7OWBzCtVgbGbIXZTkyf_29Xcy7qxtOz17FJtMpaxuWwhG5T0UXGf2ZYyENidNiqA0zv-paVImxQ1V3KeiroVEnny4_vufCPYdv5x--Ti54X5GBB2VUx4MNtRLWxpChZZmVpUUDI8iodczz2lsv8jzk2mexMuPgtHQhWhmdLaNC3SJmL2C_aZv6CJittImVy71TeFk7QpGJSlTeSSOpywjEcDBF6OHKqWrGdbEFWqb9LHA_i7SfhRrB202f2zVYx1-pj4fzLnrBXRYy12hTEgjOCF5vmlHkyI_im7pdEQ3VQDe5QJrDNXtsPpehfu2Ew-mbHcbZEBCc925LM79KsN4oG-RlHcG7gX220_rzKl7-G_kreCgpgSOFbB7DfrdY1SfwIPzo5svFKeyZmT1N4vQTJ9AXWA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLdgIMEL45tjA4LEG0S6pEmTPE63TZsYBYkx7a1q04adtLXorsffj51r73QbIMFznDQfdmLX9s8A76QvdeJFyWtUhrkKsuLl2ONl6NHANWVA-20ci02YLLPn5-5LnxQ2H6LdB5dkvKnXyW5CSsMppIBwqyRXt-GOojI7ZKN_PVtnQyZLv7JDw8hqJftUmd-Psfkc3dAxb4ZKXvOXxmfocPv_FvAQHvRqJ9tb8skjuFU3j2F7KOnAegl_Ald7LAzhWqwNDNmLshxZcfm9nU27iytOz17FJlnG2obFcERexKKLjP7MMR-HxGkx1IZZsehaVImxQ1V3MeiroVEnn8-O97lwT-Hb4cHp5Ij3FRm4V0Z13FtfK2Ft8AlalklZWjQwvAxahzStC1uINPWpLpJQmbF3WjofrAzOlgFPSofkGWw1bVO_AGYrbULl0sIpvKwdocgEJarCSSOpywjEcDC57-HKqWrGZb4GWqb9zHE_87ifuRrB-1WfH0uwjr9S7w7nnfeCO89lqtGmJBCcEbxdNaPIkR-laOp2QTRUA92kAmmeL9lj9bkE9WsnHE7fbDDOioDgvDdbmulFhPVG2SAv6wg-DOyzntafV_Hy38jfwL2j008n-clx9nEH7ktK5ojhm7uw1c0W9Su463920_nsdRSqX7GKGVQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIMQL42vj2IAg8QbRLmnaJo_TjRMTqEx8THur0rTZTtra6dbj78dO27sdAyTEc5w0H3Zi1_bPAG-kK-LIiYJXqAxz5WXJi7HDy9ChgZsWHu23cSg2kWaZPjkxR9ey-EO0--CS7HIaCKWpbvcuS7-3SnwTUqacwgsIw0pydRvuKLRkKKjry9fjVWZk1PmYDRpJOlayT5v5_RjrT9MNffNm2OQvvtPwJE03_38xD-FBr46y_Y5_HsGtqn4Mm0OpB9ZL_hO42Gd-CONijWfIdpT9yOz5aTOftWcXnJ7Dkk2yjDU1C2GK3IZijIz-2DEXhsQpMtSSmV20DarK2KGs2hAMVtOok8_HhwdcmKfwffr-2-QD7ys1cKdS1XKnXaWE1t5FaHFGRaHR8HDSx7FPkspqK5LEJbGNfJmOnYmlcV5Lb3ThFeocPtqCjbqpq2fAdBmnvjSJNQovcUPoMl6J0hqZSuoyAjEcUu56GHOqpnGerwCYaT9z3M887GeuRvB22eeyA_H4K_XucPZ5L9BXuUxitDUJHGcEr5fNKIrkX7F11SyIhmqjp4lAmu2OVZafi1DvNsLg9NM1JloSEMz3eks9Owtw3ygz5H0dwbuBlVbT-vMqnv8b-Su4d3QwzT8dZh934L6kHI8Q1bkLG-18Ub2Au-5HO7uavwzy9RMhciI4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+of+genetic+algorithm-based+CNN+on+multi-access+edge+computing+for+automated+detection+of+COVID-19&rft.jtitle=The+Journal+of+supercomputing&rft.au=Hassan%2C+Md+Rafiul&rft.au=Ismail%2C+Walaa+N&rft.au=Chowdhury%2C+Ahmad&rft.au=Hossain%2C+Sharara&rft.date=2022-05-01&rft.issn=0920-8542&rft.volume=78&rft.issue=7&rft.spage=10250&rft_id=info:doi/10.1007%2Fs11227-021-04222-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon