Gut microbiota mediated the toxicity of high concentration of dietary nitrite in C57BL/6 mice

Growing evidence indicates that exposure to high levels of nitrite for a prolonged time has adverse health effects. Although gut microbiota is responsible for the transformation of nitrite in the gut, the evidence concerning whether gut microbiota mediates the toxicity of nitrite is still lacking. T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ecotoxicology and environmental safety Ročník 231; s. 113224
Hlavní autori: Xu, Jing, Wang, Mingzhu, Liu, Qiuping, Lin, Xiaoying, Pu, Kefeng, He, Zhixing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier Inc 01.02.2022
Elsevier
Predmet:
ISSN:0147-6513, 1090-2414, 1090-2414
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Growing evidence indicates that exposure to high levels of nitrite for a prolonged time has adverse health effects. Although gut microbiota is responsible for the transformation of nitrite in the gut, the evidence concerning whether gut microbiota mediates the toxicity of nitrite is still lacking. The present study addressed the long-term effects of dietary nitrite on male C57BL/6 mice and employed fecal microbiota transplantation (FMT) to reveal whether gut microbiota mediated the effects of nitrite. Furthermore, the effect of azoxymethane (AOM) on gut microbiota was detected for mice drinking normal or nitrite-containing water. High nitrite had toxic effects on C57BL/6 mice. Meanwhile, high nitrite induced skin lesions in mice, accompanied with increased serum ALT, colon IL-6, TNF-α, and MDA levels, together with decreased serum Cr, colon sIgA, and T-AOC levels. After fecal microbiota was transplanted into the normal mice, the nitrite-regulated gut microbiota could also induce skin lesions, coupled with reduced serum Cr, and increased colon MDA. The high dose of nitrite caused the upregulations of Alistipes, Prevotella, and Ruminococcus, which could be transplanted into normal mice through FMT. Inversely, gut microbiota from normal mice reduced the effects of nitrite on serum ALT and Cr, together with colon sIgA and MDA. Gut microbiota from normal mice could also upregulate metabolic genes and downregulate stress genes in the nitrite-treated mice. It might due to the upregulation of Akkermansia and Parabacteroides caused by FMT from normal water-treated mice to nitrite-treated mice. In addition, AOM exhibited to be more toxic to the colon in the nitrite-treated mice in comparison with normal water-treated mice, and it might be due to the expression of Hspa1a and Hspa1b in the colon. Interestingly, gut microbiota was more influenced by AOM in the normal water-treated mice than the nitrite-treated mice. Overall, these data demonstrated that gut microbiota mediated the toxicity of a high concentration of dietary nitrite. [Display omitted] •Long term of nitrite (0.3 g/L NaNO2 in drinking water) caused toxicity on C57BL/6 mice.•The toxicity of nitrite could be alleviated by the transplantation of fecal microbiota from normal C57BL/6 mice.•The gut microbiota regulated by nitrite could induced the toxicity as the nitrite in C57BL/6 mice.•Azoxymethane (AOM) exhibited to be more toxic to colon in the nitrite-treated mice than in the normal water-treated mice.
AbstractList Growing evidence indicates that exposure to high levels of nitrite for a prolonged time has adverse health effects. Although gut microbiota is responsible for the transformation of nitrite in the gut, the evidence concerning whether gut microbiota mediates the toxicity of nitrite is still lacking. The present study addressed the long-term effects of dietary nitrite on male C57BL/6 mice and employed fecal microbiota transplantation (FMT) to reveal whether gut microbiota mediated the effects of nitrite. Furthermore, the effect of azoxymethane (AOM) on gut microbiota was detected for mice drinking normal or nitrite-containing water. High nitrite had toxic effects on C57BL/6 mice. Meanwhile, high nitrite induced skin lesions in mice, accompanied with increased serum ALT, colon IL-6, TNF-α, and MDA levels, together with decreased serum Cr, colon sIgA, and T-AOC levels. After fecal microbiota was transplanted into the normal mice, the nitrite-regulated gut microbiota could also induce skin lesions, coupled with reduced serum Cr, and increased colon MDA. The high dose of nitrite caused the upregulations of Alistipes, Prevotella, and Ruminococcus, which could be transplanted into normal mice through FMT. Inversely, gut microbiota from normal mice reduced the effects of nitrite on serum ALT and Cr, together with colon sIgA and MDA. Gut microbiota from normal mice could also upregulate metabolic genes and downregulate stress genes in the nitrite-treated mice. It might due to the upregulation of Akkermansia and Parabacteroides caused by FMT from normal water-treated mice to nitrite-treated mice. In addition, AOM exhibited to be more toxic to the colon in the nitrite-treated mice in comparison with normal water-treated mice, and it might be due to the expression of Hspa1a and Hspa1b in the colon. Interestingly, gut microbiota was more influenced by AOM in the normal water-treated mice than the nitrite-treated mice. Overall, these data demonstrated that gut microbiota mediated the toxicity of a high concentration of dietary nitrite.
Growing evidence indicates that exposure to high levels of nitrite for a prolonged time has adverse health effects. Although gut microbiota is responsible for the transformation of nitrite in the gut, the evidence concerning whether gut microbiota mediates the toxicity of nitrite is still lacking. The present study addressed the long-term effects of dietary nitrite on male C57BL/6 mice and employed fecal microbiota transplantation (FMT) to reveal whether gut microbiota mediated the effects of nitrite. Furthermore, the effect of azoxymethane (AOM) on gut microbiota was detected for mice drinking normal or nitrite-containing water. High nitrite had toxic effects on C57BL/6 mice. Meanwhile, high nitrite induced skin lesions in mice, accompanied with increased serum ALT, colon IL-6, TNF-α, and MDA levels, together with decreased serum Cr, colon sIgA, and T-AOC levels. After fecal microbiota was transplanted into the normal mice, the nitrite-regulated gut microbiota could also induce skin lesions, coupled with reduced serum Cr, and increased colon MDA. The high dose of nitrite caused the upregulations of Alistipes, Prevotella, and Ruminococcus, which could be transplanted into normal mice through FMT. Inversely, gut microbiota from normal mice reduced the effects of nitrite on serum ALT and Cr, together with colon sIgA and MDA. Gut microbiota from normal mice could also upregulate metabolic genes and downregulate stress genes in the nitrite-treated mice. It might due to the upregulation of Akkermansia and Parabacteroides caused by FMT from normal water-treated mice to nitrite-treated mice. In addition, AOM exhibited to be more toxic to the colon in the nitrite-treated mice in comparison with normal water-treated mice, and it might be due to the expression of Hspa1a and Hspa1b in the colon. Interestingly, gut microbiota was more influenced by AOM in the normal water-treated mice than the nitrite-treated mice. Overall, these data demonstrated that gut microbiota mediated the toxicity of a high concentration of dietary nitrite.Growing evidence indicates that exposure to high levels of nitrite for a prolonged time has adverse health effects. Although gut microbiota is responsible for the transformation of nitrite in the gut, the evidence concerning whether gut microbiota mediates the toxicity of nitrite is still lacking. The present study addressed the long-term effects of dietary nitrite on male C57BL/6 mice and employed fecal microbiota transplantation (FMT) to reveal whether gut microbiota mediated the effects of nitrite. Furthermore, the effect of azoxymethane (AOM) on gut microbiota was detected for mice drinking normal or nitrite-containing water. High nitrite had toxic effects on C57BL/6 mice. Meanwhile, high nitrite induced skin lesions in mice, accompanied with increased serum ALT, colon IL-6, TNF-α, and MDA levels, together with decreased serum Cr, colon sIgA, and T-AOC levels. After fecal microbiota was transplanted into the normal mice, the nitrite-regulated gut microbiota could also induce skin lesions, coupled with reduced serum Cr, and increased colon MDA. The high dose of nitrite caused the upregulations of Alistipes, Prevotella, and Ruminococcus, which could be transplanted into normal mice through FMT. Inversely, gut microbiota from normal mice reduced the effects of nitrite on serum ALT and Cr, together with colon sIgA and MDA. Gut microbiota from normal mice could also upregulate metabolic genes and downregulate stress genes in the nitrite-treated mice. It might due to the upregulation of Akkermansia and Parabacteroides caused by FMT from normal water-treated mice to nitrite-treated mice. In addition, AOM exhibited to be more toxic to the colon in the nitrite-treated mice in comparison with normal water-treated mice, and it might be due to the expression of Hspa1a and Hspa1b in the colon. Interestingly, gut microbiota was more influenced by AOM in the normal water-treated mice than the nitrite-treated mice. Overall, these data demonstrated that gut microbiota mediated the toxicity of a high concentration of dietary nitrite.
Growing evidence indicates that exposure to high levels of nitrite for a prolonged time has adverse health effects. Although gut microbiota is responsible for the transformation of nitrite in the gut, the evidence concerning whether gut microbiota mediates the toxicity of nitrite is still lacking. The present study addressed the long-term effects of dietary nitrite on male C57BL/6 mice and employed fecal microbiota transplantation (FMT) to reveal whether gut microbiota mediated the effects of nitrite. Furthermore, the effect of azoxymethane (AOM) on gut microbiota was detected for mice drinking normal or nitrite-containing water. High nitrite had toxic effects on C57BL/6 mice. Meanwhile, high nitrite induced skin lesions in mice, accompanied with increased serum ALT, colon IL-6, TNF-α, and MDA levels, together with decreased serum Cr, colon sIgA, and T-AOC levels. After fecal microbiota was transplanted into the normal mice, the nitrite-regulated gut microbiota could also induce skin lesions, coupled with reduced serum Cr, and increased colon MDA. The high dose of nitrite caused the upregulations of Alistipes, Prevotella, and Ruminococcus, which could be transplanted into normal mice through FMT. Inversely, gut microbiota from normal mice reduced the effects of nitrite on serum ALT and Cr, together with colon sIgA and MDA. Gut microbiota from normal mice could also upregulate metabolic genes and downregulate stress genes in the nitrite-treated mice. It might due to the upregulation of Akkermansia and Parabacteroides caused by FMT from normal water-treated mice to nitrite-treated mice. In addition, AOM exhibited to be more toxic to the colon in the nitrite-treated mice in comparison with normal water-treated mice, and it might be due to the expression of Hspa1a and Hspa1b in the colon. Interestingly, gut microbiota was more influenced by AOM in the normal water-treated mice than the nitrite-treated mice. Overall, these data demonstrated that gut microbiota mediated the toxicity of a high concentration of dietary nitrite. [Display omitted] •Long term of nitrite (0.3 g/L NaNO2 in drinking water) caused toxicity on C57BL/6 mice.•The toxicity of nitrite could be alleviated by the transplantation of fecal microbiota from normal C57BL/6 mice.•The gut microbiota regulated by nitrite could induced the toxicity as the nitrite in C57BL/6 mice.•Azoxymethane (AOM) exhibited to be more toxic to colon in the nitrite-treated mice than in the normal water-treated mice.
ArticleNumber 113224
Author Lin, Xiaoying
He, Zhixing
Xu, Jing
Pu, Kefeng
Liu, Qiuping
Wang, Mingzhu
Author_xml – sequence: 1
  givenname: Jing
  surname: Xu
  fullname: Xu, Jing
  organization: Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute, Zhejiang University School of Medicine, Hangzhou 310009, China
– sequence: 2
  givenname: Mingzhu
  surname: Wang
  fullname: Wang, Mingzhu
  organization: Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
– sequence: 3
  givenname: Qiuping
  surname: Liu
  fullname: Liu, Qiuping
  organization: Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
– sequence: 4
  givenname: Xiaoying
  surname: Lin
  fullname: Lin, Xiaoying
  organization: Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
– sequence: 5
  givenname: Kefeng
  surname: Pu
  fullname: Pu, Kefeng
  email: kfpu2011@sinano.ac.cn
  organization: Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
– sequence: 6
  givenname: Zhixing
  surname: He
  fullname: He, Zhixing
  email: hzx2015@zcmu.edu.cn
  organization: Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35074739$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEUxC1URNPCN0DIRy6b-r83HJAgoqVSJC5wRJZjv21etFkXr1PRb4-32_bAAU6WRjPzrN-ckZMhDUDIW86WnHFzsV9CSDDcLQUTYsm5FEK9IAvOVqwRiqsTsmBc2cZoLk_J2TjuGWOSaf2KnErNrLJytSA_r46FHjDktMVUPD1ARF8g0rIDWtJvDFjuaeroDm92NKQhwFCyL5iGSY0Ixed7OmDJWIDiQNfaft5cmKkUXpOXne9HePP4npMfl1--r782m29X1-tPmyYoq0qzhcijisCisUr5rQEeWiXbEAIIEyJnKurQQadZp73Yhgich8622q68By3PyfXcG5Pfu9uMh_oplzy6ByHlG-dzwdCDMythdeuNsh6UFKqFTnDLre5EleXU9X7uus3p1xHG4g44Buh7P0A6jk4YIYy2UppqffdoPW4ruOfDT3ir4cNsqHzHMUPnKs4HeJUh9o4zN23p9m7e0k1bunnLGlZ_hZ_6_xP7OMegAr9DyG4MCHW3iBlCqUTw3wV_AKpXuWw
CitedBy_id crossref_primary_10_1016_j_ecoenv_2022_114370
crossref_primary_10_1016_j_envint_2024_108422
crossref_primary_10_1016_j_envint_2024_108771
crossref_primary_10_1016_j_lwt_2024_116624
crossref_primary_10_1007_s10753_025_02347_9
crossref_primary_10_1016_j_clnu_2024_12_034
crossref_primary_10_1111_1750_3841_70065
crossref_primary_10_1016_j_foodres_2024_114157
crossref_primary_10_1186_s13568_023_01549_4
crossref_primary_10_3389_fnut_2024_1420358
crossref_primary_10_1080_0886022X_2024_2349136
crossref_primary_10_1016_j_fct_2022_113169
crossref_primary_10_1016_j_micpath_2024_107101
crossref_primary_10_1186_s12967_023_04119_1
crossref_primary_10_1016_j_fbio_2025_105903
crossref_primary_10_1016_j_foodres_2025_116287
crossref_primary_10_3390_molecules28020631
Cites_doi 10.1186/gb-2013-14-4-r36
10.1016/j.niox.2020.01.006
10.1016/S0140-6736(12)60409-7
10.1038/s41575-019-0209-8
10.3390/nu11112673
10.1016/j.niox.2012.03.010
10.1016/j.freeradbiomed.2011.11.011
10.1371/journal.pone.0119712
10.3389/fmicb.2017.01765
10.3920/BM2016.0009
10.1084/jem.20181939
10.1136/gutjnl-2011-301649
10.1016/j.freeradbiomed.2020.10.025
10.1093/carcin/bgaa018
10.1158/0008-5472.CAN-13-0827
10.1080/19440049.2018.1546906
10.3389/fimmu.2020.00906
10.2165/00139709-200322010-00005
10.2119/molmed.2012.00119
10.1136/gutjnl-2015-309990
10.1134/S2079057020010099
10.1124/pr.120.019240
10.1136/gutjnl-2017-315458
10.1016/j.tem.2019.10.001
10.36953/ECJ.2020.21304
10.4236/jct.2011.25080
10.1111/j.1751-7915.2011.00320.x
10.3390/nu12040935
10.1152/ajpendo.00360.2016
10.1186/gb-2011-12-6-r60
10.1016/j.cmet.2019.08.021
10.1161/HYPERTENSIONAHA.120.14759
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nrcardio.2017.224
10.1073/pnas.1904099116
10.1002/ijc.29901
10.14336/AD.2017.1207
10.1016/j.freeradbiomed.2015.07.149
10.1111/imm.12760
10.1016/j.niox.2014.11.009
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.ecoenv.2022.113224
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_692758a647ae43248ef217175f258a35
35074739
10_1016_j_ecoenv_2022_113224
S0147651322000641
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
H~9
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZU3
ZXP
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AEGFY
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c474t-bed1d4de0d6744ab6e1c8438ccce26cd104d5cfef50f5a2bcde11cf78579aae53
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779432500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0147-6513
1090-2414
IngestDate Fri Oct 03 12:28:51 EDT 2025
Thu Oct 02 11:51:11 EDT 2025
Mon Jul 21 05:56:33 EDT 2025
Sat Nov 29 07:25:47 EST 2025
Tue Nov 18 22:18:44 EST 2025
Fri Feb 23 02:39:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gut microbiota
Azoxymethane
Nitrite
Toxicity
Fecal microbiota transplantation
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-bed1d4de0d6744ab6e1c8438ccce26cd104d5cfef50f5a2bcde11cf78579aae53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/692758a647ae43248ef217175f258a35
PMID 35074739
PQID 2622657336
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_692758a647ae43248ef217175f258a35
proquest_miscellaneous_2622657336
pubmed_primary_35074739
crossref_citationtrail_10_1016_j_ecoenv_2022_113224
crossref_primary_10_1016_j_ecoenv_2022_113224
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2022_113224
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-Feb
20220201
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Farah, Michel, Balligand (bib10) 2018; 15
Jain, Chaudhary, Varshney, Janmeda (bib15) 2020; 21
Ohtake, Nakano, Ehara, Sonoda, Ito, Uchida, Kobayashi (bib31) 2015; 44
Wong, Yu (bib40) 2019; 16
Liu, Croft, Hodgson, Mori, Ward (bib23) 2020; 96
Kapil, Khambata, Jones, Rathod, Primus, Massimo, Fukuto, Ahluwalia (bib17) 2020; 72
Marchesi, Adams, Fava, Hermes, Hirschfield, Hold, Quraishi, Kinross, Smidt, Tuohy (bib27) 2016; 65
Wu, Lin, Chang, Lin, Martel, Ko, Ojcius, Lu, Young, Lai (bib41) 2019; 68
Benjamini, Hochberg (bib2) 1995; 57
Gómez-Gallego, Pohl, Salminen, De Vos, Kneifel (bib11) 2016; 7
Mazumder (bib28) 2008; 128
Cani, de Vos (bib4) 2017; 8
Parvizishad, Dalvand, Mahvi, Goodarzi (bib33) 2017; 6
Vermeiren, Van de Wiele, Van Nieuwenhuyse, Boeckx, Verstraete, Boon (bib39) 2012; 5
Delmastro-Greenwood, Hughan, Vitturi, Salvatore, Grimes, Potti, Shiva, Schopfer, Gladwin, Freeman (bib9) 2015; 89
Inoue‐Choi, Sinha, Gierach, Ward (bib14) 2016; 138
Schindewolf, Lindhoff-Last, Ludwig, Boehncke (bib35) 2012; 380
Chen, Henderson, Petriello, Romano, Gearing, Miao, Schell, Sandoval-Espinola, Tao, Sha (bib6) 2019; 30
Koh, Kane, Wu, Crott (bib20) 2020; 41
Crowe, Elliott, Green (bib7) 2019; 11
Tiso, Schechter (bib38) 2015; 10
Zhu, Miyata, Winter, Arenales, Hughes, Spiga, Kim, Sifuentes-Dominguez, Starokadomskyy, Gopal (bib44) 2019; 216
De Robertis, Massi, Poeta, Carotti, Morini, Cecchetelli, Signori, Fazio (bib8) 2011
Mansilla, Montalban, Espejo (bib26) 2012; 18
Carlström, Moretti, Weitzberg, Lundberg (bib5) 2020
Bahadoran, Mirmiran, Ghasemi (bib1) 2020; 31
Segata, Izard, Waldron, Gevers, Miropolsky, Garrett, Huttenhower (bib36) 2011; 12
Kenneth, Chao, Min (bib18) 2011; 2
Ohtake, Ehara, Chiba, Nakano, Sonoda, Ito, Uchida, Kobayashi (bib30) 2017; 312
Brunt, Gioscia-Ryan, Casso, VanDongen, Ziemba, Sapinsley, Richey, Zigler, Neilson, Davy (bib3) 2020; 76
Kurashova, Madaeva, Kolesnikova (bib21) 2020; 10
Ma, Hu, Feng, Wang (bib25) 2018; 9
Jiang, Tang, Garg, Parthasarathy, Torregrossa, Hord, Bryan (bib16) 2012; 26
Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (bib19) 2013; 14
Henke, M.T., Kenny, D.J., Cassilly, C.D., Vlamakis, H., Xavier, R.J., Clardy, J., 2019. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA, vol. 116(26), pp. 12672–7.
Lundberg, Weitzberg (bib24) 2013; 62
Zhang, Pan, Su, Fu, Miao, Yan, Wang, Yang, Wang, Sun (bib43) 2018; 35
Larsen (bib22) 2017; 151
Rocha, Gago, Barbosa, Lundberg, Radi, Laranjinha (bib34) 2012; 52
Sheweita, El-Bendery, Mostafa (bib37) 2014
Zhan, Chen, Sadler, Wang, Poe, Núñez, Eaton, Chen (bib42) 2013; 73
Hiippala, Kainulainen, Suutarinen, Heini, Bowers, Jasso-Selles, Lemmer, Valentine, Barnes, Engelthaler (bib13) 2020; 12
Mensinga, Speijers, Meulenbelt (bib29) 2003; 22
Parker, Wearsch, Veloo, Rodriguez-Palacios (bib32) 2020; 11
Delmastro-Greenwood (10.1016/j.ecoenv.2022.113224_bib9) 2015; 89
Rocha (10.1016/j.ecoenv.2022.113224_bib34) 2012; 52
Wu (10.1016/j.ecoenv.2022.113224_bib41) 2019; 68
Chen (10.1016/j.ecoenv.2022.113224_bib6) 2019; 30
Kim (10.1016/j.ecoenv.2022.113224_bib19) 2013; 14
Mansilla (10.1016/j.ecoenv.2022.113224_bib26) 2012; 18
Marchesi (10.1016/j.ecoenv.2022.113224_bib27) 2016; 65
Liu (10.1016/j.ecoenv.2022.113224_bib23) 2020; 96
Tiso (10.1016/j.ecoenv.2022.113224_bib38) 2015; 10
Mazumder (10.1016/j.ecoenv.2022.113224_bib28) 2008; 128
Zhang (10.1016/j.ecoenv.2022.113224_bib43) 2018; 35
10.1016/j.ecoenv.2022.113224_bib12
Cani (10.1016/j.ecoenv.2022.113224_bib4) 2017; 8
Hiippala (10.1016/j.ecoenv.2022.113224_bib13) 2020; 12
Larsen (10.1016/j.ecoenv.2022.113224_bib22) 2017; 151
Crowe (10.1016/j.ecoenv.2022.113224_bib7) 2019; 11
Inoue‐Choi (10.1016/j.ecoenv.2022.113224_bib14) 2016; 138
Kapil (10.1016/j.ecoenv.2022.113224_bib17) 2020; 72
Parker (10.1016/j.ecoenv.2022.113224_bib32) 2020; 11
Bahadoran (10.1016/j.ecoenv.2022.113224_bib1) 2020; 31
Lundberg (10.1016/j.ecoenv.2022.113224_bib24) 2013; 62
Benjamini (10.1016/j.ecoenv.2022.113224_bib2) 1995; 57
Ohtake (10.1016/j.ecoenv.2022.113224_bib30) 2017; 312
Ma (10.1016/j.ecoenv.2022.113224_bib25) 2018; 9
Wong (10.1016/j.ecoenv.2022.113224_bib40) 2019; 16
De Robertis (10.1016/j.ecoenv.2022.113224_bib8) 2011
Kurashova (10.1016/j.ecoenv.2022.113224_bib21) 2020; 10
Zhan (10.1016/j.ecoenv.2022.113224_bib42) 2013; 73
Zhu (10.1016/j.ecoenv.2022.113224_bib44) 2019; 216
Farah (10.1016/j.ecoenv.2022.113224_bib10) 2018; 15
Parvizishad (10.1016/j.ecoenv.2022.113224_bib33) 2017; 6
Kenneth (10.1016/j.ecoenv.2022.113224_bib18) 2011; 2
Gómez-Gallego (10.1016/j.ecoenv.2022.113224_bib11) 2016; 7
Mensinga (10.1016/j.ecoenv.2022.113224_bib29) 2003; 22
Koh (10.1016/j.ecoenv.2022.113224_bib20) 2020; 41
Jain (10.1016/j.ecoenv.2022.113224_bib15) 2020; 21
Carlström (10.1016/j.ecoenv.2022.113224_bib5) 2020
Jiang (10.1016/j.ecoenv.2022.113224_bib16) 2012; 26
Brunt (10.1016/j.ecoenv.2022.113224_bib3) 2020; 76
Ohtake (10.1016/j.ecoenv.2022.113224_bib31) 2015; 44
Segata (10.1016/j.ecoenv.2022.113224_bib36) 2011; 12
Schindewolf (10.1016/j.ecoenv.2022.113224_bib35) 2012; 380
Sheweita (10.1016/j.ecoenv.2022.113224_bib37) 2014
Vermeiren (10.1016/j.ecoenv.2022.113224_bib39) 2012; 5
References_xml – start-page: 10
  year: 2011
  ident: bib8
  article-title: The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies
  publication-title: J. Carcinog.
– volume: 41
  start-page: 909
  year: 2020
  end-page: 917
  ident: bib20
  article-title: Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated A/J mice
  publication-title: Carcinogenesis
– volume: 8
  start-page: 1765
  year: 2017
  ident: bib4
  article-title: Next-generation beneficial microbes: the case of Akkermansia muciniphila
  publication-title: Front. Microbiol.
– volume: 52
  start-page: 693
  year: 2012
  end-page: 698
  ident: bib34
  article-title: Intragastric nitration by dietary nitrite: implications for modulation of protein and lipid signaling
  publication-title: Free Radic. Biol. Med.
– volume: 11
  start-page: 906
  year: 2020
  ident: bib32
  article-title: The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health
  publication-title: Front. Immunol.
– volume: 14
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib19
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
– volume: 15
  start-page: 292
  year: 2018
  end-page: 316
  ident: bib10
  article-title: Nitric oxide signalling in cardiovascular health and disease
  publication-title: Nat. Rev. Cardiol.
– volume: 21
  start-page: 25
  year: 2020
  end-page: 41
  ident: bib15
  article-title: Carcinogenic effects of N-nitroso compounds in the environment
  publication-title: Environ. Conserv. J.
– volume: 26
  start-page: 267
  year: 2012
  end-page: 273
  ident: bib16
  article-title: Concentration-and stage-specific effects of nitrite on colon cancer cell lines
  publication-title: Nitric Oxide
– volume: 89
  start-page: 333
  year: 2015
  end-page: 341
  ident: bib9
  article-title: Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes
  publication-title: Free Radic. Biol. Med.
– volume: 10
  start-page: 20
  year: 2020
  end-page: 25
  ident: bib21
  article-title: Expression of HSP70 heat-shock proteins under oxidative stress
  publication-title: Adv. Gerontol.
– volume: 312
  start-page: E300
  year: 2017
  end-page: E308
  ident: bib30
  article-title: Dietary nitrite reverses features of postmenopausal metabolic syndrome induced by high-fat diet and ovariectomy in mice
  publication-title: Am. J. Physiol.-Endocrinol. Metab.
– volume: 73
  start-page: 7199
  year: 2013
  end-page: 7210
  ident: bib42
  article-title: Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury
  publication-title: Cancer Res.
– volume: 68
  start-page: 248
  year: 2019
  end-page: 262
  ident: bib41
  article-title: Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis
  publication-title: Gut
– year: 2020
  ident: bib5
  article-title: Microbiota, diet and the generation of reactive nitrogen compounds
  publication-title: Free Radic. Biol. Med.
– volume: 16
  start-page: 690
  year: 2019
  end-page: 704
  ident: bib40
  article-title: Gut microbiota in colorectal cancer: mechanisms of action and clinical applications
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 216
  start-page: 2378
  year: 2019
  end-page: 2393
  ident: bib44
  article-title: Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer
  publication-title: J. Exp. Med.
– volume: 138
  start-page: 1609
  year: 2016
  end-page: 1618
  ident: bib14
  article-title: Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH‐AARP Diet and Health Study
  publication-title: Int. J. Cancer
– volume: 44
  start-page: 31
  year: 2015
  end-page: 38
  ident: bib31
  article-title: Dietary nitrite supplementation improves insulin resistance in type 2 diabetic KKAy mice
  publication-title: Nitric Oxide
– volume: 2
  start-page: 601
  year: 2011
  end-page: 606
  ident: bib18
  article-title: Role of nitrite in tumor growth, symbiogenetic evolution of cancer cells, and China's successes in the War against Cancer
  publication-title: J. Cancer Ther.
– volume: 12
  start-page: 1
  year: 2011
  end-page: 18
  ident: bib36
  article-title: Metagenomic biomarker discovery and explanation
  publication-title: Genome Biol.
– volume: 7
  start-page: 571
  year: 2016
  end-page: 584
  ident: bib11
  article-title: Akkermansia muciniphila: a novel functional microbe with probiotic properties
  publication-title: Benef. Microbes
– reference: Henke, M.T., Kenny, D.J., Cassilly, C.D., Vlamakis, H., Xavier, R.J., Clardy, J., 2019. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA, vol. 116(26), pp. 12672–7.
– volume: 35
  start-page: 2298
  year: 2018
  end-page: 2308
  ident: bib43
  article-title: Determination of dietary nitrite in patients with esophageal pre-cancerous lesion and normal people: a duplicate diet study
  publication-title: Food Addit. Contam.: Part A
– volume: 151
  start-page: 363
  year: 2017
  end-page: 374
  ident: bib22
  article-title: The immune response to Prevotella bacteria in chronic inflammatory disease
  publication-title: Immunology
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib2
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc.: Ser. B (Methodol.)
– volume: 62
  start-page: 616
  year: 2013
  end-page: 629
  ident: bib24
  article-title: Biology of nitrogen oxides in the gastrointestinal tract
  publication-title: Gut
– volume: 18
  start-page: 1018
  year: 2012
  end-page: 1028
  ident: bib26
  article-title: Heat shock protein 70: roles in multiple sclerosis
  publication-title: Mol. Med.
– volume: 11
  start-page: 2673
  year: 2019
  ident: bib7
  article-title: A review of the in vivo evidence investigating the role of nitrite exposure from processed meat consumption in the development of colorectal cancer
  publication-title: Nutrients
– volume: 30
  start-page: 1141
  year: 2019
  end-page: 1151
  ident: bib6
  article-title: Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction
  publication-title: Cell Metab.
– volume: 96
  start-page: 35
  year: 2020
  end-page: 43
  ident: bib23
  article-title: Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases
  publication-title: Nitric Oxide
– volume: 10
  year: 2015
  ident: bib38
  article-title: Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions
  publication-title: PLoS One
– volume: 76
  start-page: 101
  year: 2020
  end-page: 112
  ident: bib3
  article-title: Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans
  publication-title: Hypertension
– volume: 22
  start-page: 41
  year: 2003
  end-page: 51
  ident: bib29
  article-title: Health implications of exposure to environmental nitrogenous compounds
  publication-title: Toxicol. Rev.
– volume: 5
  start-page: 379
  year: 2012
  end-page: 387
  ident: bib39
  article-title: Sulfide‐and nitrite‐dependent nitric oxide production in the intestinal tract
  publication-title: Microb. Biotechnol.
– volume: 65
  start-page: 330
  year: 2016
  end-page: 339
  ident: bib27
  article-title: The gut microbiota and host health: a new clinical frontier
  publication-title: Gut
– volume: 380
  start-page: 1867
  year: 2012
  end-page: 1879
  ident: bib35
  article-title: Heparin-induced skin lesions
  publication-title: Lancet
– volume: 12
  start-page: 935
  year: 2020
  ident: bib13
  article-title: Isolation of anti-inflammatory and epithelium reinforcing Bacteroides and Parabacteroides spp. from a healthy fecal donor
  publication-title: Nutrients
– volume: 31
  start-page: 118
  year: 2020
  end-page: 130
  ident: bib1
  article-title: Role of nitric oxide in insulin secretion and glucose metabolism
  publication-title: Trends Endocrinol. Metab.
– start-page: 2014
  year: 2014
  ident: bib37
  article-title: Novel study on N-nitrosamines as risk factors of cardiovascular diseases
  publication-title: BioMed Res. Int.
– volume: 6
  start-page: 3
  year: 2017
  ident: bib33
  article-title: A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health
  publication-title: Health Scope
– volume: 72
  start-page: 692
  year: 2020
  end-page: 766
  ident: bib17
  article-title: The noncanonical pathway for in vivo nitric oxide generation: the nitrate-nitrite-nitric oxide pathway
  publication-title: Pharmacol. Rev.
– volume: 128
  start-page: 436
  year: 2008
  end-page: 447
  ident: bib28
  article-title: Chronic arsenic toxicity & human health
  publication-title: Indian J. Med Res.
– volume: 9
  start-page: 938
  year: 2018
  ident: bib25
  article-title: Nitrate and nitrite in health and disease
  publication-title: Aging Dis.
– volume: 6
  start-page: 3
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113224_bib33
  article-title: A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health
  publication-title: Health Scope
– volume: 14
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.ecoenv.2022.113224_bib19
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-4-r36
– volume: 96
  start-page: 35
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib23
  article-title: Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2020.01.006
– volume: 380
  start-page: 1867
  issue: 9856
  year: 2012
  ident: 10.1016/j.ecoenv.2022.113224_bib35
  article-title: Heparin-induced skin lesions
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60409-7
– volume: 16
  start-page: 690
  issue: 11
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113224_bib40
  article-title: Gut microbiota in colorectal cancer: mechanisms of action and clinical applications
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0209-8
– volume: 11
  start-page: 2673
  issue: 11
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113224_bib7
  article-title: A review of the in vivo evidence investigating the role of nitrite exposure from processed meat consumption in the development of colorectal cancer
  publication-title: Nutrients
  doi: 10.3390/nu11112673
– volume: 26
  start-page: 267
  issue: 4
  year: 2012
  ident: 10.1016/j.ecoenv.2022.113224_bib16
  article-title: Concentration-and stage-specific effects of nitrite on colon cancer cell lines
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2012.03.010
– volume: 52
  start-page: 693
  issue: 3
  year: 2012
  ident: 10.1016/j.ecoenv.2022.113224_bib34
  article-title: Intragastric nitration by dietary nitrite: implications for modulation of protein and lipid signaling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.11.011
– volume: 10
  issue: 3
  year: 2015
  ident: 10.1016/j.ecoenv.2022.113224_bib38
  article-title: Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119712
– volume: 8
  start-page: 1765
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113224_bib4
  article-title: Next-generation beneficial microbes: the case of Akkermansia muciniphila
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01765
– volume: 7
  start-page: 571
  issue: 4
  year: 2016
  ident: 10.1016/j.ecoenv.2022.113224_bib11
  article-title: Akkermansia muciniphila: a novel functional microbe with probiotic properties
  publication-title: Benef. Microbes
  doi: 10.3920/BM2016.0009
– volume: 216
  start-page: 2378
  issue: 10
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113224_bib44
  article-title: Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20181939
– start-page: 2014
  year: 2014
  ident: 10.1016/j.ecoenv.2022.113224_bib37
  article-title: Novel study on N-nitrosamines as risk factors of cardiovascular diseases
  publication-title: BioMed Res. Int.
– volume: 62
  start-page: 616
  issue: 4
  year: 2013
  ident: 10.1016/j.ecoenv.2022.113224_bib24
  article-title: Biology of nitrogen oxides in the gastrointestinal tract
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-301649
– year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib5
  article-title: Microbiota, diet and the generation of reactive nitrogen compounds
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.10.025
– volume: 41
  start-page: 909
  issue: 7
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib20
  article-title: Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated A/J mice
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgaa018
– volume: 73
  start-page: 7199
  issue: 24
  year: 2013
  ident: 10.1016/j.ecoenv.2022.113224_bib42
  article-title: Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-0827
– volume: 35
  start-page: 2298
  issue: 12
  year: 2018
  ident: 10.1016/j.ecoenv.2022.113224_bib43
  article-title: Determination of dietary nitrite in patients with esophageal pre-cancerous lesion and normal people: a duplicate diet study
  publication-title: Food Addit. Contam.: Part A
  doi: 10.1080/19440049.2018.1546906
– volume: 11
  start-page: 906
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib32
  article-title: The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00906
– volume: 22
  start-page: 41
  issue: 1
  year: 2003
  ident: 10.1016/j.ecoenv.2022.113224_bib29
  article-title: Health implications of exposure to environmental nitrogenous compounds
  publication-title: Toxicol. Rev.
  doi: 10.2165/00139709-200322010-00005
– volume: 18
  start-page: 1018
  issue: 6
  year: 2012
  ident: 10.1016/j.ecoenv.2022.113224_bib26
  article-title: Heat shock protein 70: roles in multiple sclerosis
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2012.00119
– volume: 65
  start-page: 330
  issue: 2
  year: 2016
  ident: 10.1016/j.ecoenv.2022.113224_bib27
  article-title: The gut microbiota and host health: a new clinical frontier
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309990
– volume: 10
  start-page: 20
  issue: 1
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib21
  article-title: Expression of HSP70 heat-shock proteins under oxidative stress
  publication-title: Adv. Gerontol.
  doi: 10.1134/S2079057020010099
– volume: 72
  start-page: 692
  issue: 3
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib17
  article-title: The noncanonical pathway for in vivo nitric oxide generation: the nitrate-nitrite-nitric oxide pathway
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.120.019240
– volume: 68
  start-page: 248
  issue: 2
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113224_bib41
  article-title: Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-315458
– volume: 31
  start-page: 118
  issue: 2
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib1
  article-title: Role of nitric oxide in insulin secretion and glucose metabolism
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2019.10.001
– volume: 21
  start-page: 25
  issue: 3
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib15
  article-title: Carcinogenic effects of N-nitroso compounds in the environment
  publication-title: Environ. Conserv. J.
  doi: 10.36953/ECJ.2020.21304
– volume: 2
  start-page: 601
  issue: 5
  year: 2011
  ident: 10.1016/j.ecoenv.2022.113224_bib18
  article-title: Role of nitrite in tumor growth, symbiogenetic evolution of cancer cells, and China's successes in the War against Cancer
  publication-title: J. Cancer Ther.
  doi: 10.4236/jct.2011.25080
– volume: 5
  start-page: 379
  issue: 3
  year: 2012
  ident: 10.1016/j.ecoenv.2022.113224_bib39
  article-title: Sulfide‐and nitrite‐dependent nitric oxide production in the intestinal tract
  publication-title: Microb. Biotechnol.
  doi: 10.1111/j.1751-7915.2011.00320.x
– start-page: 10
  year: 2011
  ident: 10.1016/j.ecoenv.2022.113224_bib8
  article-title: The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies
  publication-title: J. Carcinog.
– volume: 12
  start-page: 935
  issue: 4
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib13
  article-title: Isolation of anti-inflammatory and epithelium reinforcing Bacteroides and Parabacteroides spp. from a healthy fecal donor
  publication-title: Nutrients
  doi: 10.3390/nu12040935
– volume: 128
  start-page: 436
  issue: 4
  year: 2008
  ident: 10.1016/j.ecoenv.2022.113224_bib28
  article-title: Chronic arsenic toxicity & human health
  publication-title: Indian J. Med Res.
– volume: 312
  start-page: E300
  issue: 4
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113224_bib30
  article-title: Dietary nitrite reverses features of postmenopausal metabolic syndrome induced by high-fat diet and ovariectomy in mice
  publication-title: Am. J. Physiol.-Endocrinol. Metab.
  doi: 10.1152/ajpendo.00360.2016
– volume: 12
  start-page: 1
  issue: 6
  year: 2011
  ident: 10.1016/j.ecoenv.2022.113224_bib36
  article-title: Metagenomic biomarker discovery and explanation
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-6-r60
– volume: 30
  start-page: 1141
  issue: 6
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113224_bib6
  article-title: Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.08.021
– volume: 76
  start-page: 101
  issue: 1
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113224_bib3
  article-title: Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.120.14759
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 10.1016/j.ecoenv.2022.113224_bib2
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 15
  start-page: 292
  issue: 5
  year: 2018
  ident: 10.1016/j.ecoenv.2022.113224_bib10
  article-title: Nitric oxide signalling in cardiovascular health and disease
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2017.224
– ident: 10.1016/j.ecoenv.2022.113224_bib12
  doi: 10.1073/pnas.1904099116
– volume: 138
  start-page: 1609
  issue: 7
  year: 2016
  ident: 10.1016/j.ecoenv.2022.113224_bib14
  article-title: Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH‐AARP Diet and Health Study
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.29901
– volume: 9
  start-page: 938
  issue: 5
  year: 2018
  ident: 10.1016/j.ecoenv.2022.113224_bib25
  article-title: Nitrate and nitrite in health and disease
  publication-title: Aging Dis.
  doi: 10.14336/AD.2017.1207
– volume: 89
  start-page: 333
  year: 2015
  ident: 10.1016/j.ecoenv.2022.113224_bib9
  article-title: Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.07.149
– volume: 151
  start-page: 363
  issue: 4
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113224_bib22
  article-title: The immune response to Prevotella bacteria in chronic inflammatory disease
  publication-title: Immunology
  doi: 10.1111/imm.12760
– volume: 44
  start-page: 31
  year: 2015
  ident: 10.1016/j.ecoenv.2022.113224_bib31
  article-title: Dietary nitrite supplementation improves insulin resistance in type 2 diabetic KKAy mice
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2014.11.009
SSID ssj0003055
Score 2.4375277
Snippet Growing evidence indicates that exposure to high levels of nitrite for a prolonged time has adverse health effects. Although gut microbiota is responsible for...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113224
SubjectTerms Animals
Azoxymethane
Disease Models, Animal
Fecal Microbiota Transplantation
Gastrointestinal Microbiome
Gut microbiota
Male
Mice
Mice, Inbred C57BL
Nitrite
Nitrites - toxicity
Toxicity
Title Gut microbiota mediated the toxicity of high concentration of dietary nitrite in C57BL/6 mice
URI https://dx.doi.org/10.1016/j.ecoenv.2022.113224
https://www.ncbi.nlm.nih.gov/pubmed/35074739
https://www.proquest.com/docview/2622657336
https://doaj.org/article/692758a647ae43248ef217175f258a35
Volume 231
WOSCitedRecordID wos000779432500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1090-2414
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003055
  issn: 0147-6513
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1090-2414
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003055
  issn: 0147-6513
  databaseCode: AIEXJ
  dateStart: 20201201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7atIVCCW362rRdVOjVxJb18jEJmz4ooYcW9lKEXgaH1ls23tD8-44ke0kOZS-5GSHJQjPyfGPNfAPwoVWiibe2RW0UK5jlobCM-QJl3XAjmGWepWIT8vxcLZfNtxulvmJMWKYHzht3JBqKkBZHSRMie5wKLaJoNHotxeY6sZci6pmcqfEbHHmscvCiLASv6ilpLkV2oV8X-iv0DSmNJU0oZbeMUuLuv2Wb_oc9kw06ewr7I3gkx3nRz-Be6A_g0SIRT18fwJP8D47k1KLn8PPjZiC_u0y1NBiSskQQYRIEfWRY_e0cQnCyaknkLCYuJjD2I4tubPVdGMz6muChXyMwJV1PTrk8-Xok4qThBfw4W3w__VSM5RQKxyQbCht85ZkPpReSMWNFqJxitXLOBSqcR8fMc9eGlpctN9Q6H6rKtVJx2RgTeP0S9vpVH14D8VY5USlX2saxeHVrnaFljc_WlMr4GdTTfmo3co3Hkhe_9BRUdqGzFHSUgs5SmEGxHfUnc23s6H8SRbXtG5myUwPqjx71R-_SnxnISdB6BB0ZTOBU3Y7Xv5_0QuOZjBctpg-rzaWmAkFtIpqcwausMNtF1jyWLKibw7tY_Bt4HBeUo8jfwt6w3oR38NBdDd3leg735VLN4cHx58XyyzwdkH9ZoA39
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+microbiota+mediated+the+toxicity+of+high+concentration+of+dietary+nitrite+in+C57BL%2F6+mice&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Xu%2C+Jing&rft.au=Wang%2C+Mingzhu&rft.au=Liu%2C+Qiuping&rft.au=Lin%2C+Xiaoying&rft.date=2022-02-01&rft.issn=0147-6513&rft.volume=231&rft.spage=113224&rft_id=info:doi/10.1016%2Fj.ecoenv.2022.113224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2022_113224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon