Kriging-based adaptive Importance Sampling algorithms for rare event estimation
Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the number of samples required to apply these techniques is relatively low compared to Monte-Carlo simulations of same efficiency, it is often diff...
Uloženo v:
| Vydáno v: | Structural safety Ročník 44; s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Ltd
01.09.2013
Elsevier |
| Témata: | |
| ISSN: | 0167-4730, 1879-3355 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the number of samples required to apply these techniques is relatively low compared to Monte-Carlo simulations of same efficiency, it is often difficult to implement them on time-consuming simulation codes. A joint use of sampling techniques and surrogate models may thus be of use. In this article, we develop a Kriging-based adaptive Importance Sampling approach for rare event probability estimation. The novelty resides in the use of adaptive Importance Sampling and consequently the ability to estimate very rare event probabilities (lower than 10−3) that have not been considered in previous work on similar subjects. The statistical properties of Kriging also make it possible to compute a confidence measure for the resulting estimation. Results on both analytical and engineering test cases show the efficiency of the approach in terms of accuracy and low number of samples.
•Adaptation of Kriging surrogate model to adaptive rare event estimation.•Definition of confidence interval for the probability estimation.•The novelty resides in the use of adaptive Importance Sampling and the ability to estimate very rare event probabilities.•Kriging-based Importance Sampling approach has been illustrated and compared on analytical test-cases from the literature.•Proposed method is suitable for time-consuming simulation codes. |
|---|---|
| AbstractList | Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the number of samples required to apply these techniques is relatively low compared to Monte-Carlo simulations of same efficiency, it is often difficult to implement them on time-consuming simulation codes. A joint use of sampling techniques and surrogate models may thus be of use. In this article, we develop a Kriging-based adaptive Importance Sampling approach for rare event probability estimation. The novelty resides in the use of adaptive Importance Sampling and consequently the ability to estimate very rare event probabilities (lower than 10a3) that have not been considered in previous work on similar subjects. The statistical properties of Kriging also make it possible to compute a confidence measure for the resulting estimation. Results on both analytical and engineering test cases show the efficiency of the approach in terms of accuracy and low number of samples. Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the number of samples required to apply these techniques is relatively low compared to Monte-Carlo simulations of same efficiency, it is often difficult to implement them on time-consuming simulation codes. A joint use of sampling techniques and surrogate models may thus be of use. In this article, we develop a Kriging-based adaptive Importance Sampling approach for rare event probability estimation. The novelty resides in the use of adaptive Importance Sampling and consequently the ability to estimate very rare event probabilities (lower than 10−3) that have not been considered in previous work on similar subjects. The statistical properties of Kriging also make it possible to compute a confidence measure for the resulting estimation. Results on both analytical and engineering test cases show the efficiency of the approach in terms of accuracy and low number of samples. •Adaptation of Kriging surrogate model to adaptive rare event estimation.•Definition of confidence interval for the probability estimation.•The novelty resides in the use of adaptive Importance Sampling and the ability to estimate very rare event probabilities.•Kriging-based Importance Sampling approach has been illustrated and compared on analytical test-cases from the literature.•Proposed method is suitable for time-consuming simulation codes. |
| Author | Morio, Jérôme Balesdent, Mathieu Marzat, Julien |
| Author_xml | – sequence: 1 givenname: Mathieu surname: Balesdent fullname: Balesdent, Mathieu email: mathieu.balesdent@onera.fr – sequence: 2 givenname: Jérôme surname: Morio fullname: Morio, Jérôme – sequence: 3 givenname: Julien surname: Marzat fullname: Marzat, Julien |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28067768$$DView record in Pascal Francis |
| BookMark | eNqFkU9vEzEUxC3USqSFr4D2gsRll-e1HTsSB1BFS0WlHgpn6633OTjaf9hOJL49DmkvXHKyD7-Z0by5YhfTPBFj7zg0HPj6465JOe4Tempa4KIB2QDwV2zFjd7UQih1wVYF1LXUAl6zq5R2AKBMa1bs8XsM2zBt6w4T9RX2uORwoOp-XOaYcXJUPeG4DAWpcNjOMeRfY6r8HKuIkSo60JQrSjmMmMM8vWGXHodEb5_fa_bz9uuPm2_1w-Pd_c2Xh9pJLXPdEWy8Ln-Hnet6pYwAwZ3XnZcSO6mcJMm96EDp3rf9Bo3oTNv2CGvdShDX7MPJd4nz733Jt2NIjoYBJ5r3yXKtSnHBpTmPKgBthJCioO-fUUwOBx_LAUKySyzt4h_bmpKu10fLTyfOxTmlSN66kP_1zxHDYDnY4zR2Z1-mscdpLEhbpiny9X_yl4Szws8nIZXTHgJFm1ygMlIfIrls-zmcs_gLiACv5Q |
| CODEN | STSADI |
| CitedBy_id | crossref_primary_10_1016_j_strusafe_2023_102364 crossref_primary_10_3389_frai_2020_00052 crossref_primary_10_3390_math8020209 crossref_primary_10_1016_j_apm_2017_04_003 crossref_primary_10_1007_s00158_018_1975_6 crossref_primary_10_1016_j_ress_2019_106758 crossref_primary_10_1007_s00158_024_03911_x crossref_primary_10_3390_electronics12071741 crossref_primary_10_1016_j_cma_2025_117992 crossref_primary_10_1108_EC_12_2021_0705 crossref_primary_10_1016_j_istruc_2023_104956 crossref_primary_10_1016_j_strusafe_2016_05_001 crossref_primary_10_1080_16843703_2022_2116265 crossref_primary_10_1016_j_ress_2023_109898 crossref_primary_10_1002_2016WR019518 crossref_primary_10_1016_j_ress_2016_01_023 crossref_primary_10_1007_s00158_022_03217_w crossref_primary_10_1016_j_probengmech_2016_08_002 crossref_primary_10_1002_nme_6847 crossref_primary_10_1007_s00158_014_1189_5 crossref_primary_10_1002_qre_3677 crossref_primary_10_1016_j_strusafe_2015_12_003 crossref_primary_10_1016_j_strusafe_2019_101876 crossref_primary_10_1007_s00158_018_2176_z crossref_primary_10_1016_j_strusafe_2019_101875 crossref_primary_10_1016_j_cma_2024_116992 crossref_primary_10_1016_j_ymssp_2020_106802 crossref_primary_10_3390_s23084160 crossref_primary_10_1080_17499518_2021_1952611 crossref_primary_10_1007_s11009_014_9411_x crossref_primary_10_1177_1748006X19844666 crossref_primary_10_3390_app12199860 crossref_primary_10_1007_s00707_014_1252_8 crossref_primary_10_1007_s00158_019_02384_7 crossref_primary_10_1016_j_cma_2018_10_003 crossref_primary_10_1007_s00158_022_03346_2 crossref_primary_10_1016_j_ress_2019_01_014 crossref_primary_10_1016_j_ress_2021_108214 crossref_primary_10_1016_j_simpat_2014_10_007 crossref_primary_10_1016_j_ress_2017_10_013 crossref_primary_10_1007_s00158_018_1911_9 crossref_primary_10_1016_j_ress_2019_106735 crossref_primary_10_1016_j_compgeo_2020_103451 crossref_primary_10_1007_s12206_020_0317_y crossref_primary_10_1016_j_strusafe_2014_02_003 crossref_primary_10_1051_jnwpu_20203820412 crossref_primary_10_1016_j_apm_2020_08_042 crossref_primary_10_1002_qre_2352 crossref_primary_10_1016_j_jcp_2017_03_047 crossref_primary_10_1007_s00158_019_02419_z crossref_primary_10_1016_j_ress_2022_108403 crossref_primary_10_1007_s00158_016_1504_4 crossref_primary_10_1016_j_jsv_2024_118914 crossref_primary_10_1016_j_strusafe_2022_102216 crossref_primary_10_1016_j_ress_2016_09_003 crossref_primary_10_1109_ACCESS_2020_3014238 crossref_primary_10_1016_j_apm_2022_03_015 crossref_primary_10_1016_j_jcp_2016_02_053 crossref_primary_10_1137_21M1416758 crossref_primary_10_1016_j_cma_2020_113336 crossref_primary_10_1007_s11356_017_0030_2 crossref_primary_10_1111_insr_12573 crossref_primary_10_1016_j_ress_2019_03_005 crossref_primary_10_1007_s00158_025_04044_5 crossref_primary_10_1007_s00158_023_03627_4 crossref_primary_10_1016_j_strusafe_2018_06_003 crossref_primary_10_1016_j_strusafe_2021_102174 crossref_primary_10_1007_s00158_022_03431_6 crossref_primary_10_1109_ACCESS_2019_2915350 crossref_primary_10_1016_j_engstruct_2017_06_038 crossref_primary_10_1016_j_istruc_2025_110064 crossref_primary_10_1007_s00366_021_01308_8 crossref_primary_10_1016_j_paerosci_2016_07_004 crossref_primary_10_1016_j_jcp_2017_03_021 crossref_primary_10_1016_j_physd_2023_133957 crossref_primary_10_1155_2019_6357104 crossref_primary_10_1016_j_strusafe_2019_03_007 crossref_primary_10_1007_s00158_018_2150_9 crossref_primary_10_1007_s00158_023_03598_6 crossref_primary_10_1016_j_actaastro_2023_03_038 crossref_primary_10_1016_j_ast_2020_106339 crossref_primary_10_1109_TR_2023_3311192 crossref_primary_10_1007_s00158_020_02825_8 crossref_primary_10_1002_nme_6135 crossref_primary_10_1016_j_advengsoft_2017_08_001 crossref_primary_10_1007_s00158_021_02864_9 crossref_primary_10_1007_s00158_023_03571_3 crossref_primary_10_1016_j_probengmech_2023_103479 crossref_primary_10_1016_j_probengmech_2023_103513 crossref_primary_10_1016_j_ress_2019_106771 crossref_primary_10_1016_j_engfracmech_2019_106514 crossref_primary_10_1016_j_strusafe_2025_102597 crossref_primary_10_1088_1755_1315_128_1_012094 crossref_primary_10_1016_j_dsp_2021_103104 crossref_primary_10_1016_j_jsv_2019_115083 crossref_primary_10_1016_j_ress_2022_108449 crossref_primary_10_1016_j_istruc_2024_107621 crossref_primary_10_1007_s40996_018_0143_y crossref_primary_10_1177_13694332221092677 crossref_primary_10_1016_j_apm_2019_01_025 crossref_primary_10_1061_JENMDT_EMENG_6805 crossref_primary_10_1002_nav_21938 crossref_primary_10_1016_j_strusafe_2021_102116 crossref_primary_10_1016_j_jobe_2022_104116 |
| Cites_doi | 10.1016/j.strusafe.2006.07.008 10.1016/S0377-2217(96)00385-2 10.1016/j.ejor.2007.10.013 10.1088/0143-0807/21/5/305 10.1016/j.probengmech.2007.08.004 10.1016/j.simpat.2012.05.008 10.1088/0143-0807/31/5/028 10.1109/WSC.2006.323046 10.1007/s11222-011-9241-4 10.1109/5992.753049 10.1016/S0167-4730(02)00045-0 10.1201/b11332-100 10.2113/gsecongeo.58.8.1246 10.1145/256562.256635 10.1515/9783110941951 10.1016/j.strusafe.2004.11.001 10.1016/j.strusafe.2011.01.002 10.1111/j.1538-4632.2005.00635.x 10.1214/aos/1176343003 10.1016/0167-4730(90)90012-E 10.1287/ijoc.1060.0176 10.1016/S0167-4730(03)00022-5 10.1016/0167-4730(93)90003-J 10.3850/978-981-07-2219-7_P321 10.1007/s10898-011-9836-5 10.1177/0037549707087067 10.1007/s10958-007-0456-z 10.1007/s10614-006-9025-7 10.3182/20090706-3-FR-2004.00090 10.1016/j.strusafe.2011.06.001 10.1051/proc:071909 10.1016/j.ress.2010.08.006 10.1016/j.jcp.2010.08.022 10.1088/0143-0807/22/4/315 10.1080/01621459.1996.10476994 10.1111/j.2517-6161.1990.tb01796.x 10.1088/0143-0807/31/2/L01 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7T2 C1K 7SM 8FD FR3 KR7 |
| DOI | 10.1016/j.strusafe.2013.04.001 |
| DatabaseName | CrossRef Pascal-Francis Health and Safety Science Abstracts (Full archive) Environmental Sciences and Pollution Management Earthquake Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Health & Safety Science Abstracts Environmental Sciences and Pollution Management Earthquake Engineering Abstracts Civil Engineering Abstracts Engineering Research Database Technology Research Database |
| DatabaseTitleList | Health & Safety Science Abstracts Earthquake Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1879-3355 |
| EndPage | 10 |
| ExternalDocumentID | 28067768 10_1016_j_strusafe_2013_04_001 S0167473013000350 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7T2 C1K 7SM 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-c474t-be09f7c47cabcbd5583031cf7bf44ab45c4e41f3b057df2d9a83b822da0672403 |
| ISICitedReferencesCount | 120 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329476800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-4730 |
| IngestDate | Thu Oct 02 19:55:41 EDT 2025 Tue Oct 07 09:58:00 EDT 2025 Wed Apr 02 07:35:46 EDT 2025 Tue Nov 18 21:54:55 EST 2025 Sat Nov 29 02:11:14 EST 2025 Fri Feb 23 02:33:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Surrogate model Importance Sampling Input–output function Kriging Rare event estimation Estimation Aeronautics Spacecraft Probability Input-output function Rare event Modeling Adaptive method Statistics Case study Input output analysis Launching Safety Sampling |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c474t-be09f7c47cabcbd5583031cf7bf44ab45c4e41f3b057df2d9a83b822da0672403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1500783343 |
| PQPubID | 23462 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1753553148 proquest_miscellaneous_1500783343 pascalfrancis_primary_28067768 crossref_citationtrail_10_1016_j_strusafe_2013_04_001 crossref_primary_10_1016_j_strusafe_2013_04_001 elsevier_sciencedirect_doi_10_1016_j_strusafe_2013_04_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-00 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Structural safety |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Cérou, Del Moral, Furon, Guyader (bib24) 2008; 7 Gilli, Këllezi (bib27) 2006; 27 Piera-Martinez, Vazquez, Walter, Fleury, Kielbasa (bib28) 2006 Mikhailov GA. Parametric estimates by the Monte Carlo method. Utrecht (NED): VSP; 1999. Zhang (bib7) 1996; 91 Gayton, Bourinet, Lemaire (bib59) 2003; 25 Li, Bect, Vazquez (bib51) 2010 Glynn (bib18) 1996 Matheron (bib43) 1963; 58 Homem-de Mello (bib6) 2007; 19 Morio (bib8) 2012; 27 Botev, Kroese, Taimre (bib16) 2007; 11 L’Écuyer P, Demers V, Tuffin B. Splitting for rare event simulation. In: Proceeding of the 2006 Winter Simulation Conference. p. 137–48. Lophaven, Nielsen, Songdergaard (bib55) 2002 Davison, Smith (bib29) 1990; 52 Boer, Kroese, Mannor, Rubinstein (bib34) 2002; 134 Borcherds (bib14) 2000 Janusevskis, Le Riche (bib2) 2013; 55 Sudret (bib36) 2012 Cérou, Del Moral, Furon, Guyader (bib25) 2011 Bucklew (bib33) 2004 L’Écuyer, Le Gland, Lezaud, B Tuffin (bib22) 2009 Kleijnen (bib52) 2009; 192 Rajashekhar, Ellingwood (bib58) 1993; 12 Coles (bib32) 2001 Sasena (bib44) 2002 Hansen (bib54) 2006; vol. 192 Picheny (bib49) 2009 Morio (bib19) 2010; 31 Pickands (bib31) 1975; 3 Schueremans L, Van Gemert D. Use of Kriging as meta-model in simulation procedures for structural reliability. In: 9th international conference on structural safety and reliability, Rome; 2005. p. 2483–90. Vazquez E, Bect J. A sequential Bayesian algorithm to estimate a probability of failure. In: Proceedings of the 15th IFAC symposium on system identification, Saint-Malo, France, July 6–8. p. 546–50. Baudoui, Klotz, Hiriart-Urruty, Jan, Morel (bib50) 2012 Bect, Ginsbourger, Li, Picheny, Vazquez (bib48) 2012; 22 Beichl, Sullivan (bib3) 1999; 1 Li L, Bect J, Vazquez E. Bayesian subset simulation: a Kriging-based subset simulation algorithm for the estimation of small probabilities of failure. In: Proceedings of PSAM 11 and ESREL 2012, 25–29 June 2012, Helsinki, Finland. Echard, Gayton, Lemaire (bib4) 2011; 33 Silverman (bib9) 1986 Robert, Casella (bib12) 2005 Morio (bib60) 2011; 96 Li, Xiu (bib40) 2010; 229 Au, Ching, Beck (bib56) 2007; 29 Rubinstein (bib17) 1997; 99 Dubourg V, Deheeger E, Sudret B. Metamodel-based importance sampling for the simulation of rare events. In: Faber M, Kohler J, Nishilima K, editors. Proceedings of the 11th International Conference of Statistics and Probability in Civil Engineering (ICASP2011), Zurich, Switzerland. Rubinstein, Kroese (bib5) 2004 Denny (bib15) 2001 Niederreiter, Spanier (bib13) 2000 Glasserman P, Heidelberger P, Shahabuddin P, Zajic T. Splitting for rare event simulation: analysis of simple cases. In: Proceeding of the 1996 Winter Simulation Conference. p. 302–08. Gomes, Awruch (bib38) 2004; 26 Schueremans, Van Gemert (bib57) 2005; 27 Bourinet, Deheeger, Lemaire (bib42) 2011; 33 Santner, Williams, Notz (bib45) 2003 Cérou, Guyader (bib23) 2007; 19 Sobol (bib11) 1994 Basudhar, Missoum, Sanchez (bib41) 2008; 23 McNeil, Saladin (bib30) 1997 Bucher, Bourgund (bib37) 1990; 7 Cornford, Csató, Opper (bib53) 2005; 37 Glad, Hjort, Ushakov (bib35) 2007; 146 Morio, Pastel, Le Gland (bib26) 2010; 31 Coles (10.1016/j.strusafe.2013.04.001_bib32) 2001 Morio (10.1016/j.strusafe.2013.04.001_bib60) 2011; 96 Bourinet (10.1016/j.strusafe.2013.04.001_bib42) 2011; 33 Glad (10.1016/j.strusafe.2013.04.001_bib35) 2007; 146 Au (10.1016/j.strusafe.2013.04.001_bib56) 2007; 29 Rajashekhar (10.1016/j.strusafe.2013.04.001_bib58) 1993; 12 10.1016/j.strusafe.2013.04.001_bib1 McNeil (10.1016/j.strusafe.2013.04.001_bib30) 1997 Basudhar (10.1016/j.strusafe.2013.04.001_bib41) 2008; 23 Bucklew (10.1016/j.strusafe.2013.04.001_bib33) 2004 10.1016/j.strusafe.2013.04.001_bib47 10.1016/j.strusafe.2013.04.001_bib46 Cérou (10.1016/j.strusafe.2013.04.001_bib23) 2007; 19 Zhang (10.1016/j.strusafe.2013.04.001_bib7) 1996; 91 Robert (10.1016/j.strusafe.2013.04.001_bib12) 2005 Denny (10.1016/j.strusafe.2013.04.001_bib15) 2001 Sudret (10.1016/j.strusafe.2013.04.001_bib36) 2012 Picheny (10.1016/j.strusafe.2013.04.001_bib49) 2009 Boer (10.1016/j.strusafe.2013.04.001_bib34) 2002; 134 Gayton (10.1016/j.strusafe.2013.04.001_bib59) 2003; 25 Matheron (10.1016/j.strusafe.2013.04.001_bib43) 1963; 58 Silverman (10.1016/j.strusafe.2013.04.001_bib9) 1986 Santner (10.1016/j.strusafe.2013.04.001_bib45) 2003 Cornford (10.1016/j.strusafe.2013.04.001_bib53) 2005; 37 Rubinstein (10.1016/j.strusafe.2013.04.001_bib17) 1997; 99 Cérou (10.1016/j.strusafe.2013.04.001_bib25) 2011 Cérou (10.1016/j.strusafe.2013.04.001_bib24) 2008; 7 Gilli (10.1016/j.strusafe.2013.04.001_bib27) 2006; 27 Pickands (10.1016/j.strusafe.2013.04.001_bib31) 1975; 3 10.1016/j.strusafe.2013.04.001_bib39 Glynn (10.1016/j.strusafe.2013.04.001_bib18) 1996 L’Écuyer (10.1016/j.strusafe.2013.04.001_bib22) 2009 Sasena (10.1016/j.strusafe.2013.04.001_bib44) 2002 Li (10.1016/j.strusafe.2013.04.001_bib40) 2010; 229 Hansen (10.1016/j.strusafe.2013.04.001_bib54) 2006; vol. 192 Morio (10.1016/j.strusafe.2013.04.001_bib26) 2010; 31 Gomes (10.1016/j.strusafe.2013.04.001_bib38) 2004; 26 Baudoui (10.1016/j.strusafe.2013.04.001_bib50) 2012 Sobol (10.1016/j.strusafe.2013.04.001_bib11) 1994 Schueremans (10.1016/j.strusafe.2013.04.001_bib57) 2005; 27 Homem-de Mello (10.1016/j.strusafe.2013.04.001_bib6) 2007; 19 Lophaven (10.1016/j.strusafe.2013.04.001_bib55) 2002 Bect (10.1016/j.strusafe.2013.04.001_bib48) 2012; 22 10.1016/j.strusafe.2013.04.001_bib21 10.1016/j.strusafe.2013.04.001_bib20 Li (10.1016/j.strusafe.2013.04.001_bib51) 2010 Janusevskis (10.1016/j.strusafe.2013.04.001_bib2) 2013; 55 Beichl (10.1016/j.strusafe.2013.04.001_bib3) 1999; 1 Niederreiter (10.1016/j.strusafe.2013.04.001_bib13) 2000 Kleijnen (10.1016/j.strusafe.2013.04.001_bib52) 2009; 192 Morio (10.1016/j.strusafe.2013.04.001_bib8) 2012; 27 Echard (10.1016/j.strusafe.2013.04.001_bib4) 2011; 33 Davison (10.1016/j.strusafe.2013.04.001_bib29) 1990; 52 Bucher (10.1016/j.strusafe.2013.04.001_bib37) 1990; 7 Botev (10.1016/j.strusafe.2013.04.001_bib16) 2007; 11 Rubinstein (10.1016/j.strusafe.2013.04.001_bib5) 2004 10.1016/j.strusafe.2013.04.001_bib10 Morio (10.1016/j.strusafe.2013.04.001_bib19) 2010; 31 Borcherds (10.1016/j.strusafe.2013.04.001_bib14) 2000 Piera-Martinez (10.1016/j.strusafe.2013.04.001_bib28) 2006 |
| References_xml | – volume: 19 start-page: 381 year: 2007 end-page: 394 ident: bib6 article-title: A study on the cross-entropy method for rare event probability estimation publication-title: INFORMS J Comput – start-page: 1 year: 2012 end-page: 16 ident: bib50 article-title: Local Uncertainty Processing (LOUP) method for multidisciplinary robust design optimization publication-title: Struct Multidiscip Optim – volume: 23 start-page: 1 year: 2008 end-page: 11 ident: bib41 article-title: Limit state function identification using support vector machines for discontinuous responses and disjoint failure domains publication-title: Probabilist Eng Mech – volume: 12 start-page: 205 year: 1993 end-page: 220 ident: bib58 article-title: Comparison of response surface and neural network with other methods for structural reliability analysis publication-title: Struct Saf – year: 2000 ident: bib13 article-title: Monte Carlo and quasi-Monte Carlo methods – year: 2004 ident: bib33 article-title: Introduction to rare event simulation – year: 2010 ident: bib51 article-title: A numerical comparison of two sequential Kriging-based algorithms to estimate a probability of failure – year: 2006 ident: bib28 article-title: Estimation of extreme values, with application to uncertain systems – volume: 58 start-page: 1246 year: 1963 ident: bib43 article-title: Principles of geostatistics publication-title: Econ Geol – volume: 31 start-page: 1295 year: 2010 end-page: 1303 ident: bib26 article-title: An overview of importance splitting for rare event simulation publication-title: Eur J Phys – volume: 146 start-page: 5977 year: 2007 end-page: 5983 ident: bib35 article-title: Mean-squared error of kernel estimators for finite values of the sample size publication-title: J Math Sci – year: 2002 ident: bib44 article-title: Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximation – volume: 37 start-page: 183 year: 2005 end-page: 199 ident: bib53 article-title: Sequential, bayesian geostatistics: a principled method for large data sets publication-title: Geogr Anal – year: 1997 ident: bib30 article-title: The peaks over threshold method for estimating high quantiles of loss distributions – volume: 134 year: 2002 ident: bib34 article-title: A tutorial on the cross-entropy method publication-title: Ann Oper Res – year: 1986 ident: bib9 article-title: Density estimation for statistics and data analysis – volume: 229 start-page: 8966 year: 2010 end-page: 8980 ident: bib40 article-title: Evaluation of failure probability via surrogate models publication-title: J Comput Phys – volume: 91 start-page: 1245 year: 1996 end-page: 1253 ident: bib7 article-title: Nonparametric importance sampling publication-title: J Am Stat Assoc – volume: 192 start-page: 707 year: 2009 end-page: 716 ident: bib52 article-title: Kriging metamodeling in simulation: a review publication-title: Eur J Oper Res – volume: 27 start-page: 76 year: 2012 end-page: 89 ident: bib8 article-title: Extreme quantile estimation with nonparametric adaptive importance sampling publication-title: Simul Model Pract Theory – volume: 26 start-page: 49 year: 2004 end-page: 67 ident: bib38 article-title: Comparison of response surface and neural network with other methods for structural reliability analysis publication-title: Struct Saf – reference: L’Écuyer P, Demers V, Tuffin B. Splitting for rare event simulation. In: Proceeding of the 2006 Winter Simulation Conference. p. 137–48. – volume: 11 start-page: 785 year: 2007 end-page: 806 ident: bib16 article-title: Generalized cross-entropy methods with applications to rare-event simulation and optimization publication-title: Simulation – reference: Dubourg V, Deheeger E, Sudret B. Metamodel-based importance sampling for the simulation of rare events. In: Faber M, Kohler J, Nishilima K, editors. Proceedings of the 11th International Conference of Statistics and Probability in Civil Engineering (ICASP2011), Zurich, Switzerland. – volume: 52 start-page: 393 year: 1990 end-page: 442 ident: bib29 article-title: Models for exceedances over high thresholds (with discussion) publication-title: J Roy Stat Soc – reference: Vazquez E, Bect J. A sequential Bayesian algorithm to estimate a probability of failure. In: Proceedings of the 15th IFAC symposium on system identification, Saint-Malo, France, July 6–8. p. 546–50. – start-page: 39 year: 2009 end-page: 61 ident: bib22 article-title: Splitting methods publication-title: Monte Carlo methods for rare event analysis – volume: 25 start-page: 99 year: 2003 end-page: 121 ident: bib59 article-title: CQ2RS: a new statistical approach to the response surface method forreliability analysis publication-title: Struct Saf – year: 2012 ident: bib36 article-title: Meta-models for structural reliability and uncertainty quantification – reference: Schueremans L, Van Gemert D. Use of Kriging as meta-model in simulation procedures for structural reliability. In: 9th international conference on structural safety and reliability, Rome; 2005. p. 2483–90. – volume: 33 start-page: 145 year: 2011 end-page: 154 ident: bib4 article-title: AK-MCS: an active learning reliability method combining Kriging and Monte Carlo Simulation publication-title: Struct Saf – year: 2009 ident: bib49 article-title: Improving accuracy and compensating for uncertainty in surrogate modeling – year: 2004 ident: bib5 article-title: The Cross-Entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning (information science and statistics) – volume: 99 start-page: 89 year: 1997 end-page: 112 ident: bib17 article-title: Optimization of computer simulation models with rare events publication-title: Eur J Oper Res – year: 2001 ident: bib32 article-title: An introduction to statistical modeling of extreme values – volume: vol. 192 start-page: 75 year: 2006 end-page: 102 ident: bib54 article-title: The CMA evolution strategy: a comparing review publication-title: Towards a new evolutionary computation – year: 2005 ident: bib12 article-title: Monte Carlo statistical methods – year: 2002 ident: bib55 article-title: DACE a MATLAB Kriging toolbox, Technical Report IMM-TR-2002–12 – start-page: 1 year: 2011 end-page: 14 ident: bib25 article-title: Sequential Monte Carlo for rare event estimation publication-title: Stat Comput – reference: Mikhailov GA. Parametric estimates by the Monte Carlo method. Utrecht (NED): VSP; 1999. – volume: 27 start-page: 246 year: 2005 end-page: 261 ident: bib57 article-title: Benefit of splines and neural networks in simulation based structural reliability analysis publication-title: Struct Saf – year: 2003 ident: bib45 article-title: The design and analysis of computer experiments – volume: 33 start-page: 343 year: 2011 end-page: 353 ident: bib42 article-title: Assessing small failure probabilities by combined subset simulation and support vector machines publication-title: Struct Saf – year: 1994 ident: bib11 article-title: A primer for the Monte Carlo method – volume: 96 start-page: 178 year: 2011 end-page: 183 ident: bib60 article-title: Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position publication-title: Reliab Eng Syst Saf – volume: 55 start-page: 313 year: 2013 end-page: 336 ident: bib2 article-title: Simultaneous Kriging-based estimation and optimization of mean response publication-title: J Global Optim – reference: Li L, Bect J, Vazquez E. Bayesian subset simulation: a Kriging-based subset simulation algorithm for the estimation of small probabilities of failure. In: Proceedings of PSAM 11 and ESREL 2012, 25–29 June 2012, Helsinki, Finland. – volume: 29 start-page: 183 year: 2007 end-page: 193 ident: bib56 article-title: Application of subset simulation methods to reliability benchmark problems publication-title: Struct Saf – volume: 1 start-page: 71 year: 1999 end-page: 73 ident: bib3 article-title: The importance of importance sampling publication-title: Comput Sci Eng – volume: 31 start-page: 41 year: 2010 end-page: 48 ident: bib19 article-title: How to approach the importance sampling density publication-title: Eur J Phys – volume: 7 start-page: 107 year: 2008 end-page: 115 ident: bib24 article-title: Rare event simulation for a static distribution publication-title: RESIM – reference: Glasserman P, Heidelberger P, Shahabuddin P, Zajic T. Splitting for rare event simulation: analysis of simple cases. In: Proceeding of the 1996 Winter Simulation Conference. p. 302–08. – volume: 3 start-page: 119 year: 1975 end-page: 131 ident: bib31 article-title: Statistical inference using extreme order statistics publication-title: Ann Stat – volume: 22 start-page: 773 year: 2012 end-page: 793 ident: bib48 article-title: Sequential design of computer experiments for the estimation of a probability of failure publication-title: Stat Comput – start-page: 405 year: 2000 end-page: 411 ident: bib14 article-title: Importance sampling: an illustrative introduction publication-title: Eur J Phys – volume: 7 start-page: 57 year: 1990 end-page: 66 ident: bib37 article-title: A fast and efficientresponse surface approach for structural reliability problems publication-title: Struct Saf – start-page: 180 year: 1996 end-page: 185 ident: bib18 article-title: Importance sampling for Monte Carlo estimation of quantiles – volume: 27 start-page: 207 year: 2006 end-page: 228 ident: bib27 article-title: An application of extreme value theory for measuring risk publication-title: Comput Econ – start-page: 403 year: 2001 end-page: 411 ident: bib15 article-title: Introduction to importance sampling in rare-event simulations publication-title: Eur J Phys – volume: 19 start-page: 65 year: 2007 end-page: 72 ident: bib23 article-title: Adaptive particle techniques and rare event estimation publication-title: ESAIM – year: 2005 ident: 10.1016/j.strusafe.2013.04.001_bib12 – volume: 29 start-page: 183 year: 2007 ident: 10.1016/j.strusafe.2013.04.001_bib56 article-title: Application of subset simulation methods to reliability benchmark problems publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.07.008 – year: 2002 ident: 10.1016/j.strusafe.2013.04.001_bib44 – volume: 99 start-page: 89 year: 1997 ident: 10.1016/j.strusafe.2013.04.001_bib17 article-title: Optimization of computer simulation models with rare events publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(96)00385-2 – ident: 10.1016/j.strusafe.2013.04.001_bib39 – volume: 192 start-page: 707 year: 2009 ident: 10.1016/j.strusafe.2013.04.001_bib52 article-title: Kriging metamodeling in simulation: a review publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.10.013 – start-page: 405 year: 2000 ident: 10.1016/j.strusafe.2013.04.001_bib14 article-title: Importance sampling: an illustrative introduction publication-title: Eur J Phys doi: 10.1088/0143-0807/21/5/305 – volume: 23 start-page: 1 year: 2008 ident: 10.1016/j.strusafe.2013.04.001_bib41 article-title: Limit state function identification using support vector machines for discontinuous responses and disjoint failure domains publication-title: Probabilist Eng Mech doi: 10.1016/j.probengmech.2007.08.004 – volume: 27 start-page: 76 year: 2012 ident: 10.1016/j.strusafe.2013.04.001_bib8 article-title: Extreme quantile estimation with nonparametric adaptive importance sampling publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2012.05.008 – volume: 31 start-page: 1295 year: 2010 ident: 10.1016/j.strusafe.2013.04.001_bib26 article-title: An overview of importance splitting for rare event simulation publication-title: Eur J Phys doi: 10.1088/0143-0807/31/5/028 – year: 2004 ident: 10.1016/j.strusafe.2013.04.001_bib33 – ident: 10.1016/j.strusafe.2013.04.001_bib21 doi: 10.1109/WSC.2006.323046 – volume: 22 start-page: 773 year: 2012 ident: 10.1016/j.strusafe.2013.04.001_bib48 article-title: Sequential design of computer experiments for the estimation of a probability of failure publication-title: Stat Comput doi: 10.1007/s11222-011-9241-4 – volume: vol. 192 start-page: 75 year: 2006 ident: 10.1016/j.strusafe.2013.04.001_bib54 article-title: The CMA evolution strategy: a comparing review – volume: 1 start-page: 71 year: 1999 ident: 10.1016/j.strusafe.2013.04.001_bib3 article-title: The importance of importance sampling publication-title: Comput Sci Eng doi: 10.1109/5992.753049 – volume: 134 year: 2002 ident: 10.1016/j.strusafe.2013.04.001_bib34 article-title: A tutorial on the cross-entropy method publication-title: Ann Oper Res – start-page: 1 year: 2012 ident: 10.1016/j.strusafe.2013.04.001_bib50 article-title: Local Uncertainty Processing (LOUP) method for multidisciplinary robust design optimization publication-title: Struct Multidiscip Optim – volume: 25 start-page: 99 year: 2003 ident: 10.1016/j.strusafe.2013.04.001_bib59 article-title: CQ2RS: a new statistical approach to the response surface method forreliability analysis publication-title: Struct Saf doi: 10.1016/S0167-4730(02)00045-0 – ident: 10.1016/j.strusafe.2013.04.001_bib1 doi: 10.1201/b11332-100 – volume: 58 start-page: 1246 year: 1963 ident: 10.1016/j.strusafe.2013.04.001_bib43 article-title: Principles of geostatistics publication-title: Econ Geol doi: 10.2113/gsecongeo.58.8.1246 – ident: 10.1016/j.strusafe.2013.04.001_bib20 doi: 10.1145/256562.256635 – ident: 10.1016/j.strusafe.2013.04.001_bib10 doi: 10.1515/9783110941951 – year: 2000 ident: 10.1016/j.strusafe.2013.04.001_bib13 – volume: 27 start-page: 246 year: 2005 ident: 10.1016/j.strusafe.2013.04.001_bib57 article-title: Benefit of splines and neural networks in simulation based structural reliability analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2004.11.001 – volume: 33 start-page: 145 year: 2011 ident: 10.1016/j.strusafe.2013.04.001_bib4 article-title: AK-MCS: an active learning reliability method combining Kriging and Monte Carlo Simulation publication-title: Struct Saf doi: 10.1016/j.strusafe.2011.01.002 – volume: 37 start-page: 183 year: 2005 ident: 10.1016/j.strusafe.2013.04.001_bib53 article-title: Sequential, bayesian geostatistics: a principled method for large data sets publication-title: Geogr Anal doi: 10.1111/j.1538-4632.2005.00635.x – year: 1994 ident: 10.1016/j.strusafe.2013.04.001_bib11 – volume: 3 start-page: 119 year: 1975 ident: 10.1016/j.strusafe.2013.04.001_bib31 article-title: Statistical inference using extreme order statistics publication-title: Ann Stat doi: 10.1214/aos/1176343003 – volume: 7 start-page: 57 year: 1990 ident: 10.1016/j.strusafe.2013.04.001_bib37 article-title: A fast and efficientresponse surface approach for structural reliability problems publication-title: Struct Saf doi: 10.1016/0167-4730(90)90012-E – volume: 19 start-page: 381 year: 2007 ident: 10.1016/j.strusafe.2013.04.001_bib6 article-title: A study on the cross-entropy method for rare event probability estimation publication-title: INFORMS J Comput doi: 10.1287/ijoc.1060.0176 – volume: 26 start-page: 49 year: 2004 ident: 10.1016/j.strusafe.2013.04.001_bib38 article-title: Comparison of response surface and neural network with other methods for structural reliability analysis publication-title: Struct Saf doi: 10.1016/S0167-4730(03)00022-5 – year: 2001 ident: 10.1016/j.strusafe.2013.04.001_bib32 – volume: 12 start-page: 205 year: 1993 ident: 10.1016/j.strusafe.2013.04.001_bib58 article-title: Comparison of response surface and neural network with other methods for structural reliability analysis publication-title: Struct Saf doi: 10.1016/0167-4730(93)90003-J – year: 2012 ident: 10.1016/j.strusafe.2013.04.001_bib36 article-title: Meta-models for structural reliability and uncertainty quantification doi: 10.3850/978-981-07-2219-7_P321 – year: 2003 ident: 10.1016/j.strusafe.2013.04.001_bib45 – volume: 55 start-page: 313 year: 2013 ident: 10.1016/j.strusafe.2013.04.001_bib2 article-title: Simultaneous Kriging-based estimation and optimization of mean response publication-title: J Global Optim doi: 10.1007/s10898-011-9836-5 – volume: 11 start-page: 785 year: 2007 ident: 10.1016/j.strusafe.2013.04.001_bib16 article-title: Generalized cross-entropy methods with applications to rare-event simulation and optimization publication-title: Simulation doi: 10.1177/0037549707087067 – volume: 7 start-page: 107 year: 2008 ident: 10.1016/j.strusafe.2013.04.001_bib24 article-title: Rare event simulation for a static distribution publication-title: RESIM – volume: 146 start-page: 5977 year: 2007 ident: 10.1016/j.strusafe.2013.04.001_bib35 article-title: Mean-squared error of kernel estimators for finite values of the sample size publication-title: J Math Sci doi: 10.1007/s10958-007-0456-z – year: 2009 ident: 10.1016/j.strusafe.2013.04.001_bib49 – volume: 27 start-page: 207 year: 2006 ident: 10.1016/j.strusafe.2013.04.001_bib27 article-title: An application of extreme value theory for measuring risk publication-title: Comput Econ doi: 10.1007/s10614-006-9025-7 – year: 2002 ident: 10.1016/j.strusafe.2013.04.001_bib55 – year: 1986 ident: 10.1016/j.strusafe.2013.04.001_bib9 – ident: 10.1016/j.strusafe.2013.04.001_bib46 doi: 10.3182/20090706-3-FR-2004.00090 – volume: 33 start-page: 343 year: 2011 ident: 10.1016/j.strusafe.2013.04.001_bib42 article-title: Assessing small failure probabilities by combined subset simulation and support vector machines publication-title: Struct Saf doi: 10.1016/j.strusafe.2011.06.001 – volume: 19 start-page: 65 year: 2007 ident: 10.1016/j.strusafe.2013.04.001_bib23 article-title: Adaptive particle techniques and rare event estimation publication-title: ESAIM doi: 10.1051/proc:071909 – volume: 96 start-page: 178 year: 2011 ident: 10.1016/j.strusafe.2013.04.001_bib60 article-title: Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2010.08.006 – volume: 229 start-page: 8966 year: 2010 ident: 10.1016/j.strusafe.2013.04.001_bib40 article-title: Evaluation of failure probability via surrogate models publication-title: J Comput Phys doi: 10.1016/j.jcp.2010.08.022 – year: 2010 ident: 10.1016/j.strusafe.2013.04.001_bib51 article-title: A numerical comparison of two sequential Kriging-based algorithms to estimate a probability of failure – start-page: 39 year: 2009 ident: 10.1016/j.strusafe.2013.04.001_bib22 article-title: Splitting methods – year: 2006 ident: 10.1016/j.strusafe.2013.04.001_bib28 article-title: Estimation of extreme values, with application to uncertain systems – start-page: 180 year: 1996 ident: 10.1016/j.strusafe.2013.04.001_bib18 – start-page: 1 year: 2011 ident: 10.1016/j.strusafe.2013.04.001_bib25 article-title: Sequential Monte Carlo for rare event estimation publication-title: Stat Comput – start-page: 403 year: 2001 ident: 10.1016/j.strusafe.2013.04.001_bib15 article-title: Introduction to importance sampling in rare-event simulations publication-title: Eur J Phys doi: 10.1088/0143-0807/22/4/315 – volume: 91 start-page: 1245 year: 1996 ident: 10.1016/j.strusafe.2013.04.001_bib7 article-title: Nonparametric importance sampling publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476994 – volume: 52 start-page: 393 year: 1990 ident: 10.1016/j.strusafe.2013.04.001_bib29 article-title: Models for exceedances over high thresholds (with discussion) publication-title: J Roy Stat Soc doi: 10.1111/j.2517-6161.1990.tb01796.x – volume: 31 start-page: 41 year: 2010 ident: 10.1016/j.strusafe.2013.04.001_bib19 article-title: How to approach the importance sampling density publication-title: Eur J Phys doi: 10.1088/0143-0807/31/2/L01 – year: 1997 ident: 10.1016/j.strusafe.2013.04.001_bib30 article-title: The peaks over threshold method for estimating high quantiles of loss distributions – ident: 10.1016/j.strusafe.2013.04.001_bib47 – year: 2004 ident: 10.1016/j.strusafe.2013.04.001_bib5 |
| SSID | ssj0005828 |
| Score | 2.3950987 |
| Snippet | Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Applied sciences Computer simulation Estimates Exact sciences and technology Ground, air and sea transportation, marine construction Importance Sampling Input–output function Kriging Marine construction Rare event estimation Samples Sampling Statistical analysis Statistical methods Surrogate model |
| Title | Kriging-based adaptive Importance Sampling algorithms for rare event estimation |
| URI | https://dx.doi.org/10.1016/j.strusafe.2013.04.001 https://www.proquest.com/docview/1500783343 https://www.proquest.com/docview/1753553148 |
| Volume | 44 |
| WOSCitedRecordID | wos000329476800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3355 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005828 issn: 0167-4730 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwGEEF8THTAFCXGpAknj1PFxQp0YmzokOqk3y7GdrVOXdm03Tfz1vGc7SasBGwcuURTFseX3i_38Pn6PkA9KY_ZUJkOuUiTV7slQ9nQexoalhdb9RBfUFptgw2E2HvPvrdZhlQtzPWVlmd3c8Pl_FTU8A2Fj6uw_iLv-KDyAexA6XEHscL2X4A9tqavTEPcn3ZVazm100MGF1bQt86bEMHJMTpyezhaT1ZkjZeguMArMMjp1kXvjohGa115_WLJZS9SxlIVnEHF20KlZYsqvS_9ZnU3MVS1K6MK5d0xNjeD4C37KVZWi7RPSvPkBS0HwyvzgLZJInM68c8UvqZSurYnx2ubqQlhvLdvOgnD-CTlzcfwYcpdYClrf1QZP9vBY7J8cHYnRYDz6OL8MsYQYutp9PZUHZKvHUp61ydbewWD8rYn4yWyp3XrEawnjv-_6T7rKk7lcwh9UuNInt3Zxq5qMnpGn_kwR7DksPCctU74gj9eYJl-S4w1UBBUqggYVQYWKoEFFAKgIEBWBRUXQoOIVOdkfjL58DX0tjVBRRldhbiJeMLhXMle5TtMMdJdYFSwvKJU5TRU1NC6SHPR3XfQ0l1mSg_KoJfrqaZRsk3Y5K81rEvRzzVmmeBH1NSjTVOpI8VhJxUyUSJl2SFrNmlCeaB7rnUxFFVF4LqrZFjjbIqIYWtkhn-t2c0e1cmcLXglFeIXRKYICgHVn290NKdZdYqgBg0N4h7yvxCpgyUU_mizN7Gop4AyFzu-EJn95h6WgyScxzXbu8c4b8qj5t96SNozXvCMP1fVqslzsehz_AsxRteE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kriging-based+adaptive+Importance+Sampling+algorithms+for+rare+event+estimation&rft.jtitle=Structural+safety&rft.au=Balesdent%2C+Mathieu&rft.au=Morio%2C+Jerome&rft.au=Marzat%2C+Julien&rft.date=2013-09-01&rft.issn=0167-4730&rft.volume=44&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.strusafe.2013.04.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon |