Near Lossless Compression for 3D Radiological Images Using Optimal Multilinear Singular Value Decomposition (3D-VOI-OMLSVD)

Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D image volume compression method based on optimal mul...

Full description

Saved in:
Bibliographic Details
Published in:Journal of digital imaging Vol. 36; no. 1; pp. 259 - 275
Main Authors: Boopathiraja, S., Kalavathi, P., Deoghare, S., Prasath, V. B. Surya
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.02.2023
Springer Nature B.V
Subjects:
ISSN:1618-727X, 0897-1889, 1618-727X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D image volume compression method based on optimal multilinear singular value decomposition called “3D-VOI-OMLSVD.” The proposed strategy first eliminates any blank 2D image slices from the 3D image volume and uses the selective bounding volume (SBV) to identify and extract the volume of Interest (VOI). Following this, the VOI is decomposed with an optimal multilinear singular value decomposition (OMLSVD) to obtain the corresponding core tensor, factor matrices, and singular values that are compressed with adaptive binary range coder (ABRC), integrated as an entropy encoder. The compressed file can be transferred or transmitted and then decompressed in order to reconstruct the original image. The resultant decompressed VOI is acquired by reversing the above process and then fusing it with the background, using the bound volume coordinates associated with the compressed 3D image. The proposed method performance was tested on a variety of 3D radiological images with different imaging modalities and dimensions using quantitative evaluation metrics such as the compression rate (CR), bit rate (BR), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). Furthermore, we also investigate the impact of VOI extraction on the model performance, before comparing it with two popular compression methods, namely JPEG and JPEG2000. Our proposed method, 3D-VOI-OMLSVD, displayed a high CR value, with a maximum of 37.31, and a low BR, with the lowest reported to be 0.21. The SSIM score was consistently high, with an average performance of 0.9868, while using < 1 second for decoding the image. We observe that with VOI extraction, the compression rate increases manifold, and bit rate drops significantly, and thus reduces the encoding and decoding time to a great extent. Compared to JPEG and JPEG2000, our method consistently performs better in terms of higher CR and lower BR. The results indicate that the proposed compression methodology performs consistently to create high-quality image compressions, and overall gives a better outcome when compared against two state-of-the-art and widely used methods, JPEG and JPEG2000.
AbstractList Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D image volume compression method based on optimal multilinear singular value decomposition called "3D-VOI-OMLSVD." The proposed strategy first eliminates any blank 2D image slices from the 3D image volume and uses the selective bounding volume (SBV) to identify and extract the volume of Interest (VOI). Following this, the VOI is decomposed with an optimal multilinear singular value decomposition (OMLSVD) to obtain the corresponding core tensor, factor matrices, and singular values that are compressed with adaptive binary range coder (ABRC), integrated as an entropy encoder. The compressed file can be transferred or transmitted and then decompressed in order to reconstruct the original image. The resultant decompressed VOI is acquired by reversing the above process and then fusing it with the background, using the bound volume coordinates associated with the compressed 3D image. The proposed method performance was tested on a variety of 3D radiological images with different imaging modalities and dimensions using quantitative evaluation metrics such as the compression rate (CR), bit rate (BR), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). Furthermore, we also investigate the impact of VOI extraction on the model performance, before comparing it with two popular compression methods, namely JPEG and JPEG2000. Our proposed method, 3D-VOI-OMLSVD, displayed a high CR value, with a maximum of 37.31, and a low BR, with the lowest reported to be 0.21. The SSIM score was consistently high, with an average performance of 0.9868, while using < 1 second for decoding the image. We observe that with VOI extraction, the compression rate increases manifold, and bit rate drops significantly, and thus reduces the encoding and decoding time to a great extent. Compared to JPEG and JPEG2000, our method consistently performs better in terms of higher CR and lower BR. The results indicate that the proposed compression methodology performs consistently to create high-quality image compressions, and overall gives a better outcome when compared against two state-of-the-art and widely used methods, JPEG and JPEG2000.Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D image volume compression method based on optimal multilinear singular value decomposition called "3D-VOI-OMLSVD." The proposed strategy first eliminates any blank 2D image slices from the 3D image volume and uses the selective bounding volume (SBV) to identify and extract the volume of Interest (VOI). Following this, the VOI is decomposed with an optimal multilinear singular value decomposition (OMLSVD) to obtain the corresponding core tensor, factor matrices, and singular values that are compressed with adaptive binary range coder (ABRC), integrated as an entropy encoder. The compressed file can be transferred or transmitted and then decompressed in order to reconstruct the original image. The resultant decompressed VOI is acquired by reversing the above process and then fusing it with the background, using the bound volume coordinates associated with the compressed 3D image. The proposed method performance was tested on a variety of 3D radiological images with different imaging modalities and dimensions using quantitative evaluation metrics such as the compression rate (CR), bit rate (BR), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). Furthermore, we also investigate the impact of VOI extraction on the model performance, before comparing it with two popular compression methods, namely JPEG and JPEG2000. Our proposed method, 3D-VOI-OMLSVD, displayed a high CR value, with a maximum of 37.31, and a low BR, with the lowest reported to be 0.21. The SSIM score was consistently high, with an average performance of 0.9868, while using < 1 second for decoding the image. We observe that with VOI extraction, the compression rate increases manifold, and bit rate drops significantly, and thus reduces the encoding and decoding time to a great extent. Compared to JPEG and JPEG2000, our method consistently performs better in terms of higher CR and lower BR. The results indicate that the proposed compression methodology performs consistently to create high-quality image compressions, and overall gives a better outcome when compared against two state-of-the-art and widely used methods, JPEG and JPEG2000.
Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D image volume compression method based on optimal multilinear singular value decomposition called “3D-VOI-OMLSVD.” The proposed strategy first eliminates any blank 2D image slices from the 3D image volume and uses the selective bounding volume (SBV) to identify and extract the volume of Interest (VOI). Following this, the VOI is decomposed with an optimal multilinear singular value decomposition (OMLSVD) to obtain the corresponding core tensor, factor matrices, and singular values that are compressed with adaptive binary range coder (ABRC), integrated as an entropy encoder. The compressed file can be transferred or transmitted and then decompressed in order to reconstruct the original image. The resultant decompressed VOI is acquired by reversing the above process and then fusing it with the background, using the bound volume coordinates associated with the compressed 3D image. The proposed method performance was tested on a variety of 3D radiological images with different imaging modalities and dimensions using quantitative evaluation metrics such as the compression rate (CR), bit rate (BR), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). Furthermore, we also investigate the impact of VOI extraction on the model performance, before comparing it with two popular compression methods, namely JPEG and JPEG2000. Our proposed method, 3D-VOI-OMLSVD, displayed a high CR value, with a maximum of 37.31, and a low BR, with the lowest reported to be 0.21. The SSIM score was consistently high, with an average performance of 0.9868, while using < 1 second for decoding the image. We observe that with VOI extraction, the compression rate increases manifold, and bit rate drops significantly, and thus reduces the encoding and decoding time to a great extent. Compared to JPEG and JPEG2000, our method consistently performs better in terms of higher CR and lower BR. The results indicate that the proposed compression methodology performs consistently to create high-quality image compressions, and overall gives a better outcome when compared against two state-of-the-art and widely used methods, JPEG and JPEG2000.
Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D image volume compression method based on optimal multilinear singular value decomposition called “3D-VOI-OMLSVD.” The proposed strategy first eliminates any blank 2D image slices from the 3D image volume and uses the selective bounding volume (SBV) to identify and extract the volume of Interest (VOI). Following this, the VOI is decomposed with an optimal multilinear singular value decomposition (OMLSVD) to obtain the corresponding core tensor, factor matrices, and singular values that are compressed with adaptive binary range coder (ABRC), integrated as an entropy encoder. The compressed file can be transferred or transmitted and then decompressed in order to reconstruct the original image. The resultant decompressed VOI is acquired by reversing the above process and then fusing it with the background, using the bound volume coordinates associated with the compressed 3D image. The proposed method performance was tested on a variety of 3D radiological images with different imaging modalities and dimensions using quantitative evaluation metrics such as the compression rate (CR), bit rate (BR), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). Furthermore, we also investigate the impact of VOI extraction on the model performance, before comparing it with two popular compression methods, namely JPEG and JPEG2000. Our proposed method, 3D-VOI-OMLSVD, displayed a high CR value, with a maximum of 37.31, and a low BR, with the lowest reported to be 0.21. The SSIM score was consistently high, with an average performance of 0.9868, while using < 1 second for decoding the image. We observe that with VOI extraction, the compression rate increases manifold, and bit rate drops significantly, and thus reduces the encoding and decoding time to a great extent. Compared to JPEG and JPEG2000, our method consistently performs better in terms of higher CR and lower BR. The results indicate that the proposed compression methodology performs consistently to create high-quality image compressions, and overall gives a better outcome when compared against two state-of-the-art and widely used methods, JPEG and JPEG2000.
Author Deoghare, S.
Boopathiraja, S.
Kalavathi, P.
Prasath, V. B. Surya
Author_xml – sequence: 1
  givenname: S.
  surname: Boopathiraja
  fullname: Boopathiraja, S.
  organization: Department of Computer Science and Applications, The Gandhigram Rural Institute (Deemed to Be University)
– sequence: 2
  givenname: P.
  surname: Kalavathi
  fullname: Kalavathi, P.
  organization: Department of Computer Science and Applications, The Gandhigram Rural Institute (Deemed to Be University)
– sequence: 3
  givenname: S.
  orcidid: 0000-0002-7556-288X
  surname: Deoghare
  fullname: Deoghare, S.
  email: deoghasp@mail.uc.edu
  organization: Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Department of Biomedical Informatics, College of Medicine, University of Cincinnati
– sequence: 4
  givenname: V. B. Surya
  surname: Prasath
  fullname: Prasath, V. B. Surya
  organization: Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Department of Pediatrics, College of Medicine, University of Cincinnati, Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36038701$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAUtFAr2i78AQ4oEpdyCPgjiZ0LUrULZaUtK1G64mY53pfgyrEXO0FC_HmcbltKDz35yW9mPOM5QQfOO0DoFcHvCMb8fSSYcpFjSnOMK8Fz8Qwdk4qInFP-_eDBfIROYrzGmPCSF8_REaswExyTY_TnC6iQrXyMFmLM5r7fhTQY77LWh4wtsq9qa7z1ndHKZstedRCzq2hcl613g-nT5cVoB2ONm5Qu02K0adgoO0K2AJ0UfTTDpHjKFvlmvczXF6vLzeLtC3TYKhvh5e05Q1efPn6bf85X6_Pl_GyV64IXQ64pbkpghKmqBCiAt1pQqoqywWxb6pRJ1CVtFYNWcA4tporVVQ0NY822rYDN0Ie97m5sethqcENQVu5Cch9-S6-M_H_jzA_Z-V-yLiitC5EETm8Fgv85Qhxkb6IGa5UDP0ZJORa05GXyOENvHkGv_RhcipdQgtSUYc4T6vVDR_dW7npJALoH6JCqCdDeQwiWU_lyX75M5cub8uVkUzwiaTOo6edTKmOfprI9NaZ3XAfhn-0nWH8B7tTD_Q
CitedBy_id crossref_primary_10_1007_s10278_023_00800_5
crossref_primary_10_1371_journal_pone_0314944
crossref_primary_10_1007_s11227_025_07420_6
crossref_primary_10_1007_s10278_024_01353_x
Cites_doi 10.1007/978-1-4614-7657-3_19
10.1002/gamm.201310004
10.1109/TCSVT.2019.2910119
10.1504/IJBET.2021.113731
10.1053/j.semnuclmed.2018.11.010
10.1147/rd.282.0135
10.1109/MMUL.2017.38
10.1109/79.952804
10.1109/83.403419
10.1109/ICUMT.2010.5676657
10.12720/jcm.8.12.893-901
10.1109/30.125072
10.1016/0165-1684(94)90029-9
10.1016/j.matpr.2021.01.676
10.1007/BF02289464
10.1109/TCSVT.2006.883508
10.1109/76.889025
10.1137/07070111X
10.1007/BF02293599
10.1002/9780470238004
10.1137/S0895479896305696
10.1109/MSP.2013.2297439
10.1109/TMM.2013.2269315
10.1109/comsig.1997.629976
10.1109/JSTSP.2013.2269272
10.32628/cseit1952321
10.1007/978-3-319-39510-4_33
10.1016/0967-0661(94)90335-2
10.1109/TCSVT.2014.2372291
10.1109/TIP.2003.819861
10.1109/TIP.2015.2462089
10.1007/s11831-021-09602-w
10.1007/BF02310791
10.1137/06066518X
10.1016/0920-5489(93)90038-S
10.1007/BF02293984
10.1109/TASSP.1976.1162766
10.1118/1.4929559
10.1109/CBMS.2001.941749
10.1109/JBHI.2017.2660482
10.1007/978-3-319-14054-4_10
10.1109/78.852018
10.1049/iet-ipr.2020.0978
10.1016/j.crad.2014.09.017
10.1002/acm2.12960
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
Copyright Springer Nature B.V. Feb 2023
The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
– notice: Copyright Springer Nature B.V. Feb 2023
– notice: The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7SC
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K9.
KB0
L7M
LK8
L~C
L~D
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s10278-022-00687-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1618-727X
EndPage 275
ExternalDocumentID PMC9422948
36038701
10_1007_s10278_022_00687_8
Genre Journal Article
GrantInformation_xml – fundername: Cincinnati Children's Hospital Medical Center
  grantid: Advanced Research Council (ARC) Grants 2018–2022
  funderid: http://dx.doi.org/10.13039/100007172
– fundername: National Center for Advancing Translational Sciences
  grantid: U2CTR002818
  funderid: http://dx.doi.org/10.13039/100006108
– fundername: Council of Scientific & Industrial Research (CSIR)
  grantid: File Number: 25(0304)/19/EMR-II/; Human Resource Development Group; Government of India
– fundername: NCATS NIH HHS
  grantid: U2C TR002818
– fundername: ;
  grantid: Advanced Research Council (ARC) Grants 2018–2022
– fundername: ;
  grantid: U2CTR002818
– fundername: ;
  grantid: File Number: 25(0304)/19/EMR-II/; Human Resource Development Group; Government of India
GroupedDBID ---
-Y2
.4S
.86
.DC
.VR
04C
06C
06D
0R~
0VY
1N0
2.D
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
4.4
406
408
409
40D
40E
53G
5GY
5RE
5VS
67Z
6NX
6PF
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FW
8TC
8UJ
95-
95.
95~
96X
AABHQ
AAHNG
AAIAL
AAJKR
AAKDD
AAKPC
AANXM
AANZL
AAPKM
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADJJI
ADKNI
ADKPE
ADMLS
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DIK
DL5
DNIVK
DPUIP
DU5
EBD
EBS
ECT
EDO
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HYE
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
P2P
P62
P9S
PF0
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
QOK
QOR
QOS
R89
R9I
RNS
ROL
RPM
RPX
RRX
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAYXX
ACSTC
CITATION
PHGZM
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PQGLB
3V.
7QO
7SC
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-c20b5e313a65ee4e7fc822a45b03d5c1758952fa3ef877ef02a3969eb33bdf6e3
IEDL.DBID 7X7
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000847279100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1618-727X
0897-1889
IngestDate Tue Nov 04 01:59:54 EST 2025
Thu Sep 04 18:35:19 EDT 2025
Wed Nov 05 01:07:24 EST 2025
Mon Jul 21 06:05:00 EDT 2025
Sat Nov 29 08:02:49 EST 2025
Tue Nov 18 20:55:03 EST 2025
Thu Apr 10 07:48:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Multilinear singular value decomposition (MLSVD)
Selective bounding volume (SBV) method
Near lossless compression
Volume of interest (VOI)
Three-dimensional (3D) medical image
Adaptive binary range coder (ABRC)
Language English
License 2022. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-c20b5e313a65ee4e7fc822a45b03d5c1758952fa3ef877ef02a3969eb33bdf6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7556-288X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9422948
PMID 36038701
PQID 2781923077
PQPubID 34218
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9422948
proquest_miscellaneous_2708257531
proquest_journals_2781923077
pubmed_primary_36038701
crossref_primary_10_1007_s10278_022_00687_8
crossref_citationtrail_10_1007_s10278_022_00687_8
springer_journals_10_1007_s10278_022_00687_8
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationTitle Journal of digital imaging
PublicationTitleAbbrev J Digit Imaging
PublicationTitleAlternate J Digit Imaging
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References P Comon (687_CR29) 1994; 36
P Kalavathi (687_CR12) 2017; 13
B Subramanian (687_CR15) 2021; 22
Q Yu (687_CR45) 2015; 24
Z Wang (687_CR49) 2004; 13
E Belyaev (687_CR11) 2013; 15
687_CR50
687_CR52
687_CR55
687_CR54
L De Lathauwer (687_CR31) 2000; 21
LR Tucker (687_CR35) 1966; 31
TG Kolda (687_CR27) 2009; 51
687_CR17
E Belyaev (687_CR43) 2013; 7
687_CR16
S Ma (687_CR19) 2020; 30
S Boopathiraja (687_CR14) 2019; 5
A Kapteyn (687_CR37) 1986; 51
LR Tucker (687_CR34) 1963; 15
L Grasedyck (687_CR21) 2013; 36
MJ Yaffe (687_CR3) 2019; 49
687_CR22
W Jorritsma (687_CR5) 2015; 70
BJ Kim (687_CR9) 2000; 10
687_CR26
687_CR18
AA Abdulla (687_CR4) 2020; 14
S Boopathiraja (687_CR13) 2021; 35
G Langdon (687_CR40) 1984; 28
A Cichocki (687_CR24) 2015; 32
PM Kroonenberg (687_CR36) 1980; 45
G Wang (687_CR2) 2015; 42
V De Silva (687_CR20) 2008; 30
687_CR1
ND Sidiropoulos (687_CR30) 2000; 48
687_CR8
687_CR6
JD Carroll (687_CR25) 1970; 35
J-F Yang (687_CR33) 1995; 4
V Bhatt (687_CR28) 2021; 46
A Skodras (687_CR51) 2001; 18
C Nikias (687_CR23) 1994; 2
E Belyaev (687_CR7) 2010; 1
687_CR42
687_CR44
HC Andrews (687_CR32) 1976; 24
687_CR46
687_CR48
687_CR47
I Sebestyen (687_CR39) 1993; 15
G Hudson (687_CR53) 2017; 24
R Osorio (687_CR41) 2006; 16
E Belyaev (687_CR10) 2013; 8
O Vasilescu (687_CR38) 2002; 2350
References_xml – ident: 687_CR47
  doi: 10.1007/978-1-4614-7657-3_19
– volume: 36
  start-page: 53
  issue: 1
  year: 2013
  ident: 687_CR21
  publication-title: GAMM Mitteilungen
  doi: 10.1002/gamm.201310004
– volume: 30
  start-page: 1683
  issue: 6
  year: 2020
  ident: 687_CR19
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2910119
– volume: 35
  start-page: 191
  issue: 3
  year: 2021
  ident: 687_CR13
  publication-title: Int. J. Biomed. Eng. Technol.
  doi: 10.1504/IJBET.2021.113731
– volume: 49
  start-page: 94
  issue: 2
  year: 2019
  ident: 687_CR3
  publication-title: Semin. Nucl. Med.
  doi: 10.1053/j.semnuclmed.2018.11.010
– volume: 28
  start-page: 135
  issue: 2
  year: 1984
  ident: 687_CR40
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.282.0135
– ident: 687_CR48
– volume: 24
  start-page: 96
  issue: 2
  year: 2017
  ident: 687_CR53
  publication-title: IEEE Multimed.
  doi: 10.1109/MMUL.2017.38
– volume: 18
  start-page: 36
  issue: 5
  year: 2001
  ident: 687_CR51
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.952804
– volume: 4
  start-page: 1141
  issue: 8
  year: 1995
  ident: 687_CR33
  publication-title: IEEE Trans. image Process.
  doi: 10.1109/83.403419
– volume: 1
  start-page: 61
  issue: 2
  year: 2010
  ident: 687_CR7
  publication-title: International Congress on Ultra Modern Telecommunications and Control Systems
  doi: 10.1109/ICUMT.2010.5676657
– volume: 8
  start-page: 893
  issue: 12
  year: 2013
  ident: 687_CR10
  publication-title: J. Commun.
  doi: 10.12720/jcm.8.12.893-901
– ident: 687_CR50
  doi: 10.1109/30.125072
– volume: 36
  start-page: 287
  issue: 3
  year: 1994
  ident: 687_CR29
  publication-title: Signal Processing
  doi: 10.1016/0165-1684(94)90029-9
– ident: 687_CR42
– volume: 46
  start-page: 10787
  year: 2021
  ident: 687_CR28
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.01.676
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  ident: 687_CR35
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– ident: 687_CR26
– volume: 16
  start-page: 1376
  issue: 11
  year: 2006
  ident: 687_CR41
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2006.883508
– volume: 10
  start-page: 1374
  issue: 8
  year: 2000
  ident: 687_CR9
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/76.889025
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 687_CR27
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 45
  start-page: 69
  issue: 1
  year: 1980
  ident: 687_CR36
  publication-title: Psychometrika
  doi: 10.1007/BF02293599
– ident: 687_CR22
  doi: 10.1002/9780470238004
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  ident: 687_CR31
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume: 32
  start-page: 145
  issue: 2
  year: 2015
  ident: 687_CR24
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2297439
– volume: 15
  start-page: 3
  issue: 122–137
  year: 1963
  ident: 687_CR34
  publication-title: Probl. Meas. Chang.
– ident: 687_CR1
– volume: 15
  start-page: 1786
  issue: 8
  year: 2013
  ident: 687_CR11
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2013.2269315
– ident: 687_CR8
  doi: 10.1109/comsig.1997.629976
– volume: 7
  start-page: 1053
  issue: 6
  year: 2013
  ident: 687_CR43
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2013.2269272
– volume: 5
  start-page: 1203
  issue: 2
  year: 2019
  ident: 687_CR14
  publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.
  doi: 10.32628/cseit1952321
– ident: 687_CR54
  doi: 10.1007/978-3-319-39510-4_33
– volume: 2
  start-page: 367
  issue: 2
  year: 1994
  ident: 687_CR23
  publication-title: Control Eng. Pr.
  doi: 10.1016/0967-0661(94)90335-2
– ident: 687_CR44
  doi: 10.1109/TCSVT.2014.2372291
– ident: 687_CR46
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 687_CR49
  publication-title: IEEE Trans. image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 24
  start-page: 4225
  issue: 11
  year: 2015
  ident: 687_CR45
  publication-title: IEEE Trans. image Process.
  doi: 10.1109/TIP.2015.2462089
– ident: 687_CR16
  doi: 10.1007/s11831-021-09602-w
– ident: 687_CR52
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  ident: 687_CR25
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 30
  start-page: 1084
  issue: 3
  year: 2008
  ident: 687_CR20
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/06066518X
– volume: 2350
  start-page: 447
  year: 2002
  ident: 687_CR38
  publication-title: European conference on computer vision
– volume: 15
  start-page: 365
  issue: 4
  year: 1993
  ident: 687_CR39
  publication-title: Comput. Stand. Interfaces
  doi: 10.1016/0920-5489(93)90038-S
– volume: 51
  start-page: 269
  issue: 2
  year: 1986
  ident: 687_CR37
  publication-title: Psychometrika
  doi: 10.1007/BF02293984
– volume: 24
  start-page: 26
  issue: 1
  year: 1976
  ident: 687_CR32
  publication-title: IEEE Trans. Acoust.
  doi: 10.1109/TASSP.1976.1162766
– volume: 13
  start-page: 87
  issue: 5
  year: 2017
  ident: 687_CR12
  publication-title: Glob J Pure Appl Math
– volume: 42
  start-page: 5879
  issue: 10
  year: 2015
  ident: 687_CR2
  publication-title: Medical Physics
  doi: 10.1118/1.4929559
– ident: 687_CR6
  doi: 10.1109/CBMS.2001.941749
– ident: 687_CR17
  doi: 10.1109/JBHI.2017.2660482
– ident: 687_CR18
  doi: 10.1007/978-3-319-14054-4_10
– volume: 48
  start-page: 2377
  issue: 8
  year: 2000
  ident: 687_CR30
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.852018
– volume: 14
  start-page: 4435
  issue: 17
  year: 2020
  ident: 687_CR4
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2020.0978
– ident: 687_CR55
– volume: 70
  start-page: 115
  issue: 2
  year: 2015
  ident: 687_CR5
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2014.09.017
– volume: 22
  start-page: 191
  issue: 8
  year: 2021
  ident: 687_CR15
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1002/acm2.12960
SSID ssj0017574
Score 1.9809476
Snippet Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for...
Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 259
SubjectTerms Algorithms
Coders
Compression
Data Compression - methods
Decomposition
Decompression
Entropy
Humans
Image acquisition
Image compression
Image processing
Image quality
Image reconstruction
Imaging
Imaging, Three-Dimensional - methods
Medicine
Medicine & Public Health
Original Paper
Radiography
Radiology
Signal to noise ratio
Singular value decomposition
Teleradiology
Tensors
Tomography, X-Ray Computed - methods
Title Near Lossless Compression for 3D Radiological Images Using Optimal Multilinear Singular Value Decomposition (3D-VOI-OMLSVD)
URI https://link.springer.com/article/10.1007/s10278-022-00687-8
https://www.ncbi.nlm.nih.gov/pubmed/36038701
https://www.proquest.com/docview/2781923077
https://www.proquest.com/docview/2708257531
https://pubmed.ncbi.nlm.nih.gov/PMC9422948
Volume 36
WOSCitedRecordID wos000847279100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Nursing & Allied Health Database
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: 7RV
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdgQ4gL43vdRmUkDiCISGwntk8I6CYmbW3VQVXtEjmOo1Xq0rG2u_DP817ipCoTu3DJIbYTW-_D7_n9_B4hb4Ww0kYmDrTR4KBkLAkyngMvCzBejRAus1lVbEL2-2oy0UN_4LbwsMpGJ1aKOp9bPCP_xCSm7gKOlJ-vfgVYNQqjq76Exn2yjWWzkc_lpHW4YGesszArLYNIKe0vzfircwxzy4IrhrckQFNvbky3rM3boMm_IqfVhnS0879LeUIee1OUfql55ym558pn5OGpD7Y_J7_7IAX0BCY7A3VIUXPUoNmSgqVLeY-OTD5tlCc9vgTVtKAVBoEOQBNdwsvqfi9asvClM2hA0Csdm9nK0Z5DOLvHjNF3vBeMB8fB4PTkbNx7_4L8PDr88e174Gs1BFZIsQwsC7PY8YibJHZOOFlYMD2MiLOQ57EFUigds8JwVygpXREyw3WiwZXnWV4kjr8kW-W8dLuERmAjysxy5QTHuKyCvnGeFM7GPMyN6pCoIVRqfSJzrKcxS9cpmJG4KRA3rYibwpgP7ZirOo3Hnb0PGsKlXqQX6ZpqHfKmbQZhxAiLKd18hX3Q4wYPMOqQVzW7tL_jCSIFQmiRG4zUdsBE35st5fSiSvitBWNawLQ-Niy3nta_V7F39yr2ySMGBluNQD8gW8vrlXtNHtib5XRx3QVBGo27lThVT9Ul218P-8NRF9GxQ3gO4_M_ldooPQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASOBBIKIxHbi-IAQYqm66j4qWla9BcdxxErbbOnughD_id_ITF6rpaK3HrjGTmInX-aR-WYG4JmUVtnAhJ42Gh2UlEdeKjLEskTj1UjpUpuWzSbUcBgfHuq9Dfjd5MIQrbKRiaWgzmaW_pG_4YpKdyEi1bvjbx51jaLoatNCo4LFrvv5A122-dteF9_vc863Px582PHqrgKelUouPMv9NHQiECYKnZNO5RaVpJFh6osstKhOYx3y3AiXx0q53OdG6Eij0ynSLI-cwOtegItoRnC_pArutVELFVZVn2OtvCCOdZ2kU6fqcapli64fZWWgZlhXhKes29Mkzb8itaUC3L7-vz26G3CtNrXZ--rbuAkbrrgFlwc1meA2_BrimlgfH84UxT0jyViRgguGljwTXfbJZJNGObDeEYreOSs5FmyEkvYID5b5y2Sp45X2cYBIvWxspkvHuo7o-jUnjr0QXW886nmjQX9_3H15Bz6fy9bvwmYxK9x9YAHawCq1InZSUNw5xrlhFuXOhsLPTNyBoAFGYutC7dQvZJqsSkwTmBIEU1KCKcFzXrXnHFdlSs6cvdUAJalF1jxZoaQDT9thFDYUQTKFmy1pDv1RQA836MC9Cp7t7URETAgfR9QacNsJVMh8faSYfC0LmmvJuZa4rNcNxFfL-vcuHpy9iydwZedg0E_6veHuQ7jK0Tit2PZbsLk4WbpHcMl-X0zmJ4_Lj5jBl_OG_h928YCt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZp44X4pDDASSCCIlthOnDwgBGQV1bq02ka1t-A4jqjUpWNtQYh_xq_jOHFSlYm97YHX2Ens5Mu55HznHIDnnCuhPOk7kYzQQclo4GQsRyxzNF4l5zpTWdVsQiRJeHwcjTbgd5MLY2iVjUysBHU-U-Yf-Q4VpnQXIlLsFJYWMYp7706_OaaDlIm0Nu00aojs6Z8_0H2bv-3H-K5fUNrbPfr4ybEdBhzFBV84irqZr5nHZOBrzbUoFCpMyf3MZbmvULWGkU8LyXQRCqELl0oWBRE6oCzLi0AzvO4V2BQMnZ4ObH7YTUYHbQxD-HUN6DASjheGkU3ZsYl71FS2RUfQ5GignlhXi-ds3fOUzb_itpU67N34nx_kTbhujXDyvv5qbsGGLm_D1r6lGdyBXwmuiQzwQU1RERAjM2u6cEnQxicsJgcynzRqg_RPUCjPScW-IEOUwSd4sMpsNjY8XukQBwzdl4zldKlJrA2R37LlyEsWO-Nh3xnuDw7H8au78PlStn4POuWs1A-AeGgdi0yxUHNmItIhzvXzoNDKZ24uwy54DUhSZUu4m04i03RVfNoAK0VgpRWwUjzndXvOaV3A5MLZ2w1oUivM5ukKMV141g6jGDKxJVnq2dLMMf8a0Pf1unC_hmp7OxYYjoSLI2INxO0EU-J8faScfK1KnUec0ojjst40cF8t69-7eHjxLp7CFiI-HfSTvUdwjaLVWtPwt6GzOFvqx3BVfV9M5mdP7BdN4MtlY_8PEiqKxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+Lossless+Compression+for+3D+Radiological+Images+Using+Optimal+Multilinear+Singular+Value+Decomposition+%283D-VOI-OMLSVD%29&rft.jtitle=Journal+of+digital+imaging&rft.au=Boopathiraja%2C+S.&rft.au=Kalavathi%2C+P.&rft.au=Deoghare%2C+S.&rft.au=Prasath%2C+V.+B.+Surya&rft.date=2023-02-01&rft.pub=Springer+International+Publishing&rft.issn=0897-1889&rft.eissn=1618-727X&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1007%2Fs10278-022-00687-8&rft_id=info%3Apmid%2F36038701&rft.externalDocID=PMC9422948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-727X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-727X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-727X&client=summon