A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN...
Gespeichert in:
| Veröffentlicht in: | The Journal of supercomputing Jg. 78; H. 7; S. 10250 - 10274 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies. |
|---|---|
| AbstractList | This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies. This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies.This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19 cases. The framework utilizes a multi-access edge computing technology such that end-user can access available resources as well the CNN on the cloud. Early detection of COVID-19 can improve treatment and mitigate transmission. During peaks of infection, hospitals worldwide have suffered from heavy patient loads, bed shortages, inadequate testing kits and short-staffing problems. Due to the time-consuming nature of the standard RT-PCR test, the lack of expert radiologists, and evaluation issues relating to poor quality images, patients with severe conditions are sometimes unable to receive timely treatment. It is thus recommended to incorporate computational intelligence methodologies, which provides highly accurate detection in a matter of minutes, alongside traditional testing as an emergency measure. CNN has achieved extraordinary performance in numerous computational intelligence tasks. However, finding a systematic, automatic and optimal set of hyperparameters for building an efficient CNN for complex tasks remains challenging. Moreover, due to advancement of technology, data are collected at sparse location and hence accumulation of data from such a diverse sparse location poses a challenge. In this article, we propose a framework of computational intelligence-based algorithm that utilize the recent 5G mobile technology of multi-access edge computing along with a new CNN-model for automatic COVID-19 detection using raw chest X-ray images. This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) should be able to use the CNN-based automatic COVID-19 detection tool. As part of the proposed automated model, the model introduces a novel CNN structure with the genetic algorithm (GA) for hyperparameter tuning. One such combination of GA and CNN is new in the application of COVID-19 detection/classification. The experimental results show that the developed framework could classify COVID-19 X-ray images with 98.48% accuracy which is higher than any of the performances achieved by other studies. |
| Author | Chowdhury, Ahmad Hassan, Md Rafiul Hossain, Sharara Ismail, Walaa N. Huda, Shamsul Hassan, Mohammad Mehedi |
| Author_xml | – sequence: 1 givenname: Md Rafiul surname: Hassan fullname: Hassan, Md Rafiul organization: College of Arts and Sciences, University of Maine at Presque Isle – sequence: 2 givenname: Walaa N. surname: Ismail fullname: Ismail, Walaa N. organization: Faculty of Computers and Information, Minia University – sequence: 3 givenname: Ahmad surname: Chowdhury fullname: Chowdhury, Ahmad organization: Imagine Consulting Services LLC – sequence: 4 givenname: Sharara surname: Hossain fullname: Hossain, Sharara organization: Simply Retrofits – sequence: 5 givenname: Shamsul surname: Huda fullname: Huda, Shamsul organization: School of Information Technology, Deakin University – sequence: 6 givenname: Mohammad Mehedi orcidid: 0000-0002-3479-3606 surname: Hassan fullname: Hassan, Mohammad Mehedi email: mmhassan@ksu.edu.sa organization: Department of Information Systems, College of Computer and Information Sciences, King Saud University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35079199$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vFSEYhYmpsbfVP-DCkLhxg_I5wMakuX41adqNuiUMA1PqzHAFpsZ_L_XWql10AyGc53BezhE4WNLiAXhO8GuCsXxTCKFUIkwJwpxSivgjsCFCsnZU_ABssKYYKcHpITgq5QpjzJlkT8AhE1hqovUGzCcwZDv7Hyl_gynA0S--RgftNKYc6-WMelv8ALfn5zAtcF6nGpF1zpcC_TB66NK8W2tcRhhShnataba1AYOv3tXYmOa6vfh6-g4R_RQ8DnYq_tntfgy-fHj_efsJnV18PN2enCHHJa_IKec5USo4pqhgfa8w144GIULXeass6TrXCcvCILHTgmoXFA1a9YFTIgI7Bm_3vru1n_3g_FKzncwux9nmnybZaP6_WeKlGdO1UVJ2TMtm8OrWIKfvqy_VzLE4P0128WkthnaUaiE70jXpy3vSq7TmpY3XVIJ2BLelqV78m-guyp8mmoDuBS6nUrIPdxKCzU3dZl-3aXWb33Ub3iB1D3Kx2ptfb1PF6WGU7dHS3llGn__GfoD6Bf2Jvlw |
| CitedBy_id | crossref_primary_10_1007_s00521_022_08021_7 crossref_primary_10_3389_fphy_2023_1153637 crossref_primary_10_3390_electronics12030750 crossref_primary_10_1109_TSC_2023_3336846 crossref_primary_10_3390_math11051216 crossref_primary_10_1016_j_heliyon_2024_e25746 crossref_primary_10_1007_s00521_023_09194_5 crossref_primary_10_1007_s11042_024_20153_7 crossref_primary_10_1038_s41598_024_62435_y crossref_primary_10_1515_nleng_2025_0098 |
| Cites_doi | 10.1016/j.asoc.2019.01.019 10.1148/ryct.2020200034 10.1148/radiol.2020200432 10.1109/ACCESS.2020.2994762 10.1007/s12098-020-03263-6 10.1109/ICCV.2017.154 10.1007/s00330-021-07715-1 10.1109/TCYB.2020.2983860 10.1016/j.future.2019.01.048 10.1049/mia2.12083 10.1109/CEC.2019.8790197 10.20944/preprints202003.0300.v1 10.1007/s10044-021-00984-y 10.1109/TCBB.2021.3065361 10.1038/s41586-020-2008-3 10.1101/2020.03.12.20027185 10.1016/j.patrec.2005.10.010 10.1007/s13246-020-00865-4 10.1038/s41598-019-56847-4 10.1109/PATMOS.2018.8463997 10.1109/MNET.011.2000713 10.1007/s00500-019-04387-4 10.1016/j.eng.2020.04.010 10.23919/EuMC48046.2021.9337992 10.1007/978-981-15-9589-9_5 10.1016/S0140-6736(20)30183-5 10.3390/app11010312 10.1056/NEJMp2006141 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
| DBID | AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1007/s11227-021-04222-4 |
| DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | ProQuest Computer Science Collection MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 10274 |
| ExternalDocumentID | PMC8776397 35079199 10_1007_s11227_021_04222_4 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: king saud university grantid: RSP 2021/18 funderid: http://dx.doi.org/10.13039/501100002383 – fundername: ; grantid: RSP 2021/18 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS NPM JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-c8ce4188fc38253bb8049c2f55f66ea8a166c65a3fd70c9529cf82f98bf4215f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744931700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Tue Nov 04 01:58:05 EST 2025 Wed Oct 01 14:22:24 EDT 2025 Thu Sep 25 00:54:15 EDT 2025 Wed Feb 19 02:25:01 EST 2025 Tue Nov 18 19:39:50 EST 2025 Sat Nov 29 04:27:41 EST 2025 Fri Feb 21 02:45:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | COVID-19 CNN Classification Genetic Algorithm Multi-access edge |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-c8ce4188fc38253bb8049c2f55f66ea8a166c65a3fd70c9529cf82f98bf4215f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3479-3606 |
| OpenAccessLink | http://dx.doi.org/10.1007/s11227-021-04222-4 |
| PMID | 35079199 |
| PQID | 2652610526 |
| PQPubID | 2043774 |
| PageCount | 25 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8776397 proquest_miscellaneous_2622957616 proquest_journals_2652610526 pubmed_primary_35079199 crossref_primary_10_1007_s11227_021_04222_4 crossref_citationtrail_10_1007_s11227_021_04222_4 springer_journals_10_1007_s11227_021_04222_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationTitleAlternate | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | FalaschiZDannaPSArioliRPaschéAZagariaDPercivaleITriccaSBariniMAquiliniFAndreoniSChest CT accuracy in diagnosing COVID-19 during the peak of the Italian epidemic: A retrospective correlation with RT-PCR testing and analysis of discordant casesEuropean journal of radiology2020130109192 WuFZhaoSYuBChenYMWangWSongZGHuYTaoZWTianJHPeiYYA new coronavirus associated with human respiratory disease in chinaNature2020579779826526910.1038/s41586-020-2008-3 Akada T, Fujimori K (2021) Designing microwave circuits using genetic algorithms accelerated by convolutional neural networks. In: 2020 50th European Microwave Conference (EuMC), IEEE, pp 61–64 Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, et al. (2017) Population based training of neural networks. arXiv preprint arXiv:171109846 ToramanSAlakusTBTurkogluIConvolutional capsnet: A novel artificial neural network approach to detect covid-19 disease from x-ray images using capsule networksChaos, Solitons Fractals20201401101224124779 Hemdan EED, Shouman MA, Karar ME (2020) Covidx-net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images. arXiv preprint arXiv:200311055 CabadaRZRangelHREstradaMLBLopezHMCHyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systemsSoft Comput202024107593760210.1007/s00500-019-04387-4 SunYXueBZhangMYenGGLvJAutomatically designing CNN architectures using the genetic algorithm for image classificationIEEE Trans Cybern20205093840385410.1109/TCYB.2020.2983860 OzturkTTaloMYildirimEABalogluUBYildirimOAcharyaURAutomated detection of COVID-19 cases using deep neural networks with X-ray imagesComput Biol Med2020121103792 Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X (2020) Deep learning-based detection for COVID-19 from chest CT using weak label. MedRxiv Sethy PK, Behera SK, Ratha PK, Biswas P (2020) Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Int J Math, Eng Manag Sci Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. (2021) A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). Euro Radiol pp 1–9 ChatterjeeRMaitraTIslamSHHassanMMAlamriAFortinoGA novel machine learning based feature selection for motor imagery eeg signal classification in internet of medical things environmentFuture Gener Comput Syst20199841943410.1016/j.future.2019.01.048 WaheedAGoyalMGuptaDKhannaAAl-TurjmanFPinheiroPRCovidgan: data augmentation using auxiliary classifier gan for improved COVID-19 detectionIEEE Access20208919169192310.1109/ACCESS.2020.2994762 LoussaiefSAbdelkrimAConvolutional neural network hyper-parameters optimization based on genetic algorithmsInt J Adv Comput Sci Appl2018910252266 Blanco R, Malagón P, Cilla JJ, Moya JM (2018) Multiclass network attack classifier using cnn tuned with genetic algorithms. 2018 28th International symposium on power and timing modeling. Optimization and Simulation (PATMOS), IEEE, pp 177–182 NgMYLeeEYYangJYangFLiXWangHLuiMMsLoCSYImaging profile of the COVID-19 infection: radiologic findings and literature reviewRadiol Cardiothorac Imagin202021e20003410.1148/ryct.2020200034 ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med202043263564010.1007/s13246-020-00865-4 FawcettTAn introduction to ROC analysisPattern Recognit Letters2006278861874229762610.1016/j.patrec.2005.10.010 Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Wang R, Zhao H, Zha Y et al (2021) Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with ct images. IEEE/ACM Trans Comput Biol Bioinform LeiSHuHChenBLinZTianJYangWTangPQiuXAnalytical scannable-shaped beam pattern synthesis via superposition principleIET Microw, Antennas Propag202115660060510.1049/mia2.12083 Joseph Paul Cohen LD Paul Morrison (2020) Covid-19 image data collection. arXiv preprint arXiv:200311597 RanneyMLGriffethVJhaAKCritical supply shortages-the need for ventilators and personal protective equipment during the COVID-19 pandemicNew Engl J Med202038218e4110.1056/NEJMp2006141 HassanMRHassanMMAltafMYeasarMSHossainMIFatemaKShaharinRAhmedAFB5g-enabled distributed artificial intelligence on edges for COVID-19 pandemic outbreak predictionIEEE Netw2021353485510.1109/MNET.011.2000713 PanwarHGuptaPSiddiquiMKMorales-MenendezRSinghVApplication of deep learning for fast detection of COVID-19 in X-rays using nCOVnetChaos, Solitons Fractals20201381099444110001 HuangCWangYLiXRenLZhaoJHuYZhangLFanGXuJGuXClinical features of patients infected with 2019 novel coronavirus in Wuhan, chinaThe lancet20203951022349750610.1016/S0140-6736(20)30183-5 Sajja PS (2021) Examples and applications on genetic algorithms. In: Illustrated Computational Intelligence, Springer, pp 155–189 XiaoXHuangHWangWUnderwater wireless sensor networks: An energy-efficient clustering routing protocol based on data fusion and genetic algorithmsAppl Sci202111131210.3390/app11010312 Bakhshi A, Noman N, Chen Z, Zamani M, Chalup S (2019) Fast automatic optimisation of CNN architectures for image classification using genetic algorithm. In: 2019 IEEE congress on evolutionary computation (CEC), IEEE, pp 1283–1290 WangLLinZQWongACovid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray imagesSci Rep2020101112 WuJMTTsaiMHHuangYZIslamSHHassanMMAlelaiwiAFortinoGApplying an ensemble convolutional neural network with savitzky-golay filter to construct a phonocardiogram prediction modelAppl Soft Comput201978294010.1016/j.asoc.2019.01.019 SinghalTA review of coronavirus disease-2019 (COVID-19)The Indian J Pediatr202087428128610.1007/s12098-020-03263-6 Narin A, Kaya C, Pamuk Z (2020) Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:200310849 XuXJiangXMaCDuPLiXLvSYuLNiQChenYSuJA deep learning system to screen novel coronavirus disease 2019 pneumoniaEngineering20206101122112910.1016/j.eng.2020.04.010 Xie L, Yuille A (2017) Genetic CNN. In: Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, IEEE, pp 1388–1397 Article published on News18 (2020) Know the result time of COVID-19 rt-pcr test and why it takes long. https://www.news18.com/news/india/know-the-result-time-of-covid-19-rt-pcr-test-and-why-it-takes-long-3142547.html WangZSobeyAA comparative review between genetic algorithm use in composite optimisation and the state-of-the-art in evolutionary computationComposite Struct2020233111739 FangYZhangHXieJLinMYingLPangPJiWSensitivity of chest CT for COVID-19: comparison to RT-PCRRadiology20202962E115E11710.1148/radiol.2020200432 Xiao X, Yan M, Basodi S, Ji C, Pan Y (2020) Efficient hyperparameter optimization in deep learning using a variable length genetic algorithm. arXiv preprint arXiv:200612703 L Wang (4222_CR30) 2020; 10 RZ Cabada (4222_CR5) 2020; 24 JMT Wu (4222_CR34) 2019; 78 Y Fang (4222_CR9) 2020; 296 R Chatterjee (4222_CR6) 2019; 98 Z Wang (4222_CR32) 2020; 233 Y Sun (4222_CR27) 2020; 50 4222_CR3 4222_CR26 4222_CR1 4222_CR7 4222_CR23 C Huang (4222_CR13) 2020; 395 4222_CR4 4222_CR24 A Waheed (4222_CR29) 2020; 8 X Xiao (4222_CR36) 2021; 11 T Fawcett (4222_CR10) 2006; 27 Z Falaschi (4222_CR8) 2020; 130 ID Apostolopoulos (4222_CR2) 2020; 43 X Xu (4222_CR38) 2020; 6 T Ozturk (4222_CR20) 2020; 121 S Toraman (4222_CR28) 2020; 140 4222_CR31 F Wu (4222_CR33) 2020; 579 MR Hassan (4222_CR11) 2021; 35 T Singhal (4222_CR25) 2020; 87 4222_CR15 4222_CR37 4222_CR18 4222_CR39 4222_CR12 S Lei (4222_CR16) 2021; 15 MY Ng (4222_CR19) 2020; 2 4222_CR14 H Panwar (4222_CR21) 2020; 138 ML Ranney (4222_CR22) 2020; 382 4222_CR35 S Loussaief (4222_CR17) 2018; 9 36779081 - J Supercomput. 2023 Feb 7;:1-2 |
| References_xml | – reference: CabadaRZRangelHREstradaMLBLopezHMCHyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systemsSoft Comput202024107593760210.1007/s00500-019-04387-4 – reference: OzturkTTaloMYildirimEABalogluUBYildirimOAcharyaURAutomated detection of COVID-19 cases using deep neural networks with X-ray imagesComput Biol Med2020121103792 – reference: FalaschiZDannaPSArioliRPaschéAZagariaDPercivaleITriccaSBariniMAquiliniFAndreoniSChest CT accuracy in diagnosing COVID-19 during the peak of the Italian epidemic: A retrospective correlation with RT-PCR testing and analysis of discordant casesEuropean journal of radiology2020130109192 – reference: WuFZhaoSYuBChenYMWangWSongZGHuYTaoZWTianJHPeiYYA new coronavirus associated with human respiratory disease in chinaNature2020579779826526910.1038/s41586-020-2008-3 – reference: WuJMTTsaiMHHuangYZIslamSHHassanMMAlelaiwiAFortinoGApplying an ensemble convolutional neural network with savitzky-golay filter to construct a phonocardiogram prediction modelAppl Soft Comput201978294010.1016/j.asoc.2019.01.019 – reference: Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, et al. (2017) Population based training of neural networks. arXiv preprint arXiv:171109846 – reference: XiaoXHuangHWangWUnderwater wireless sensor networks: An energy-efficient clustering routing protocol based on data fusion and genetic algorithmsAppl Sci202111131210.3390/app11010312 – reference: Akada T, Fujimori K (2021) Designing microwave circuits using genetic algorithms accelerated by convolutional neural networks. In: 2020 50th European Microwave Conference (EuMC), IEEE, pp 61–64 – reference: Xie L, Yuille A (2017) Genetic CNN. In: Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, IEEE, pp 1388–1397 – reference: PanwarHGuptaPSiddiquiMKMorales-MenendezRSinghVApplication of deep learning for fast detection of COVID-19 in X-rays using nCOVnetChaos, Solitons Fractals20201381099444110001 – reference: FawcettTAn introduction to ROC analysisPattern Recognit Letters2006278861874229762610.1016/j.patrec.2005.10.010 – reference: Hemdan EED, Shouman MA, Karar ME (2020) Covidx-net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images. arXiv preprint arXiv:200311055 – reference: Xiao X, Yan M, Basodi S, Ji C, Pan Y (2020) Efficient hyperparameter optimization in deep learning using a variable length genetic algorithm. arXiv preprint arXiv:200612703 – reference: WangLLinZQWongACovid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray imagesSci Rep2020101112 – reference: Article published on News18 (2020) Know the result time of COVID-19 rt-pcr test and why it takes long. https://www.news18.com/news/india/know-the-result-time-of-covid-19-rt-pcr-test-and-why-it-takes-long-3142547.html – reference: ToramanSAlakusTBTurkogluIConvolutional capsnet: A novel artificial neural network approach to detect covid-19 disease from x-ray images using capsule networksChaos, Solitons Fractals20201401101224124779 – reference: Bakhshi A, Noman N, Chen Z, Zamani M, Chalup S (2019) Fast automatic optimisation of CNN architectures for image classification using genetic algorithm. In: 2019 IEEE congress on evolutionary computation (CEC), IEEE, pp 1283–1290 – reference: Blanco R, Malagón P, Cilla JJ, Moya JM (2018) Multiclass network attack classifier using cnn tuned with genetic algorithms. 2018 28th International symposium on power and timing modeling. Optimization and Simulation (PATMOS), IEEE, pp 177–182 – reference: SinghalTA review of coronavirus disease-2019 (COVID-19)The Indian J Pediatr202087428128610.1007/s12098-020-03263-6 – reference: Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X (2020) Deep learning-based detection for COVID-19 from chest CT using weak label. MedRxiv – reference: ChatterjeeRMaitraTIslamSHHassanMMAlamriAFortinoGA novel machine learning based feature selection for motor imagery eeg signal classification in internet of medical things environmentFuture Gener Comput Syst20199841943410.1016/j.future.2019.01.048 – reference: LeiSHuHChenBLinZTianJYangWTangPQiuXAnalytical scannable-shaped beam pattern synthesis via superposition principleIET Microw, Antennas Propag202115660060510.1049/mia2.12083 – reference: FangYZhangHXieJLinMYingLPangPJiWSensitivity of chest CT for COVID-19: comparison to RT-PCRRadiology20202962E115E11710.1148/radiol.2020200432 – reference: RanneyMLGriffethVJhaAKCritical supply shortages-the need for ventilators and personal protective equipment during the COVID-19 pandemicNew Engl J Med202038218e4110.1056/NEJMp2006141 – reference: Sethy PK, Behera SK, Ratha PK, Biswas P (2020) Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Int J Math, Eng Manag Sci – reference: WaheedAGoyalMGuptaDKhannaAAl-TurjmanFPinheiroPRCovidgan: data augmentation using auxiliary classifier gan for improved COVID-19 detectionIEEE Access20208919169192310.1109/ACCESS.2020.2994762 – reference: Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, et al. (2021) A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). Euro Radiol pp 1–9 – reference: HassanMRHassanMMAltafMYeasarMSHossainMIFatemaKShaharinRAhmedAFB5g-enabled distributed artificial intelligence on edges for COVID-19 pandemic outbreak predictionIEEE Netw2021353485510.1109/MNET.011.2000713 – reference: Sajja PS (2021) Examples and applications on genetic algorithms. In: Illustrated Computational Intelligence, Springer, pp 155–189 – reference: SunYXueBZhangMYenGGLvJAutomatically designing CNN architectures using the genetic algorithm for image classificationIEEE Trans Cybern20205093840385410.1109/TCYB.2020.2983860 – reference: Joseph Paul Cohen LD Paul Morrison (2020) Covid-19 image data collection. arXiv preprint arXiv:200311597 – reference: LoussaiefSAbdelkrimAConvolutional neural network hyper-parameters optimization based on genetic algorithmsInt J Adv Comput Sci Appl2018910252266 – reference: HuangCWangYLiXRenLZhaoJHuYZhangLFanGXuJGuXClinical features of patients infected with 2019 novel coronavirus in Wuhan, chinaThe lancet20203951022349750610.1016/S0140-6736(20)30183-5 – reference: Narin A, Kaya C, Pamuk Z (2020) Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:200310849 – reference: Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Wang R, Zhao H, Zha Y et al (2021) Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with ct images. IEEE/ACM Trans Comput Biol Bioinform – reference: ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med202043263564010.1007/s13246-020-00865-4 – reference: NgMYLeeEYYangJYangFLiXWangHLuiMMsLoCSYImaging profile of the COVID-19 infection: radiologic findings and literature reviewRadiol Cardiothorac Imagin202021e20003410.1148/ryct.2020200034 – reference: WangZSobeyAA comparative review between genetic algorithm use in composite optimisation and the state-of-the-art in evolutionary computationComposite Struct2020233111739 – reference: XuXJiangXMaCDuPLiXLvSYuLNiQChenYSuJA deep learning system to screen novel coronavirus disease 2019 pneumoniaEngineering20206101122112910.1016/j.eng.2020.04.010 – volume: 78 start-page: 29 year: 2019 ident: 4222_CR34 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.01.019 – ident: 4222_CR15 – volume: 2 start-page: e200034 issue: 1 year: 2020 ident: 4222_CR19 publication-title: Radiol Cardiothorac Imagin doi: 10.1148/ryct.2020200034 – volume: 296 start-page: E115 issue: 2 year: 2020 ident: 4222_CR9 publication-title: Radiology doi: 10.1148/radiol.2020200432 – volume: 8 start-page: 91916 year: 2020 ident: 4222_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994762 – volume: 9 start-page: 252 issue: 10 year: 2018 ident: 4222_CR17 publication-title: Int J Adv Comput Sci Appl – volume: 140 start-page: 122 issue: 110 year: 2020 ident: 4222_CR28 publication-title: Chaos, Solitons Fractals – volume: 87 start-page: 281 issue: 4 year: 2020 ident: 4222_CR25 publication-title: The Indian J Pediatr doi: 10.1007/s12098-020-03263-6 – ident: 4222_CR37 doi: 10.1109/ICCV.2017.154 – ident: 4222_CR31 doi: 10.1007/s00330-021-07715-1 – volume: 50 start-page: 3840 issue: 9 year: 2020 ident: 4222_CR27 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2983860 – volume: 98 start-page: 419 year: 2019 ident: 4222_CR6 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.01.048 – volume: 130 start-page: 192 issue: 109 year: 2020 ident: 4222_CR8 publication-title: European journal of radiology – volume: 15 start-page: 600 issue: 6 year: 2021 ident: 4222_CR16 publication-title: IET Microw, Antennas Propag doi: 10.1049/mia2.12083 – ident: 4222_CR3 doi: 10.1109/CEC.2019.8790197 – ident: 4222_CR24 doi: 10.20944/preprints202003.0300.v1 – ident: 4222_CR18 doi: 10.1007/s10044-021-00984-y – volume: 233 start-page: 739 issue: 111 year: 2020 ident: 4222_CR32 publication-title: Composite Struct – ident: 4222_CR26 doi: 10.1109/TCBB.2021.3065361 – volume: 579 start-page: 265 issue: 7798 year: 2020 ident: 4222_CR33 publication-title: Nature doi: 10.1038/s41586-020-2008-3 – ident: 4222_CR39 doi: 10.1101/2020.03.12.20027185 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 4222_CR10 publication-title: Pattern Recognit Letters doi: 10.1016/j.patrec.2005.10.010 – volume: 43 start-page: 635 issue: 2 year: 2020 ident: 4222_CR2 publication-title: Phys Eng Sci Med doi: 10.1007/s13246-020-00865-4 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 4222_CR30 publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 – ident: 4222_CR4 doi: 10.1109/PATMOS.2018.8463997 – ident: 4222_CR35 – ident: 4222_CR14 – ident: 4222_CR12 – volume: 35 start-page: 48 issue: 3 year: 2021 ident: 4222_CR11 publication-title: IEEE Netw doi: 10.1109/MNET.011.2000713 – volume: 138 start-page: 944 issue: 109 year: 2020 ident: 4222_CR21 publication-title: Chaos, Solitons Fractals – volume: 24 start-page: 7593 issue: 10 year: 2020 ident: 4222_CR5 publication-title: Soft Comput doi: 10.1007/s00500-019-04387-4 – volume: 6 start-page: 1122 issue: 10 year: 2020 ident: 4222_CR38 publication-title: Engineering doi: 10.1016/j.eng.2020.04.010 – ident: 4222_CR1 doi: 10.23919/EuMC48046.2021.9337992 – ident: 4222_CR23 doi: 10.1007/978-981-15-9589-9_5 – volume: 395 start-page: 497 issue: 10223 year: 2020 ident: 4222_CR13 publication-title: The lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 11 start-page: 312 issue: 1 year: 2021 ident: 4222_CR36 publication-title: Appl Sci doi: 10.3390/app11010312 – ident: 4222_CR7 – volume: 382 start-page: e41 issue: 18 year: 2020 ident: 4222_CR22 publication-title: New Engl J Med doi: 10.1056/NEJMp2006141 – volume: 121 start-page: 792 issue: 103 year: 2020 ident: 4222_CR20 publication-title: Comput Biol Med – reference: 36779081 - J Supercomput. 2023 Feb 7;:1-2 |
| SSID | ssj0004373 |
| Score | 2.4015772 |
| Snippet | This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10250 |
| SubjectTerms | 5G mobile communication Artificial intelligence Artificial neural networks Automation Cell phones Cloud computing Compilers Computer Science Coronaviruses COVID-19 Disease transmission Edge computing Genetic algorithms Image classification Image quality Interpreters Mobile computing Processor Architectures Programming Languages Task complexity |
| Title | A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19 |
| URI | https://link.springer.com/article/10.1007/s11227-021-04222-4 https://www.ncbi.nlm.nih.gov/pubmed/35079199 https://www.proquest.com/docview/2652610526 https://www.proquest.com/docview/2622957616 https://pubmed.ncbi.nlm.nih.gov/PMC8776397 |
| Volume | 78 |
| WOSCitedRecordID | wos000744931700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xwQMvjM-tsE1G4g0s1Y4d249TYRovBQmY-hY5TswqbcnUpvz93LlJqzJAgmefHX_c2Xe5u98BvJGh1FkQJa9RGeYqyoqX44CXYUAD15QR7bdxKjZhplM7m7nPfVLYcoh2H1yS6abeJrsJKQ2nkALCrZJc7cF9TWgzZKN_udxmQ2Zrv7JDw8hqJftUmd-Psfsc3dEx74ZK_uIvTc_Q-cH_LeAxPOrVTna25pMncK9unsLBUNKB9RL-DG7OWBzCtVgbGbIXZTkyf_29Xcy7qxtOz17FJtMpaxuWwhG5T0UXGf2ZYyENidNiqA0zv-paVImxQ1V3KeiroVEnny4_vufCPYdv5x--Ti54X5GBB2VUx4MNtRLWxpChZZmVpUUDI8iodczz2lsv8jzk2mexMuPgtHQhWhmdLaNC3SJmL2C_aZv6CJittImVy71TeFk7QpGJSlTeSSOpywjEcDBF6OHKqWrGdbEFWqb9LHA_i7SfhRrB202f2zVYx1-pj4fzLnrBXRYy12hTEgjOCF5vmlHkyI_im7pdEQ3VQDe5QJrDNXtsPpehfu2Ew-mbHcbZEBCc925LM79KsN4oG-RlHcG7gX220_rzKl7-G_kreCgpgSOFbB7DfrdY1SfwIPzo5svFKeyZmT1N4vQTJ9AXWA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLdgIMEL45tjA4LEG0S6pEmTPE63TZsYBYkx7a1q04adtLXorsffj51r73QbIMFznDQfdmLX9s8A76QvdeJFyWtUhrkKsuLl2ONl6NHANWVA-20ci02YLLPn5-5LnxQ2H6LdB5dkvKnXyW5CSsMppIBwqyRXt-GOojI7ZKN_PVtnQyZLv7JDw8hqJftUmd-Psfkc3dAxb4ZKXvOXxmfocPv_FvAQHvRqJ9tb8skjuFU3j2F7KOnAegl_Ald7LAzhWqwNDNmLshxZcfm9nU27iytOz17FJlnG2obFcERexKKLjP7MMR-HxGkx1IZZsehaVImxQ1V3MeiroVEnn8-O97lwT-Hb4cHp5Ij3FRm4V0Z13FtfK2Ft8AlalklZWjQwvAxahzStC1uINPWpLpJQmbF3WjofrAzOlgFPSofkGWw1bVO_AGYrbULl0sIpvKwdocgEJarCSSOpywjEcDC57-HKqWrGZb4GWqb9zHE_87ifuRrB-1WfH0uwjr9S7w7nnfeCO89lqtGmJBCcEbxdNaPIkR-laOp2QTRUA92kAmmeL9lj9bkE9WsnHE7fbDDOioDgvDdbmulFhPVG2SAv6wg-DOyzntafV_Hy38jfwL2j008n-clx9nEH7ktK5ojhm7uw1c0W9Su463920_nsdRSqX7GKGVQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIMQL42vj2IAg8QbRLmnaJo_TjRMTqEx8THur0rTZTtra6dbj78dO27sdAyTEc5w0H3Zi1_bPAG-kK-LIiYJXqAxz5WXJi7HDy9ChgZsWHu23cSg2kWaZPjkxR9ey-EO0--CS7HIaCKWpbvcuS7-3SnwTUqacwgsIw0pydRvuKLRkKKjry9fjVWZk1PmYDRpJOlayT5v5_RjrT9MNffNm2OQvvtPwJE03_38xD-FBr46y_Y5_HsGtqn4Mm0OpB9ZL_hO42Gd-CONijWfIdpT9yOz5aTOftWcXnJ7Dkk2yjDU1C2GK3IZijIz-2DEXhsQpMtSSmV20DarK2KGs2hAMVtOok8_HhwdcmKfwffr-2-QD7ys1cKdS1XKnXaWE1t5FaHFGRaHR8HDSx7FPkspqK5LEJbGNfJmOnYmlcV5Lb3ThFeocPtqCjbqpq2fAdBmnvjSJNQovcUPoMl6J0hqZSuoyAjEcUu56GHOqpnGerwCYaT9z3M887GeuRvB22eeyA_H4K_XucPZ5L9BXuUxitDUJHGcEr5fNKIrkX7F11SyIhmqjp4lAmu2OVZafi1DvNsLg9NM1JloSEMz3eks9Owtw3ygz5H0dwbuBlVbT-vMqnv8b-Su4d3QwzT8dZh934L6kHI8Q1bkLG-18Ub2Au-5HO7uavwzy9RMhciI4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+of+genetic+algorithm-based+CNN+on+multi-access+edge+computing+for+automated+detection+of+COVID-19&rft.jtitle=The+Journal+of+supercomputing&rft.au=Hassan%2C+Md+Rafiul&rft.au=Ismail%2C+Walaa+N&rft.au=Chowdhury%2C+Ahmad&rft.au=Hossain%2C+Sharara&rft.date=2022-05-01&rft.issn=0920-8542&rft.volume=78&rft.issue=7&rft.spage=10250&rft_id=info:doi/10.1007%2Fs11227-021-04222-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |