Kriging-based adaptive Importance Sampling algorithms for rare event estimation

Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the number of samples required to apply these techniques is relatively low compared to Monte-Carlo simulations of same efficiency, it is often diff...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Structural safety Ročník 44; s. 1 - 10
Hlavní autori: Balesdent, Mathieu, Morio, Jérôme, Marzat, Julien
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Ltd 01.09.2013
Elsevier
Predmet:
ISSN:0167-4730, 1879-3355
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the number of samples required to apply these techniques is relatively low compared to Monte-Carlo simulations of same efficiency, it is often difficult to implement them on time-consuming simulation codes. A joint use of sampling techniques and surrogate models may thus be of use. In this article, we develop a Kriging-based adaptive Importance Sampling approach for rare event probability estimation. The novelty resides in the use of adaptive Importance Sampling and consequently the ability to estimate very rare event probabilities (lower than 10−3) that have not been considered in previous work on similar subjects. The statistical properties of Kriging also make it possible to compute a confidence measure for the resulting estimation. Results on both analytical and engineering test cases show the efficiency of the approach in terms of accuracy and low number of samples. •Adaptation of Kriging surrogate model to adaptive rare event estimation.•Definition of confidence interval for the probability estimation.•The novelty resides in the use of adaptive Importance Sampling and the ability to estimate very rare event probabilities.•Kriging-based Importance Sampling approach has been illustrated and compared on analytical test-cases from the literature.•Proposed method is suitable for time-consuming simulation codes.
AbstractList Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the number of samples required to apply these techniques is relatively low compared to Monte-Carlo simulations of same efficiency, it is often difficult to implement them on time-consuming simulation codes. A joint use of sampling techniques and surrogate models may thus be of use. In this article, we develop a Kriging-based adaptive Importance Sampling approach for rare event probability estimation. The novelty resides in the use of adaptive Importance Sampling and consequently the ability to estimate very rare event probabilities (lower than 10a3) that have not been considered in previous work on similar subjects. The statistical properties of Kriging also make it possible to compute a confidence measure for the resulting estimation. Results on both analytical and engineering test cases show the efficiency of the approach in terms of accuracy and low number of samples.
Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the number of samples required to apply these techniques is relatively low compared to Monte-Carlo simulations of same efficiency, it is often difficult to implement them on time-consuming simulation codes. A joint use of sampling techniques and surrogate models may thus be of use. In this article, we develop a Kriging-based adaptive Importance Sampling approach for rare event probability estimation. The novelty resides in the use of adaptive Importance Sampling and consequently the ability to estimate very rare event probabilities (lower than 10−3) that have not been considered in previous work on similar subjects. The statistical properties of Kriging also make it possible to compute a confidence measure for the resulting estimation. Results on both analytical and engineering test cases show the efficiency of the approach in terms of accuracy and low number of samples. •Adaptation of Kriging surrogate model to adaptive rare event estimation.•Definition of confidence interval for the probability estimation.•The novelty resides in the use of adaptive Importance Sampling and the ability to estimate very rare event probabilities.•Kriging-based Importance Sampling approach has been illustrated and compared on analytical test-cases from the literature.•Proposed method is suitable for time-consuming simulation codes.
Author Morio, Jérôme
Balesdent, Mathieu
Marzat, Julien
Author_xml – sequence: 1
  givenname: Mathieu
  surname: Balesdent
  fullname: Balesdent, Mathieu
  email: mathieu.balesdent@onera.fr
– sequence: 2
  givenname: Jérôme
  surname: Morio
  fullname: Morio, Jérôme
– sequence: 3
  givenname: Julien
  surname: Marzat
  fullname: Marzat, Julien
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28067768$$DView record in Pascal Francis
BookMark eNqFkU9vEzEUxC3USqSFr4D2gsRll-e1HTsSB1BFS0WlHgpn6633OTjaf9hOJL49DmkvXHKyD7-Z0by5YhfTPBFj7zg0HPj6465JOe4Tempa4KIB2QDwV2zFjd7UQih1wVYF1LXUAl6zq5R2AKBMa1bs8XsM2zBt6w4T9RX2uORwoOp-XOaYcXJUPeG4DAWpcNjOMeRfY6r8HKuIkSo60JQrSjmMmMM8vWGXHodEb5_fa_bz9uuPm2_1w-Pd_c2Xh9pJLXPdEWy8Ln-Hnet6pYwAwZ3XnZcSO6mcJMm96EDp3rf9Bo3oTNv2CGvdShDX7MPJd4nz733Jt2NIjoYBJ5r3yXKtSnHBpTmPKgBthJCioO-fUUwOBx_LAUKySyzt4h_bmpKu10fLTyfOxTmlSN66kP_1zxHDYDnY4zR2Z1-mscdpLEhbpiny9X_yl4Szws8nIZXTHgJFm1ygMlIfIrls-zmcs_gLiACv5Q
CODEN STSADI
CitedBy_id crossref_primary_10_1016_j_strusafe_2023_102364
crossref_primary_10_3389_frai_2020_00052
crossref_primary_10_3390_math8020209
crossref_primary_10_1016_j_apm_2017_04_003
crossref_primary_10_1007_s00158_018_1975_6
crossref_primary_10_1016_j_ress_2019_106758
crossref_primary_10_1007_s00158_024_03911_x
crossref_primary_10_3390_electronics12071741
crossref_primary_10_1016_j_cma_2025_117992
crossref_primary_10_1108_EC_12_2021_0705
crossref_primary_10_1016_j_istruc_2023_104956
crossref_primary_10_1016_j_strusafe_2016_05_001
crossref_primary_10_1080_16843703_2022_2116265
crossref_primary_10_1016_j_ress_2023_109898
crossref_primary_10_1002_2016WR019518
crossref_primary_10_1016_j_ress_2016_01_023
crossref_primary_10_1007_s00158_022_03217_w
crossref_primary_10_1016_j_probengmech_2016_08_002
crossref_primary_10_1002_nme_6847
crossref_primary_10_1007_s00158_014_1189_5
crossref_primary_10_1002_qre_3677
crossref_primary_10_1016_j_strusafe_2015_12_003
crossref_primary_10_1016_j_strusafe_2019_101876
crossref_primary_10_1007_s00158_018_2176_z
crossref_primary_10_1016_j_strusafe_2019_101875
crossref_primary_10_1016_j_cma_2024_116992
crossref_primary_10_1016_j_ymssp_2020_106802
crossref_primary_10_3390_s23084160
crossref_primary_10_1080_17499518_2021_1952611
crossref_primary_10_1007_s11009_014_9411_x
crossref_primary_10_1177_1748006X19844666
crossref_primary_10_3390_app12199860
crossref_primary_10_1007_s00707_014_1252_8
crossref_primary_10_1007_s00158_019_02384_7
crossref_primary_10_1016_j_cma_2018_10_003
crossref_primary_10_1007_s00158_022_03346_2
crossref_primary_10_1016_j_ress_2019_01_014
crossref_primary_10_1016_j_ress_2021_108214
crossref_primary_10_1016_j_simpat_2014_10_007
crossref_primary_10_1016_j_ress_2017_10_013
crossref_primary_10_1007_s00158_018_1911_9
crossref_primary_10_1016_j_ress_2019_106735
crossref_primary_10_1016_j_compgeo_2020_103451
crossref_primary_10_1007_s12206_020_0317_y
crossref_primary_10_1016_j_strusafe_2014_02_003
crossref_primary_10_1051_jnwpu_20203820412
crossref_primary_10_1016_j_apm_2020_08_042
crossref_primary_10_1002_qre_2352
crossref_primary_10_1016_j_jcp_2017_03_047
crossref_primary_10_1007_s00158_019_02419_z
crossref_primary_10_1016_j_ress_2022_108403
crossref_primary_10_1007_s00158_016_1504_4
crossref_primary_10_1016_j_jsv_2024_118914
crossref_primary_10_1016_j_strusafe_2022_102216
crossref_primary_10_1016_j_ress_2016_09_003
crossref_primary_10_1109_ACCESS_2020_3014238
crossref_primary_10_1016_j_apm_2022_03_015
crossref_primary_10_1016_j_jcp_2016_02_053
crossref_primary_10_1137_21M1416758
crossref_primary_10_1016_j_cma_2020_113336
crossref_primary_10_1007_s11356_017_0030_2
crossref_primary_10_1111_insr_12573
crossref_primary_10_1016_j_ress_2019_03_005
crossref_primary_10_1007_s00158_025_04044_5
crossref_primary_10_1007_s00158_023_03627_4
crossref_primary_10_1016_j_strusafe_2018_06_003
crossref_primary_10_1016_j_strusafe_2021_102174
crossref_primary_10_1007_s00158_022_03431_6
crossref_primary_10_1109_ACCESS_2019_2915350
crossref_primary_10_1016_j_engstruct_2017_06_038
crossref_primary_10_1016_j_istruc_2025_110064
crossref_primary_10_1007_s00366_021_01308_8
crossref_primary_10_1016_j_paerosci_2016_07_004
crossref_primary_10_1016_j_jcp_2017_03_021
crossref_primary_10_1016_j_physd_2023_133957
crossref_primary_10_1155_2019_6357104
crossref_primary_10_1016_j_strusafe_2019_03_007
crossref_primary_10_1007_s00158_018_2150_9
crossref_primary_10_1007_s00158_023_03598_6
crossref_primary_10_1016_j_actaastro_2023_03_038
crossref_primary_10_1016_j_ast_2020_106339
crossref_primary_10_1109_TR_2023_3311192
crossref_primary_10_1007_s00158_020_02825_8
crossref_primary_10_1002_nme_6135
crossref_primary_10_1016_j_advengsoft_2017_08_001
crossref_primary_10_1007_s00158_021_02864_9
crossref_primary_10_1007_s00158_023_03571_3
crossref_primary_10_1016_j_probengmech_2023_103479
crossref_primary_10_1016_j_probengmech_2023_103513
crossref_primary_10_1016_j_ress_2019_106771
crossref_primary_10_1016_j_engfracmech_2019_106514
crossref_primary_10_1016_j_strusafe_2025_102597
crossref_primary_10_1088_1755_1315_128_1_012094
crossref_primary_10_1016_j_dsp_2021_103104
crossref_primary_10_1016_j_jsv_2019_115083
crossref_primary_10_1016_j_ress_2022_108449
crossref_primary_10_1016_j_istruc_2024_107621
crossref_primary_10_1007_s40996_018_0143_y
crossref_primary_10_1177_13694332221092677
crossref_primary_10_1016_j_apm_2019_01_025
crossref_primary_10_1061_JENMDT_EMENG_6805
crossref_primary_10_1002_nav_21938
crossref_primary_10_1016_j_strusafe_2021_102116
crossref_primary_10_1016_j_jobe_2022_104116
Cites_doi 10.1016/j.strusafe.2006.07.008
10.1016/S0377-2217(96)00385-2
10.1016/j.ejor.2007.10.013
10.1088/0143-0807/21/5/305
10.1016/j.probengmech.2007.08.004
10.1016/j.simpat.2012.05.008
10.1088/0143-0807/31/5/028
10.1109/WSC.2006.323046
10.1007/s11222-011-9241-4
10.1109/5992.753049
10.1016/S0167-4730(02)00045-0
10.1201/b11332-100
10.2113/gsecongeo.58.8.1246
10.1145/256562.256635
10.1515/9783110941951
10.1016/j.strusafe.2004.11.001
10.1016/j.strusafe.2011.01.002
10.1111/j.1538-4632.2005.00635.x
10.1214/aos/1176343003
10.1016/0167-4730(90)90012-E
10.1287/ijoc.1060.0176
10.1016/S0167-4730(03)00022-5
10.1016/0167-4730(93)90003-J
10.3850/978-981-07-2219-7_P321
10.1007/s10898-011-9836-5
10.1177/0037549707087067
10.1007/s10958-007-0456-z
10.1007/s10614-006-9025-7
10.3182/20090706-3-FR-2004.00090
10.1016/j.strusafe.2011.06.001
10.1051/proc:071909
10.1016/j.ress.2010.08.006
10.1016/j.jcp.2010.08.022
10.1088/0143-0807/22/4/315
10.1080/01621459.1996.10476994
10.1111/j.2517-6161.1990.tb01796.x
10.1088/0143-0807/31/2/L01
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7T2
C1K
7SM
8FD
FR3
KR7
DOI 10.1016/j.strusafe.2013.04.001
DatabaseName CrossRef
Pascal-Francis
Health and Safety Science Abstracts (Full archive)
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Health & Safety Science Abstracts
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
DatabaseTitleList Health & Safety Science Abstracts

Earthquake Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3355
EndPage 10
ExternalDocumentID 28067768
10_1016_j_strusafe_2013_04_001
S0167473013000350
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7T2
C1K
7SM
8FD
FR3
KR7
ID FETCH-LOGICAL-c474t-be09f7c47cabcbd5583031cf7bf44ab45c4e41f3b057df2d9a83b822da0672403
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329476800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4730
IngestDate Thu Oct 02 19:55:41 EDT 2025
Tue Oct 07 09:58:00 EDT 2025
Wed Apr 02 07:35:46 EDT 2025
Tue Nov 18 21:54:55 EST 2025
Sat Nov 29 02:11:14 EST 2025
Fri Feb 23 02:33:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surrogate model
Importance Sampling
Input–output function
Kriging
Rare event estimation
Estimation
Aeronautics
Spacecraft
Probability
Input-output function
Rare event
Modeling
Adaptive method
Statistics
Case study
Input output analysis
Launching
Safety
Sampling
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-be09f7c47cabcbd5583031cf7bf44ab45c4e41f3b057df2d9a83b822da0672403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1500783343
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1753553148
proquest_miscellaneous_1500783343
pascalfrancis_primary_28067768
crossref_citationtrail_10_1016_j_strusafe_2013_04_001
crossref_primary_10_1016_j_strusafe_2013_04_001
elsevier_sciencedirect_doi_10_1016_j_strusafe_2013_04_001
PublicationCentury 2000
PublicationDate 2013-09-00
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-00
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Structural safety
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Cérou, Del Moral, Furon, Guyader (bib24) 2008; 7
Gilli, Këllezi (bib27) 2006; 27
Piera-Martinez, Vazquez, Walter, Fleury, Kielbasa (bib28) 2006
Mikhailov GA. Parametric estimates by the Monte Carlo method. Utrecht (NED): VSP; 1999.
Zhang (bib7) 1996; 91
Gayton, Bourinet, Lemaire (bib59) 2003; 25
Li, Bect, Vazquez (bib51) 2010
Glynn (bib18) 1996
Matheron (bib43) 1963; 58
Homem-de Mello (bib6) 2007; 19
Morio (bib8) 2012; 27
Botev, Kroese, Taimre (bib16) 2007; 11
L’Écuyer P, Demers V, Tuffin B. Splitting for rare event simulation. In: Proceeding of the 2006 Winter Simulation Conference. p. 137–48.
Lophaven, Nielsen, Songdergaard (bib55) 2002
Davison, Smith (bib29) 1990; 52
Boer, Kroese, Mannor, Rubinstein (bib34) 2002; 134
Borcherds (bib14) 2000
Janusevskis, Le Riche (bib2) 2013; 55
Sudret (bib36) 2012
Cérou, Del Moral, Furon, Guyader (bib25) 2011
Bucklew (bib33) 2004
L’Écuyer, Le Gland, Lezaud, B Tuffin (bib22) 2009
Kleijnen (bib52) 2009; 192
Rajashekhar, Ellingwood (bib58) 1993; 12
Coles (bib32) 2001
Sasena (bib44) 2002
Hansen (bib54) 2006; vol. 192
Picheny (bib49) 2009
Morio (bib19) 2010; 31
Pickands (bib31) 1975; 3
Schueremans L, Van Gemert D. Use of Kriging as meta-model in simulation procedures for structural reliability. In: 9th international conference on structural safety and reliability, Rome; 2005. p. 2483–90.
Vazquez E, Bect J. A sequential Bayesian algorithm to estimate a probability of failure. In: Proceedings of the 15th IFAC symposium on system identification, Saint-Malo, France, July 6–8. p. 546–50.
Baudoui, Klotz, Hiriart-Urruty, Jan, Morel (bib50) 2012
Bect, Ginsbourger, Li, Picheny, Vazquez (bib48) 2012; 22
Beichl, Sullivan (bib3) 1999; 1
Li L, Bect J, Vazquez E. Bayesian subset simulation: a Kriging-based subset simulation algorithm for the estimation of small probabilities of failure. In: Proceedings of PSAM 11 and ESREL 2012, 25–29 June 2012, Helsinki, Finland.
Echard, Gayton, Lemaire (bib4) 2011; 33
Silverman (bib9) 1986
Robert, Casella (bib12) 2005
Morio (bib60) 2011; 96
Li, Xiu (bib40) 2010; 229
Au, Ching, Beck (bib56) 2007; 29
Rubinstein (bib17) 1997; 99
Dubourg V, Deheeger E, Sudret B. Metamodel-based importance sampling for the simulation of rare events. In: Faber M, Kohler J, Nishilima K, editors. Proceedings of the 11th International Conference of Statistics and Probability in Civil Engineering (ICASP2011), Zurich, Switzerland.
Rubinstein, Kroese (bib5) 2004
Denny (bib15) 2001
Niederreiter, Spanier (bib13) 2000
Glasserman P, Heidelberger P, Shahabuddin P, Zajic T. Splitting for rare event simulation: analysis of simple cases. In: Proceeding of the 1996 Winter Simulation Conference. p. 302–08.
Gomes, Awruch (bib38) 2004; 26
Schueremans, Van Gemert (bib57) 2005; 27
Bourinet, Deheeger, Lemaire (bib42) 2011; 33
Santner, Williams, Notz (bib45) 2003
Cérou, Guyader (bib23) 2007; 19
Sobol (bib11) 1994
Basudhar, Missoum, Sanchez (bib41) 2008; 23
McNeil, Saladin (bib30) 1997
Bucher, Bourgund (bib37) 1990; 7
Cornford, Csató, Opper (bib53) 2005; 37
Glad, Hjort, Ushakov (bib35) 2007; 146
Morio, Pastel, Le Gland (bib26) 2010; 31
Coles (10.1016/j.strusafe.2013.04.001_bib32) 2001
Morio (10.1016/j.strusafe.2013.04.001_bib60) 2011; 96
Bourinet (10.1016/j.strusafe.2013.04.001_bib42) 2011; 33
Glad (10.1016/j.strusafe.2013.04.001_bib35) 2007; 146
Au (10.1016/j.strusafe.2013.04.001_bib56) 2007; 29
Rajashekhar (10.1016/j.strusafe.2013.04.001_bib58) 1993; 12
10.1016/j.strusafe.2013.04.001_bib1
McNeil (10.1016/j.strusafe.2013.04.001_bib30) 1997
Basudhar (10.1016/j.strusafe.2013.04.001_bib41) 2008; 23
Bucklew (10.1016/j.strusafe.2013.04.001_bib33) 2004
10.1016/j.strusafe.2013.04.001_bib47
10.1016/j.strusafe.2013.04.001_bib46
Cérou (10.1016/j.strusafe.2013.04.001_bib23) 2007; 19
Zhang (10.1016/j.strusafe.2013.04.001_bib7) 1996; 91
Robert (10.1016/j.strusafe.2013.04.001_bib12) 2005
Denny (10.1016/j.strusafe.2013.04.001_bib15) 2001
Sudret (10.1016/j.strusafe.2013.04.001_bib36) 2012
Picheny (10.1016/j.strusafe.2013.04.001_bib49) 2009
Boer (10.1016/j.strusafe.2013.04.001_bib34) 2002; 134
Gayton (10.1016/j.strusafe.2013.04.001_bib59) 2003; 25
Matheron (10.1016/j.strusafe.2013.04.001_bib43) 1963; 58
Silverman (10.1016/j.strusafe.2013.04.001_bib9) 1986
Santner (10.1016/j.strusafe.2013.04.001_bib45) 2003
Cornford (10.1016/j.strusafe.2013.04.001_bib53) 2005; 37
Rubinstein (10.1016/j.strusafe.2013.04.001_bib17) 1997; 99
Cérou (10.1016/j.strusafe.2013.04.001_bib25) 2011
Cérou (10.1016/j.strusafe.2013.04.001_bib24) 2008; 7
Gilli (10.1016/j.strusafe.2013.04.001_bib27) 2006; 27
Pickands (10.1016/j.strusafe.2013.04.001_bib31) 1975; 3
10.1016/j.strusafe.2013.04.001_bib39
Glynn (10.1016/j.strusafe.2013.04.001_bib18) 1996
L’Écuyer (10.1016/j.strusafe.2013.04.001_bib22) 2009
Sasena (10.1016/j.strusafe.2013.04.001_bib44) 2002
Li (10.1016/j.strusafe.2013.04.001_bib40) 2010; 229
Hansen (10.1016/j.strusafe.2013.04.001_bib54) 2006; vol. 192
Morio (10.1016/j.strusafe.2013.04.001_bib26) 2010; 31
Gomes (10.1016/j.strusafe.2013.04.001_bib38) 2004; 26
Baudoui (10.1016/j.strusafe.2013.04.001_bib50) 2012
Sobol (10.1016/j.strusafe.2013.04.001_bib11) 1994
Schueremans (10.1016/j.strusafe.2013.04.001_bib57) 2005; 27
Homem-de Mello (10.1016/j.strusafe.2013.04.001_bib6) 2007; 19
Lophaven (10.1016/j.strusafe.2013.04.001_bib55) 2002
Bect (10.1016/j.strusafe.2013.04.001_bib48) 2012; 22
10.1016/j.strusafe.2013.04.001_bib21
10.1016/j.strusafe.2013.04.001_bib20
Li (10.1016/j.strusafe.2013.04.001_bib51) 2010
Janusevskis (10.1016/j.strusafe.2013.04.001_bib2) 2013; 55
Beichl (10.1016/j.strusafe.2013.04.001_bib3) 1999; 1
Niederreiter (10.1016/j.strusafe.2013.04.001_bib13) 2000
Kleijnen (10.1016/j.strusafe.2013.04.001_bib52) 2009; 192
Morio (10.1016/j.strusafe.2013.04.001_bib8) 2012; 27
Echard (10.1016/j.strusafe.2013.04.001_bib4) 2011; 33
Davison (10.1016/j.strusafe.2013.04.001_bib29) 1990; 52
Bucher (10.1016/j.strusafe.2013.04.001_bib37) 1990; 7
Botev (10.1016/j.strusafe.2013.04.001_bib16) 2007; 11
Rubinstein (10.1016/j.strusafe.2013.04.001_bib5) 2004
10.1016/j.strusafe.2013.04.001_bib10
Morio (10.1016/j.strusafe.2013.04.001_bib19) 2010; 31
Borcherds (10.1016/j.strusafe.2013.04.001_bib14) 2000
Piera-Martinez (10.1016/j.strusafe.2013.04.001_bib28) 2006
References_xml – volume: 19
  start-page: 381
  year: 2007
  end-page: 394
  ident: bib6
  article-title: A study on the cross-entropy method for rare event probability estimation
  publication-title: INFORMS J Comput
– start-page: 1
  year: 2012
  end-page: 16
  ident: bib50
  article-title: Local Uncertainty Processing (LOUP) method for multidisciplinary robust design optimization
  publication-title: Struct Multidiscip Optim
– volume: 23
  start-page: 1
  year: 2008
  end-page: 11
  ident: bib41
  article-title: Limit state function identification using support vector machines for discontinuous responses and disjoint failure domains
  publication-title: Probabilist Eng Mech
– volume: 12
  start-page: 205
  year: 1993
  end-page: 220
  ident: bib58
  article-title: Comparison of response surface and neural network with other methods for structural reliability analysis
  publication-title: Struct Saf
– year: 2000
  ident: bib13
  article-title: Monte Carlo and quasi-Monte Carlo methods
– year: 2004
  ident: bib33
  article-title: Introduction to rare event simulation
– year: 2010
  ident: bib51
  article-title: A numerical comparison of two sequential Kriging-based algorithms to estimate a probability of failure
– year: 2006
  ident: bib28
  article-title: Estimation of extreme values, with application to uncertain systems
– volume: 58
  start-page: 1246
  year: 1963
  ident: bib43
  article-title: Principles of geostatistics
  publication-title: Econ Geol
– volume: 31
  start-page: 1295
  year: 2010
  end-page: 1303
  ident: bib26
  article-title: An overview of importance splitting for rare event simulation
  publication-title: Eur J Phys
– volume: 146
  start-page: 5977
  year: 2007
  end-page: 5983
  ident: bib35
  article-title: Mean-squared error of kernel estimators for finite values of the sample size
  publication-title: J Math Sci
– year: 2002
  ident: bib44
  article-title: Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximation
– volume: 37
  start-page: 183
  year: 2005
  end-page: 199
  ident: bib53
  article-title: Sequential, bayesian geostatistics: a principled method for large data sets
  publication-title: Geogr Anal
– year: 1997
  ident: bib30
  article-title: The peaks over threshold method for estimating high quantiles of loss distributions
– volume: 134
  year: 2002
  ident: bib34
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann Oper Res
– year: 1986
  ident: bib9
  article-title: Density estimation for statistics and data analysis
– volume: 229
  start-page: 8966
  year: 2010
  end-page: 8980
  ident: bib40
  article-title: Evaluation of failure probability via surrogate models
  publication-title: J Comput Phys
– volume: 91
  start-page: 1245
  year: 1996
  end-page: 1253
  ident: bib7
  article-title: Nonparametric importance sampling
  publication-title: J Am Stat Assoc
– volume: 192
  start-page: 707
  year: 2009
  end-page: 716
  ident: bib52
  article-title: Kriging metamodeling in simulation: a review
  publication-title: Eur J Oper Res
– volume: 27
  start-page: 76
  year: 2012
  end-page: 89
  ident: bib8
  article-title: Extreme quantile estimation with nonparametric adaptive importance sampling
  publication-title: Simul Model Pract Theory
– volume: 26
  start-page: 49
  year: 2004
  end-page: 67
  ident: bib38
  article-title: Comparison of response surface and neural network with other methods for structural reliability analysis
  publication-title: Struct Saf
– reference: L’Écuyer P, Demers V, Tuffin B. Splitting for rare event simulation. In: Proceeding of the 2006 Winter Simulation Conference. p. 137–48.
– volume: 11
  start-page: 785
  year: 2007
  end-page: 806
  ident: bib16
  article-title: Generalized cross-entropy methods with applications to rare-event simulation and optimization
  publication-title: Simulation
– reference: Dubourg V, Deheeger E, Sudret B. Metamodel-based importance sampling for the simulation of rare events. In: Faber M, Kohler J, Nishilima K, editors. Proceedings of the 11th International Conference of Statistics and Probability in Civil Engineering (ICASP2011), Zurich, Switzerland.
– volume: 52
  start-page: 393
  year: 1990
  end-page: 442
  ident: bib29
  article-title: Models for exceedances over high thresholds (with discussion)
  publication-title: J Roy Stat Soc
– reference: Vazquez E, Bect J. A sequential Bayesian algorithm to estimate a probability of failure. In: Proceedings of the 15th IFAC symposium on system identification, Saint-Malo, France, July 6–8. p. 546–50.
– start-page: 39
  year: 2009
  end-page: 61
  ident: bib22
  article-title: Splitting methods
  publication-title: Monte Carlo methods for rare event analysis
– volume: 25
  start-page: 99
  year: 2003
  end-page: 121
  ident: bib59
  article-title: CQ2RS: a new statistical approach to the response surface method forreliability analysis
  publication-title: Struct Saf
– year: 2012
  ident: bib36
  article-title: Meta-models for structural reliability and uncertainty quantification
– reference: Schueremans L, Van Gemert D. Use of Kriging as meta-model in simulation procedures for structural reliability. In: 9th international conference on structural safety and reliability, Rome; 2005. p. 2483–90.
– volume: 33
  start-page: 145
  year: 2011
  end-page: 154
  ident: bib4
  article-title: AK-MCS: an active learning reliability method combining Kriging and Monte Carlo Simulation
  publication-title: Struct Saf
– year: 2009
  ident: bib49
  article-title: Improving accuracy and compensating for uncertainty in surrogate modeling
– year: 2004
  ident: bib5
  article-title: The Cross-Entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning (information science and statistics)
– volume: 99
  start-page: 89
  year: 1997
  end-page: 112
  ident: bib17
  article-title: Optimization of computer simulation models with rare events
  publication-title: Eur J Oper Res
– year: 2001
  ident: bib32
  article-title: An introduction to statistical modeling of extreme values
– volume: vol. 192
  start-page: 75
  year: 2006
  end-page: 102
  ident: bib54
  article-title: The CMA evolution strategy: a comparing review
  publication-title: Towards a new evolutionary computation
– year: 2005
  ident: bib12
  article-title: Monte Carlo statistical methods
– year: 2002
  ident: bib55
  article-title: DACE a MATLAB Kriging toolbox, Technical Report IMM-TR-2002–12
– start-page: 1
  year: 2011
  end-page: 14
  ident: bib25
  article-title: Sequential Monte Carlo for rare event estimation
  publication-title: Stat Comput
– reference: Mikhailov GA. Parametric estimates by the Monte Carlo method. Utrecht (NED): VSP; 1999.
– volume: 27
  start-page: 246
  year: 2005
  end-page: 261
  ident: bib57
  article-title: Benefit of splines and neural networks in simulation based structural reliability analysis
  publication-title: Struct Saf
– year: 2003
  ident: bib45
  article-title: The design and analysis of computer experiments
– volume: 33
  start-page: 343
  year: 2011
  end-page: 353
  ident: bib42
  article-title: Assessing small failure probabilities by combined subset simulation and support vector machines
  publication-title: Struct Saf
– year: 1994
  ident: bib11
  article-title: A primer for the Monte Carlo method
– volume: 96
  start-page: 178
  year: 2011
  end-page: 183
  ident: bib60
  article-title: Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position
  publication-title: Reliab Eng Syst Saf
– volume: 55
  start-page: 313
  year: 2013
  end-page: 336
  ident: bib2
  article-title: Simultaneous Kriging-based estimation and optimization of mean response
  publication-title: J Global Optim
– reference: Li L, Bect J, Vazquez E. Bayesian subset simulation: a Kriging-based subset simulation algorithm for the estimation of small probabilities of failure. In: Proceedings of PSAM 11 and ESREL 2012, 25–29 June 2012, Helsinki, Finland.
– volume: 29
  start-page: 183
  year: 2007
  end-page: 193
  ident: bib56
  article-title: Application of subset simulation methods to reliability benchmark problems
  publication-title: Struct Saf
– volume: 1
  start-page: 71
  year: 1999
  end-page: 73
  ident: bib3
  article-title: The importance of importance sampling
  publication-title: Comput Sci Eng
– volume: 31
  start-page: 41
  year: 2010
  end-page: 48
  ident: bib19
  article-title: How to approach the importance sampling density
  publication-title: Eur J Phys
– volume: 7
  start-page: 107
  year: 2008
  end-page: 115
  ident: bib24
  article-title: Rare event simulation for a static distribution
  publication-title: RESIM
– reference: Glasserman P, Heidelberger P, Shahabuddin P, Zajic T. Splitting for rare event simulation: analysis of simple cases. In: Proceeding of the 1996 Winter Simulation Conference. p. 302–08.
– volume: 3
  start-page: 119
  year: 1975
  end-page: 131
  ident: bib31
  article-title: Statistical inference using extreme order statistics
  publication-title: Ann Stat
– volume: 22
  start-page: 773
  year: 2012
  end-page: 793
  ident: bib48
  article-title: Sequential design of computer experiments for the estimation of a probability of failure
  publication-title: Stat Comput
– start-page: 405
  year: 2000
  end-page: 411
  ident: bib14
  article-title: Importance sampling: an illustrative introduction
  publication-title: Eur J Phys
– volume: 7
  start-page: 57
  year: 1990
  end-page: 66
  ident: bib37
  article-title: A fast and efficientresponse surface approach for structural reliability problems
  publication-title: Struct Saf
– start-page: 180
  year: 1996
  end-page: 185
  ident: bib18
  article-title: Importance sampling for Monte Carlo estimation of quantiles
– volume: 27
  start-page: 207
  year: 2006
  end-page: 228
  ident: bib27
  article-title: An application of extreme value theory for measuring risk
  publication-title: Comput Econ
– start-page: 403
  year: 2001
  end-page: 411
  ident: bib15
  article-title: Introduction to importance sampling in rare-event simulations
  publication-title: Eur J Phys
– volume: 19
  start-page: 65
  year: 2007
  end-page: 72
  ident: bib23
  article-title: Adaptive particle techniques and rare event estimation
  publication-title: ESAIM
– year: 2005
  ident: 10.1016/j.strusafe.2013.04.001_bib12
– volume: 29
  start-page: 183
  year: 2007
  ident: 10.1016/j.strusafe.2013.04.001_bib56
  article-title: Application of subset simulation methods to reliability benchmark problems
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2006.07.008
– year: 2002
  ident: 10.1016/j.strusafe.2013.04.001_bib44
– volume: 99
  start-page: 89
  year: 1997
  ident: 10.1016/j.strusafe.2013.04.001_bib17
  article-title: Optimization of computer simulation models with rare events
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(96)00385-2
– ident: 10.1016/j.strusafe.2013.04.001_bib39
– volume: 192
  start-page: 707
  year: 2009
  ident: 10.1016/j.strusafe.2013.04.001_bib52
  article-title: Kriging metamodeling in simulation: a review
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2007.10.013
– start-page: 405
  year: 2000
  ident: 10.1016/j.strusafe.2013.04.001_bib14
  article-title: Importance sampling: an illustrative introduction
  publication-title: Eur J Phys
  doi: 10.1088/0143-0807/21/5/305
– volume: 23
  start-page: 1
  year: 2008
  ident: 10.1016/j.strusafe.2013.04.001_bib41
  article-title: Limit state function identification using support vector machines for discontinuous responses and disjoint failure domains
  publication-title: Probabilist Eng Mech
  doi: 10.1016/j.probengmech.2007.08.004
– volume: 27
  start-page: 76
  year: 2012
  ident: 10.1016/j.strusafe.2013.04.001_bib8
  article-title: Extreme quantile estimation with nonparametric adaptive importance sampling
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2012.05.008
– volume: 31
  start-page: 1295
  year: 2010
  ident: 10.1016/j.strusafe.2013.04.001_bib26
  article-title: An overview of importance splitting for rare event simulation
  publication-title: Eur J Phys
  doi: 10.1088/0143-0807/31/5/028
– year: 2004
  ident: 10.1016/j.strusafe.2013.04.001_bib33
– ident: 10.1016/j.strusafe.2013.04.001_bib21
  doi: 10.1109/WSC.2006.323046
– volume: 22
  start-page: 773
  year: 2012
  ident: 10.1016/j.strusafe.2013.04.001_bib48
  article-title: Sequential design of computer experiments for the estimation of a probability of failure
  publication-title: Stat Comput
  doi: 10.1007/s11222-011-9241-4
– volume: vol. 192
  start-page: 75
  year: 2006
  ident: 10.1016/j.strusafe.2013.04.001_bib54
  article-title: The CMA evolution strategy: a comparing review
– volume: 1
  start-page: 71
  year: 1999
  ident: 10.1016/j.strusafe.2013.04.001_bib3
  article-title: The importance of importance sampling
  publication-title: Comput Sci Eng
  doi: 10.1109/5992.753049
– volume: 134
  year: 2002
  ident: 10.1016/j.strusafe.2013.04.001_bib34
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann Oper Res
– start-page: 1
  year: 2012
  ident: 10.1016/j.strusafe.2013.04.001_bib50
  article-title: Local Uncertainty Processing (LOUP) method for multidisciplinary robust design optimization
  publication-title: Struct Multidiscip Optim
– volume: 25
  start-page: 99
  year: 2003
  ident: 10.1016/j.strusafe.2013.04.001_bib59
  article-title: CQ2RS: a new statistical approach to the response surface method forreliability analysis
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(02)00045-0
– ident: 10.1016/j.strusafe.2013.04.001_bib1
  doi: 10.1201/b11332-100
– volume: 58
  start-page: 1246
  year: 1963
  ident: 10.1016/j.strusafe.2013.04.001_bib43
  article-title: Principles of geostatistics
  publication-title: Econ Geol
  doi: 10.2113/gsecongeo.58.8.1246
– ident: 10.1016/j.strusafe.2013.04.001_bib20
  doi: 10.1145/256562.256635
– ident: 10.1016/j.strusafe.2013.04.001_bib10
  doi: 10.1515/9783110941951
– year: 2000
  ident: 10.1016/j.strusafe.2013.04.001_bib13
– volume: 27
  start-page: 246
  year: 2005
  ident: 10.1016/j.strusafe.2013.04.001_bib57
  article-title: Benefit of splines and neural networks in simulation based structural reliability analysis
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2004.11.001
– volume: 33
  start-page: 145
  year: 2011
  ident: 10.1016/j.strusafe.2013.04.001_bib4
  article-title: AK-MCS: an active learning reliability method combining Kriging and Monte Carlo Simulation
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2011.01.002
– volume: 37
  start-page: 183
  year: 2005
  ident: 10.1016/j.strusafe.2013.04.001_bib53
  article-title: Sequential, bayesian geostatistics: a principled method for large data sets
  publication-title: Geogr Anal
  doi: 10.1111/j.1538-4632.2005.00635.x
– year: 1994
  ident: 10.1016/j.strusafe.2013.04.001_bib11
– volume: 3
  start-page: 119
  year: 1975
  ident: 10.1016/j.strusafe.2013.04.001_bib31
  article-title: Statistical inference using extreme order statistics
  publication-title: Ann Stat
  doi: 10.1214/aos/1176343003
– volume: 7
  start-page: 57
  year: 1990
  ident: 10.1016/j.strusafe.2013.04.001_bib37
  article-title: A fast and efficientresponse surface approach for structural reliability problems
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(90)90012-E
– volume: 19
  start-page: 381
  year: 2007
  ident: 10.1016/j.strusafe.2013.04.001_bib6
  article-title: A study on the cross-entropy method for rare event probability estimation
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.1060.0176
– volume: 26
  start-page: 49
  year: 2004
  ident: 10.1016/j.strusafe.2013.04.001_bib38
  article-title: Comparison of response surface and neural network with other methods for structural reliability analysis
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(03)00022-5
– year: 2001
  ident: 10.1016/j.strusafe.2013.04.001_bib32
– volume: 12
  start-page: 205
  year: 1993
  ident: 10.1016/j.strusafe.2013.04.001_bib58
  article-title: Comparison of response surface and neural network with other methods for structural reliability analysis
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(93)90003-J
– year: 2012
  ident: 10.1016/j.strusafe.2013.04.001_bib36
  article-title: Meta-models for structural reliability and uncertainty quantification
  doi: 10.3850/978-981-07-2219-7_P321
– year: 2003
  ident: 10.1016/j.strusafe.2013.04.001_bib45
– volume: 55
  start-page: 313
  year: 2013
  ident: 10.1016/j.strusafe.2013.04.001_bib2
  article-title: Simultaneous Kriging-based estimation and optimization of mean response
  publication-title: J Global Optim
  doi: 10.1007/s10898-011-9836-5
– volume: 11
  start-page: 785
  year: 2007
  ident: 10.1016/j.strusafe.2013.04.001_bib16
  article-title: Generalized cross-entropy methods with applications to rare-event simulation and optimization
  publication-title: Simulation
  doi: 10.1177/0037549707087067
– volume: 7
  start-page: 107
  year: 2008
  ident: 10.1016/j.strusafe.2013.04.001_bib24
  article-title: Rare event simulation for a static distribution
  publication-title: RESIM
– volume: 146
  start-page: 5977
  year: 2007
  ident: 10.1016/j.strusafe.2013.04.001_bib35
  article-title: Mean-squared error of kernel estimators for finite values of the sample size
  publication-title: J Math Sci
  doi: 10.1007/s10958-007-0456-z
– year: 2009
  ident: 10.1016/j.strusafe.2013.04.001_bib49
– volume: 27
  start-page: 207
  year: 2006
  ident: 10.1016/j.strusafe.2013.04.001_bib27
  article-title: An application of extreme value theory for measuring risk
  publication-title: Comput Econ
  doi: 10.1007/s10614-006-9025-7
– year: 2002
  ident: 10.1016/j.strusafe.2013.04.001_bib55
– year: 1986
  ident: 10.1016/j.strusafe.2013.04.001_bib9
– ident: 10.1016/j.strusafe.2013.04.001_bib46
  doi: 10.3182/20090706-3-FR-2004.00090
– volume: 33
  start-page: 343
  year: 2011
  ident: 10.1016/j.strusafe.2013.04.001_bib42
  article-title: Assessing small failure probabilities by combined subset simulation and support vector machines
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2011.06.001
– volume: 19
  start-page: 65
  year: 2007
  ident: 10.1016/j.strusafe.2013.04.001_bib23
  article-title: Adaptive particle techniques and rare event estimation
  publication-title: ESAIM
  doi: 10.1051/proc:071909
– volume: 96
  start-page: 178
  year: 2011
  ident: 10.1016/j.strusafe.2013.04.001_bib60
  article-title: Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2010.08.006
– volume: 229
  start-page: 8966
  year: 2010
  ident: 10.1016/j.strusafe.2013.04.001_bib40
  article-title: Evaluation of failure probability via surrogate models
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.08.022
– year: 2010
  ident: 10.1016/j.strusafe.2013.04.001_bib51
  article-title: A numerical comparison of two sequential Kriging-based algorithms to estimate a probability of failure
– start-page: 39
  year: 2009
  ident: 10.1016/j.strusafe.2013.04.001_bib22
  article-title: Splitting methods
– year: 2006
  ident: 10.1016/j.strusafe.2013.04.001_bib28
  article-title: Estimation of extreme values, with application to uncertain systems
– start-page: 180
  year: 1996
  ident: 10.1016/j.strusafe.2013.04.001_bib18
– start-page: 1
  year: 2011
  ident: 10.1016/j.strusafe.2013.04.001_bib25
  article-title: Sequential Monte Carlo for rare event estimation
  publication-title: Stat Comput
– start-page: 403
  year: 2001
  ident: 10.1016/j.strusafe.2013.04.001_bib15
  article-title: Introduction to importance sampling in rare-event simulations
  publication-title: Eur J Phys
  doi: 10.1088/0143-0807/22/4/315
– volume: 91
  start-page: 1245
  year: 1996
  ident: 10.1016/j.strusafe.2013.04.001_bib7
  article-title: Nonparametric importance sampling
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476994
– volume: 52
  start-page: 393
  year: 1990
  ident: 10.1016/j.strusafe.2013.04.001_bib29
  article-title: Models for exceedances over high thresholds (with discussion)
  publication-title: J Roy Stat Soc
  doi: 10.1111/j.2517-6161.1990.tb01796.x
– volume: 31
  start-page: 41
  year: 2010
  ident: 10.1016/j.strusafe.2013.04.001_bib19
  article-title: How to approach the importance sampling density
  publication-title: Eur J Phys
  doi: 10.1088/0143-0807/31/2/L01
– year: 1997
  ident: 10.1016/j.strusafe.2013.04.001_bib30
  article-title: The peaks over threshold method for estimating high quantiles of loss distributions
– ident: 10.1016/j.strusafe.2013.04.001_bib47
– year: 2004
  ident: 10.1016/j.strusafe.2013.04.001_bib5
SSID ssj0005828
Score 2.3950987
Snippet Very efficient sampling algorithms have been proposed to estimate rare event probabilities, such as Importance Sampling or Importance Splitting. Even if the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Applied sciences
Computer simulation
Estimates
Exact sciences and technology
Ground, air and sea transportation, marine construction
Importance Sampling
Input–output function
Kriging
Marine construction
Rare event estimation
Samples
Sampling
Statistical analysis
Statistical methods
Surrogate model
Title Kriging-based adaptive Importance Sampling algorithms for rare event estimation
URI https://dx.doi.org/10.1016/j.strusafe.2013.04.001
https://www.proquest.com/docview/1500783343
https://www.proquest.com/docview/1753553148
Volume 44
WOSCitedRecordID wos000329476800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3355
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005828
  issn: 0167-4730
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKxwNoQvwUHTAZCfFSBZrYmZPHCXVirOqQ6FDfLCdxtk5dGppumvjrubOdpNWAjQdeoiiKY8v35Xz23X1HyLsQjQweJl6gAtigZDH8c0wEHheRThmARps87u8jMR5H02n8tdM5qnNhruaiKKLr67j8r6KGZyBsTJ39B3E3H4UHcA9ChyuIHa53EvyRKXV16uH6lPVVpkoTHXR4YSxtw7ypMIwckxPnp4vlbHVmSRn6S4wCM4xOfeTeuGiF5qzXb4Zs1hB1VCp3DCL2HHSuK0z5tek_q7OZvmxECV1Y945uqBEsf8FPtapTtF1Cmjt-wFIQcX384E4kkThdOOeKU6mcr-lEf21xtSGsN9S2PUE4_4CcuTh-DLljhoLWdbXBkz0-lgcno5GcDKeT9-UPD0uIoavd1VO5R7YCEcZRl2ztHw6nX9qIn8iU2m1GvJYw_vuu_2SrbJeqgj8ot6VPbqzixjSZPCaP3J6C7lssPCEdXTwlD9eYJp-R4w1U0BoVtEUFrVFBW1RQQAVFVFCDCtqi4jk5ORhOPn32XC0NL-WCr7xED-JcwH2qkjTJwjAC28VPc5HknKuEhynX3M9ZAvZ7lgdZrCKWgPGYKfTV8wF7QbrFotAvCd1LmeZBKhIWIIEcvAmLgC_2QPf7sPkc9EhYz5pMHdE81juZyzqi8FzWsy1xtuWAY2hlj3xs2pWWauXWFnEtFOkMRmsISgDWrW13N6TYdImhBgI24T3ytharBJWLfjRV6MVlJUG9ofObcfaXd0QIljzzebRzh--8Ig_af-s16cJ49RtyP71azarlrsPxL4jDsrM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kriging-based+adaptive+Importance+Sampling+algorithms+for+rare+event+estimation&rft.jtitle=Structural+safety&rft.au=Balesdent%2C+Mathieu&rft.au=Morio%2C+Jerome&rft.au=Marzat%2C+Julien&rft.date=2013-09-01&rft.issn=0167-4730&rft.volume=44&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.strusafe.2013.04.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon