Mechanisms of PARP inhibitor sensitivity and resistance

BRCA1 and BRCA2 deficient tumor cells are sensitive to inhibitors of Poly ADP Ribose Polymerase (PARP1) through the mechanism of synthetic lethality. Several PARP inhibitors, which are oral drugs and generally well tolerated, have now received FDA approval for various ovarian cancer and breast cance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA repair Jg. 71; S. 172 - 176
1. Verfasser: D’Andrea, Alan D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.11.2018
Schlagworte:
ISSN:1568-7864, 1568-7856, 1568-7856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract BRCA1 and BRCA2 deficient tumor cells are sensitive to inhibitors of Poly ADP Ribose Polymerase (PARP1) through the mechanism of synthetic lethality. Several PARP inhibitors, which are oral drugs and generally well tolerated, have now received FDA approval for various ovarian cancer and breast cancer indications. Despite their use in the clinic, PARP inhibitor resistance is common and develops through multiple mechanisms. Broadly speaking, BRCA1/2-deficient tumor cells can become resistant to PARP inhibitors by restoring homologous recombination (HR) repair and/or by stabilizing their replication forks. Here, we review the mechanism of PARP inhibitor resistance.
AbstractList BRCA1 and BRCA2 deficient tumor cells are sensitive to inhibitors of Poly ADP Ribose Polymerase (PARP1) through the mechanism of synthetic lethality. Several PARP inhibitors, which are oral drugs and generally well tolerated, have now received FDA approval for various ovarian cancer and breast cancer indications. Despite their use in the clinic, PARP inhibitor resistance is common and develops through multiple mechanisms. Broadly speaking, BRCA1/2-deficient tumor cells can become resistant to PARP inhibitors by restoring homologous recombination (HR) repair and/or by stabilizing their replication forks. Here, we review the mechanism of PARP inhibitor resistance.
BRCA1 and BRCA2 deficient tumor cells are sensitive to inhibitors of Poly ADP Ribose Polymerase (PARP1) through the mechanism of synthetic lethality. Several PARP inhibitors, which are oral drugs and generally well tolerated, have now received FDA approval for various ovarian cancer and breast cancer indications. Despite their use in the clinic, PARP inhibitor resistance is common and develops through multiple mechanisms. Broadly speaking, BRCA1/2-deficient tumor cells can become resistant to PARP inhibitors by restoring homologous recombination (HR) repair and/or by stabilizing their replication forks. Here, we review the mechanism of PARP inhibitor resistance.BRCA1 and BRCA2 deficient tumor cells are sensitive to inhibitors of Poly ADP Ribose Polymerase (PARP1) through the mechanism of synthetic lethality. Several PARP inhibitors, which are oral drugs and generally well tolerated, have now received FDA approval for various ovarian cancer and breast cancer indications. Despite their use in the clinic, PARP inhibitor resistance is common and develops through multiple mechanisms. Broadly speaking, BRCA1/2-deficient tumor cells can become resistant to PARP inhibitors by restoring homologous recombination (HR) repair and/or by stabilizing their replication forks. Here, we review the mechanism of PARP inhibitor resistance.
Author D’Andrea, Alan D.
Author_xml – sequence: 1
  givenname: Alan D.
  surname: D’Andrea
  fullname: D’Andrea, Alan D.
  email: Alan_Dandrea@dfci.harvard.edu
  organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30177437$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LAzEQhoNU7If-A5E9emlNdrPJrgehFL-gYhE9h2wyS6e02Zqkhf57t7R68KAwMHN43hfm6ZOOaxwQcsnoiFEmbhYj67SH9SilrBjRdlJ2QnosF8VQFrno_NyCd0k_hAWlLJdCnJFuRpmUPJM9Il_AzLXDsApJUyez8dssQTfHCmPjkwAuYMQtxl2inU08BAxROwPn5LTWywAXxz0gHw_375On4fT18Xkyng4NlzwOK8MpiKLIs9LyqrI1zUvOBLV1KW0pM1mWlWWGFamuayMqoJJzJrUWuv1R2mxArg-9a998biBEtcJgYLnUDppNUCktS56JLOUtenVEN9UKrFp7XGm_U9_PtgA_AMY3IXiofxBG1d6pWqiDU7V3qmg7KWtjt79iBqOO2LjoNS7_C98dwtBK2iJ4FQxCK9CiBxOVbfDvgi8-q5OD
CitedBy_id crossref_primary_10_3390_jpm11080808
crossref_primary_10_1016_j_annonc_2020_06_004
crossref_primary_10_1016_j_biopha_2024_116288
crossref_primary_10_3389_fmolb_2021_608369
crossref_primary_10_1038_s41556_023_01165_1
crossref_primary_10_1016_j_annonc_2023_08_014
crossref_primary_10_1016_j_dnarep_2019_03_016
crossref_primary_10_1016_j_cels_2024_04_003
crossref_primary_10_1016_j_jsbmb_2021_105853
crossref_primary_10_3390_ijms23042268
crossref_primary_10_1016_j_oraloncology_2021_105292
crossref_primary_10_3389_fgene_2022_886170
crossref_primary_10_3892_etm_2023_12321
crossref_primary_10_1080_14712598_2020_1801627
crossref_primary_10_1038_s41388_025_03428_7
crossref_primary_10_1093_nar_gkaf544
crossref_primary_10_1016_S1470_2045_19_30019_1
crossref_primary_10_1002_mc_23610
crossref_primary_10_3389_fchem_2020_594619
crossref_primary_10_7717_peerj_16314
crossref_primary_10_3390_cancers14246246
crossref_primary_10_3390_cancers15164155
crossref_primary_10_1016_j_dnarep_2025_103876
crossref_primary_10_1186_s12957_022_02534_0
crossref_primary_10_1007_s11864_023_01174_0
crossref_primary_10_1172_JCI146256
crossref_primary_10_3390_cancers14112619
crossref_primary_10_1186_s13046_021_02005_6
crossref_primary_10_1371_journal_pbio_3003034
crossref_primary_10_1016_j_annonc_2020_10_470
crossref_primary_10_3390_cancers17172787
crossref_primary_10_1016_j_dnarep_2025_103884
crossref_primary_10_1016_j_bioorg_2023_106926
crossref_primary_10_1080_14728222_2022_2158813
crossref_primary_10_3390_cancers13246385
crossref_primary_10_1016_j_anndiagpath_2020_151622
crossref_primary_10_1158_1078_0432_CCR_20_2483
crossref_primary_10_3390_cancers12071713
crossref_primary_10_1158_1078_0432_CCR_22_0749
crossref_primary_10_1002_advs_202506253
crossref_primary_10_1016_j_ejmech_2024_116804
crossref_primary_10_1080_13543784_2021_1901882
crossref_primary_10_3390_cancers12082054
crossref_primary_10_1016_j_bbadis_2021_166300
crossref_primary_10_1038_s41523_020_00197_2
crossref_primary_10_3389_fimmu_2020_577869
crossref_primary_10_1038_s41419_022_04967_7
crossref_primary_10_3390_ijms22115614
crossref_primary_10_1007_s00761_018_0495_8
crossref_primary_10_1016_j_dnarep_2020_102977
crossref_primary_10_1016_j_molcel_2021_06_011
crossref_primary_10_3389_fphar_2022_1078303
crossref_primary_10_3389_fgene_2021_780293
crossref_primary_10_1073_pnas_2426743122
crossref_primary_10_1186_s13045_020_00874_6
crossref_primary_10_26508_lsa_202101144
crossref_primary_10_3390_ijms21239226
crossref_primary_10_1016_j_bulcan_2020_07_011
crossref_primary_10_3390_biom11020129
crossref_primary_10_52711_2231_5713_2023_00040
crossref_primary_10_1016_j_bulcan_2021_09_015
crossref_primary_10_1002_jat_4773
crossref_primary_10_1158_1078_0432_CCR_18_3516
crossref_primary_10_2147_OTT_S499226
crossref_primary_10_3390_ijms241310771
crossref_primary_10_1177_1758835920974201
crossref_primary_10_1016_j_molcel_2022_12_034
crossref_primary_10_1080_14712598_2024_2408756
crossref_primary_10_1016_j_csbj_2023_10_011
crossref_primary_10_1093_jncics_pkz100
crossref_primary_10_1093_nar_gkad470
crossref_primary_10_3389_fgene_2022_931866
crossref_primary_10_3390_ijms231810378
crossref_primary_10_3390_cancers13081866
crossref_primary_10_1038_s41467_021_27291_8
crossref_primary_10_1016_j_drup_2024_101077
crossref_primary_10_3390_ijms222413519
crossref_primary_10_1007_s12609_025_00582_5
crossref_primary_10_4103_ijc_IJC_53_21
crossref_primary_10_3390_molecules28041829
crossref_primary_10_1002_bies_202200057
crossref_primary_10_1007_s11912_023_01488_0
crossref_primary_10_1016_j_critrevonc_2023_104238
crossref_primary_10_1038_s41419_024_06984_0
crossref_primary_10_1016_j_dnarep_2024_103688
crossref_primary_10_1016_j_jep_2024_119074
crossref_primary_10_3390_ijms24087069
crossref_primary_10_3390_ijerph18073430
crossref_primary_10_1101_gad_348479_121
crossref_primary_10_31083_j_fbl2803052
crossref_primary_10_3390_cancers14235795
crossref_primary_10_3390_biomedicines11092527
crossref_primary_10_1186_s12935_021_01822_1
crossref_primary_10_3390_cancers12051206
crossref_primary_10_1016_j_matbio_2023_03_002
crossref_primary_10_1016_j_jbc_2024_107545
crossref_primary_10_1186_s13578_020_00412_4
crossref_primary_10_1016_j_biopha_2024_117069
crossref_primary_10_3390_cancers12020279
crossref_primary_10_1007_s11938_022_00386_x
crossref_primary_10_1038_s43018_023_00617_9
crossref_primary_10_2478_fco_2021_0002
crossref_primary_10_3390_cancers14071807
crossref_primary_10_1016_j_semcancer_2022_03_027
crossref_primary_10_1002_gcc_23243
crossref_primary_10_1038_s41568_022_00518_6
crossref_primary_10_1371_journal_pone_0305273
crossref_primary_10_1038_s41556_025_01674_1
crossref_primary_10_1186_s12967_025_06508_0
crossref_primary_10_1038_s41573_022_00558_5
crossref_primary_10_1038_s44321_025_00259_7
crossref_primary_10_3390_genes12030446
crossref_primary_10_1016_j_cellsig_2024_111073
crossref_primary_10_1016_j_canlet_2023_216507
crossref_primary_10_3390_cancers13123056
crossref_primary_10_1038_s41585_019_0237_8
crossref_primary_10_1038_s44318_024_00043_2
crossref_primary_10_7554_eLife_80254
crossref_primary_10_1016_j_dnarep_2022_103421
crossref_primary_10_1016_j_bmc_2022_116908
crossref_primary_10_3390_biomedicines9010056
crossref_primary_10_1080_13543784_2022_2159805
crossref_primary_10_3389_fvets_2023_1227683
crossref_primary_10_1016_j_dnarep_2023_103503
crossref_primary_10_1016_j_canlet_2024_216820
crossref_primary_10_3389_fped_2019_00368
crossref_primary_10_1016_j_heliyon_2020_e05097
crossref_primary_10_1016_j_ctarc_2022_100677
crossref_primary_10_1007_s00404_020_05677_1
crossref_primary_10_1016_j_semcancer_2020_10_016
crossref_primary_10_1186_s13073_025_01488_8
crossref_primary_10_1158_1078_0432_CCR_23_2094
crossref_primary_10_1177_1758835920944116
crossref_primary_10_2147_DDDT_S387920
crossref_primary_10_1177_17588359211049639
crossref_primary_10_1002_1878_0261_13285
crossref_primary_10_1172_JCI165934
crossref_primary_10_1186_s13578_020_0375_y
crossref_primary_10_1016_j_bcp_2020_114224
crossref_primary_10_3390_cancers15204976
crossref_primary_10_1038_s44321_024_00094_2
crossref_primary_10_1007_s00432_020_03456_8
crossref_primary_10_1038_s41467_020_18637_9
crossref_primary_10_1016_j_neo_2024_101012
crossref_primary_10_1136_jitc_2022_005627
crossref_primary_10_1016_j_yexcr_2021_112679
crossref_primary_10_3892_ol_2025_14874
crossref_primary_10_1515_oncologie_2025_0144
crossref_primary_10_1158_0008_5472_CAN_23_3458
crossref_primary_10_1093_nar_gkaf573
crossref_primary_10_1016_j_ejca_2022_01_037
crossref_primary_10_1002_jcp_29552
crossref_primary_10_1016_j_jconrel_2024_11_061
crossref_primary_10_1158_1078_0432_CCR_19_1570
crossref_primary_10_1016_j_critrevonc_2023_104157
crossref_primary_10_1038_s41467_020_17127_2
crossref_primary_10_1177_11769351221132634
crossref_primary_10_3389_fonc_2021_744940
crossref_primary_10_1200_EDBK_288015
crossref_primary_10_3390_cancers12113135
crossref_primary_10_1038_s41392_021_00572_w
crossref_primary_10_1080_17512433_2023_2188193
crossref_primary_10_1515_hsz_2024_0057
crossref_primary_10_1007_s00129_022_04907_8
crossref_primary_10_3390_ijms242316903
crossref_primary_10_1007_s12032_025_02968_y
crossref_primary_10_1093_nar_gkaa255
crossref_primary_10_1002_2056_4538_12391
crossref_primary_10_1038_s41467_024_45139_9
crossref_primary_10_1038_s41388_022_02491_8
crossref_primary_10_1080_14728214_2020_1773791
crossref_primary_10_1002_1878_0261_13020
crossref_primary_10_1186_s12885_021_08188_7
crossref_primary_10_3389_fcell_2022_1071786
crossref_primary_10_3390_ijms252212402
crossref_primary_10_3390_ijms23137241
crossref_primary_10_1016_j_ijpharm_2024_124639
crossref_primary_10_1038_s41467_021_27048_3
crossref_primary_10_3390_biology14030253
crossref_primary_10_1038_s41416_021_01609_1
crossref_primary_10_1001_jamaoncol_2024_4361
crossref_primary_10_1016_j_bulcan_2023_07_001
crossref_primary_10_1016_j_molmed_2021_04_010
crossref_primary_10_3390_ijms232314672
crossref_primary_10_1016_j_dnarep_2019_102651
crossref_primary_10_3390_cancers12061503
crossref_primary_10_1016_j_dnarep_2019_102656
crossref_primary_10_1007_s10555_021_09983_1
crossref_primary_10_1038_s41392_020_00358_6
crossref_primary_10_1007_s12032_021_01507_9
crossref_primary_10_1016_j_drup_2021_100744
crossref_primary_10_3390_ijms26157350
crossref_primary_10_3390_pharmaceutics14081647
crossref_primary_10_3390_genes12040552
crossref_primary_10_2147_CMAR_S265327
crossref_primary_10_3390_ijms21186684
crossref_primary_10_3389_fonc_2023_1168143
crossref_primary_10_1016_j_annonc_2020_05_027
crossref_primary_10_3390_ijms23020893
crossref_primary_10_1158_1078_0432_CCR_22_1553
crossref_primary_10_1016_j_ejmech_2024_117062
crossref_primary_10_1007_s00432_022_04189_6
crossref_primary_10_3390_cancers14102561
crossref_primary_10_1098_rsob_190041
crossref_primary_10_1007_s11356_021_15852_9
crossref_primary_10_1097_MOU_0000000000000776
crossref_primary_10_3389_fcell_2021_631486
crossref_primary_10_3390_ijms21218288
crossref_primary_10_1038_s41416_023_02326_7
crossref_primary_10_1186_s13048_024_01362_y
crossref_primary_10_1186_s41181_024_00323_6
crossref_primary_10_1016_j_ejmech_2024_116535
crossref_primary_10_1093_pcmedi_pbaa030
crossref_primary_10_1007_s00280_024_04672_6
crossref_primary_10_1016_j_phrs_2021_106040
crossref_primary_10_1016_j_ejmech_2023_115648
crossref_primary_10_1126_scitranslmed_add7872
crossref_primary_10_3389_fonc_2025_1505889
crossref_primary_10_1007_s40259_019_00347_4
crossref_primary_10_3390_cancers13040795
crossref_primary_10_3390_genes14040886
crossref_primary_10_1186_s13578_020_00390_7
crossref_primary_10_1016_j_ejmech_2021_114094
crossref_primary_10_1038_s41420_024_02040_0
crossref_primary_10_3892_mmr_2021_12187
crossref_primary_10_1371_journal_pone_0235025
crossref_primary_10_1158_0008_5472_CAN_22_1535
crossref_primary_10_1186_s12943_020_01167_9
crossref_primary_10_1038_s41388_021_01710_y
crossref_primary_10_3390_biomedicines10112775
crossref_primary_10_1007_s00129_020_04729_6
crossref_primary_10_1007_s40265_022_01703_5
crossref_primary_10_3390_biomedicines10061416
crossref_primary_10_1016_j_canlet_2020_06_023
crossref_primary_10_3390_cells9081853
crossref_primary_10_1007_s12264_023_01072_3
crossref_primary_10_3390_medicines7090054
crossref_primary_10_1038_s41467_022_30311_w
crossref_primary_10_3389_fphar_2023_1199883
crossref_primary_10_3390_medsci10020028
crossref_primary_10_3390_reprodmed3020011
crossref_primary_10_1634_theoncologist_2020_0697
crossref_primary_10_3390_ijms23105770
crossref_primary_10_1038_s41467_024_50673_7
crossref_primary_10_1155_2024_3809926
crossref_primary_10_3390_ijms21145036
crossref_primary_10_1002_cai2_55
crossref_primary_10_3390_ijms242216413
crossref_primary_10_3390_molecules26092674
crossref_primary_10_3390_diagnostics10020121
crossref_primary_10_1038_s41580_020_0218_z
crossref_primary_10_1158_1078_0432_CCR_22_0568
crossref_primary_10_3389_fphar_2020_593845
crossref_primary_10_1111_jcmm_18033
crossref_primary_10_1038_s41598_021_82990_y
crossref_primary_10_1021_acschembio_5c00022
crossref_primary_10_1158_1541_7786_MCR_18_1233
crossref_primary_10_1038_s41388_024_02943_3
crossref_primary_10_1038_s41388_023_02812_5
crossref_primary_10_3390_ph18081198
crossref_primary_10_1111_febs_16217
crossref_primary_10_3389_fmolb_2022_901392
crossref_primary_10_1007_s11912_022_01206_2
crossref_primary_10_1080_1061186X_2022_2092623
crossref_primary_10_3389_fcell_2021_719192
crossref_primary_10_1016_j_pbiomolbio_2020_10_005
crossref_primary_10_3390_cancers15215114
crossref_primary_10_1007_s00280_023_04506_x
crossref_primary_10_1089_ars_2019_7904
crossref_primary_10_1016_j_jinorgbio_2020_111333
crossref_primary_10_3389_fphar_2021_743073
crossref_primary_10_1016_j_bioorg_2025_108188
crossref_primary_10_1016_j_mrrev_2021_108388
crossref_primary_10_1371_journal_pone_0239686
crossref_primary_10_3390_cancers13081762
crossref_primary_10_1016_j_isci_2024_111252
crossref_primary_10_1073_pnas_2009237117
crossref_primary_10_3389_fonc_2024_1355551
crossref_primary_10_1158_1541_7786_MCR_23_0321
crossref_primary_10_1159_000532095
crossref_primary_10_1007_s00044_024_03282_4
crossref_primary_10_1016_j_bbagen_2020_129760
crossref_primary_10_1016_j_pharmthera_2021_108009
crossref_primary_10_1016_j_molcel_2025_06_004
crossref_primary_10_3389_fonc_2022_819714
crossref_primary_10_1080_14728222_2019_1654458
crossref_primary_10_1016_j_drudis_2023_103607
crossref_primary_10_1002_jcp_31015
crossref_primary_10_15252_embj_2019104133
crossref_primary_10_1016_j_ejmech_2025_117937
crossref_primary_10_1016_j_modpat_2022_100049
crossref_primary_10_1111_and_14294
crossref_primary_10_1200_JCO_19_00347
crossref_primary_10_3390_ijms251910646
crossref_primary_10_3390_ijms25094624
crossref_primary_10_1093_jjco_hyad171
crossref_primary_10_3390_ijms26052232
crossref_primary_10_2217_pgs_2021_0119
crossref_primary_10_3390_cancers12030687
crossref_primary_10_3389_fonc_2019_01388
crossref_primary_10_3390_biomedicines9111512
crossref_primary_10_1016_j_bbcan_2025_189406
crossref_primary_10_1016_j_clgc_2023_12_011
crossref_primary_10_1158_0008_5472_CAN_20_2912
crossref_primary_10_3390_cancers15041093
crossref_primary_10_3389_fonc_2021_759577
crossref_primary_10_1038_s41585_022_00686_y
crossref_primary_10_3390_ijms232112937
crossref_primary_10_1016_j_biopha_2025_118278
crossref_primary_10_3390_cancers16030523
crossref_primary_10_1002_jbt_22678
crossref_primary_10_1186_s41181_025_00364_5
crossref_primary_10_1038_s41467_024_49583_5
crossref_primary_10_1093_nar_gkae756
crossref_primary_10_3390_cancers14040907
crossref_primary_10_3390_cancers17010008
crossref_primary_10_1007_s10549_021_06292_7
crossref_primary_10_3389_fonc_2023_1125021
crossref_primary_10_1007_s00280_022_04403_9
crossref_primary_10_3390_cancers12061607
crossref_primary_10_1016_j_ijpharm_2024_125028
crossref_primary_10_1016_j_molcel_2021_09_013
crossref_primary_10_1053_j_seminoncol_2024_01_001
crossref_primary_10_3389_fonc_2022_998388
crossref_primary_10_1002_1878_0261_12467
crossref_primary_10_1038_s41420_025_02418_8
crossref_primary_10_1080_14737140_2020_1820330
crossref_primary_10_1038_s41598_023_30081_5
crossref_primary_10_3389_fonc_2022_795129
crossref_primary_10_3389_fonc_2022_888810
Cites_doi 10.1038/ng.3934
10.1038/nature03443
10.1038/nature18325
10.1016/j.ccr.2011.11.014
10.1038/nature06548
10.1038/ncb3626
10.1016/j.ccr.2012.05.015
10.1038/nm.2377
10.1038/nsmb.1831
10.1038/nature03445
10.1016/j.cell.2018.03.050
10.1038/nature14157
10.1038/nature14184
10.1158/0008-5472.CAN-12-2753
10.1016/j.cell.2012.04.024
10.1038/nature06633
10.1038/nature14328
10.1073/pnas.1305170110
10.2174/138161282005140214165212
10.1101/gad.279003
10.1038/s41467-018-03917-2
10.1016/j.molcel.2013.01.002
10.1158/2159-8290.CD-17-0146
10.1038/nature14216
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier B.V.
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.dnarep.2018.08.021
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1568-7856
EndPage 176
ExternalDocumentID 30177437
10_1016_j_dnarep_2018_08_021
S1568786418301861
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
H~9
IH2
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSP
SSU
SSZ
T5K
ZGI
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c474t-bc40e688539d4bbdf0594160df97d973799bd1c182affc6be074417aa6a0167d3
ISICitedReferencesCount 374
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449896400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-7864
1568-7856
IngestDate Sun Sep 28 10:10:48 EDT 2025
Mon Jul 21 06:06:25 EDT 2025
Tue Nov 18 22:16:03 EST 2025
Sat Nov 29 07:04:49 EST 2025
Fri Feb 23 02:32:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords BRCA1/2
Replication fork
PARP1
Homologous recombination
Language English
License Copyright © 2018. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-bc40e688539d4bbdf0594160df97d973799bd1c182affc6be074417aa6a0167d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S1568786418301861?via%3Dihub
PMID 30177437
PQID 2099436324
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2099436324
pubmed_primary_30177437
crossref_primary_10_1016_j_dnarep_2018_08_021
crossref_citationtrail_10_1016_j_dnarep_2018_08_021
elsevier_sciencedirect_doi_10_1016_j_dnarep_2018_08_021
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle DNA repair
PublicationTitleAlternate DNA Repair (Amst)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ray Chaudhuri, Callen, Ding, Gogola, Duarte, Lee, Wong, Lafarga, Calvo, Panzarino, John, Day, Crespo, Shen, Starnes, de Ruiter, Daniel, Konstantinopoulos, Cortez, Cantor, Fernandez-Capetillo, Ge, Jonkers, Rottenberg, Sharan, Nussenzweig (bib0015) 2016; 535
Pettitt, Krastev, Brandsma, Drean, Song, Aleksandrov, Harrell, Menon, Brough, Campbell, Frankum, Ranes, Pemberton, Rafiq, Fenwick, Swain, Guettler, Lee, Swisher, Stoynov, Yusa, Ashworth, Lord (bib0080) 2018; 9
Johnson, Li, Walton, Cheng, Li, Rodig, Moreau, Unitt, Bronson, Thomas, Newell, D’Andrea, Curtin, Wong, Shapiro (bib0120) 2011; 17
Bouwman, Aly, Escandell, Pieterse, Bartkova, van der Gulden, Hiddingh, Thanasoula, Kulkarni, Yang, Haffty, Tommiska, Blomqvist, Drapkin, Adams, Nevanlinna, Bartek, Tarsounas, Ganesan, Jonkers (bib0090) 2010; 17
Farmer, McCabe, Lord, Tutt, Johnson, Richardson, Santarosa, Dillon, Hickson, Knights, Martin, Jackson, Smith, Ashworth (bib0010) 2005; 434
Xu, Chapman, Brandsma, Yuan, Mistrik, Bouwman, Bartkova, Gogola, Warmerdam, Barazas, Jaspers, Watanabe, Pieterse, Kersbergen, Sol, Celie, Schouten, van den Broek, Salman, Nieuwland, de Rink, de Ronde, Jalink, Boulton, Chen, van Gent, Bartek, Jonkers, Borst, Rottenberg (bib0100) 2015; 521
Chapman, Barral, Vannier, Borel, Steger, Tomas-Loba, Sartori, Adams, Batista, Boulton (bib0085) 2013; 49
Nik-Zainal, Alexandrov, Wedge, Van Loo, Greenman, Raine, Jones, Hinton, Marshall, Stebbings, Menzies, Martin, Leung, Chen, Leroy, Ramakrishna, Rance, Lau, Mudie, Varela, McBride, Bignell, Cooke, Shlien, Gamble, Whitmore, Maddison, Tarpey, Davies, Papaemmanuil, Stephens, McLaren, Butler, Teague, Jonsson, Garber, Silver, Miron, Fatima, Boyault, Langerod, Tutt, Martens, Aparicio, Borg, Salomon, Thomas, Borresen-Dale, Richardson, Neuberger, Futreal, Campbell, Stratton, Breast Cancer Working Group of the International Cancer Genome Consortium (bib0045) 2012; 149
Lomonosov, Anand, Sangrithi, Davies, Venkitaraman (bib0115) 2003; 17
Mateos-Gomez, Gong, Nair, Miller, Lazzerini-Denchi, Sfeir (bib0040) 2015; 518
Drost, Bouwman, Rottenberg, Boon, Schut, Klarenbeek, Klijn, van der Heijden, van der Gulden, Wientjens, Pieterse, Catteau, Green, Solomon, Morris, Jonkers (bib0070) 2011; 20
Quigley, Alumkal, Wyatt, Kothari, Foye, Lloyd, Aggarwal, Kim, Lu, Schwartzman, Beja, Annala, Das, Diolaiti, Pritchard, Thomas, Tomlins, Knudsen, Lord, Ryan, Youngren, Beer, Ashworth, Small, Feng (bib0065) 2017; 7
Murai, Huang, Das, Renaud, Zhang, Doroshow, Ji, Takeda, Pommier (bib0030) 2012; 72
Bryant, Schultz, Thomas, Parker, Flower, Lopez, Kyle, Meuth, Curtin, Helleday (bib0005) 2005; 434
Sakai, Swisher, Karlan, Agarwal, Higgins, Friedman, Villegas, Jacquemont, Farrugia, Couch, Urban, Taniguchi (bib0060) 2008; 451
Edwards, Brough, Lord, Natrajan, Vatcheva, Levine, Boyd, Reis-Filho, Ashworth (bib0055) 2008; 451
Ceccaldi, Liu, Amunugama, Hajdu, Primack, Petalcorin, O’Connor, Konstantinopoulos, Elledge, Boulton, Yusufzai, D’Andrea (bib0035) 2015; 518
Schlacher, Wu, Jasin (bib0025) 2012; 22
Gupta, Somyajit, Narita, Maskey, Stanlie, Kremer, Typas, Lammers, Mailand, Nussenzweig, Lukas, Choudhary (bib0105) 2018; 173
Boersma, Moatti, Segura-Bayona, Peuscher, van der Torre, Wevers, Orthwein, Durocher, Jacobs (bib0095) 2015; 521
Rondinelli, Gogola, Yucel, Duarte, van de Ven, van der Sluijs, Konstantinopoulos, Jonkers, Ceccaldi, Rottenberg, D’Andrea (bib0020) 2017; 19
Polak, Kim, Braunstein, Karlic, Haradhavala, Tiao, Rosebrock, Livitz, Kubler, Mouw, Kamburov, Maruvka, Leshchiner, Lander, Golub, Zick, Orthwein, Lawrence, Batra, Caldas, Haber, Laird, Shen, Ellisen, D’Andrea, Chanock, Foulkes, Getz (bib0050) 2017; 49
Choi, Yu (bib0110) 2014; 20
Johnson, Johnson, Yao, Li, Choi, Bernhardy, Wang, Capelletti, Sarosiek, Moreau, Chowdhury, Wickramanayake, Harrell, Liu, D’Andrea, Miron, Swisher, Shapiro (bib0075) 2013; 110
Mateos-Gomez (10.1016/j.dnarep.2018.08.021_bib0040) 2015; 518
Choi (10.1016/j.dnarep.2018.08.021_bib0110) 2014; 20
Farmer (10.1016/j.dnarep.2018.08.021_bib0010) 2005; 434
Ceccaldi (10.1016/j.dnarep.2018.08.021_bib0035) 2015; 518
Polak (10.1016/j.dnarep.2018.08.021_bib0050) 2017; 49
Sakai (10.1016/j.dnarep.2018.08.021_bib0060) 2008; 451
Chapman (10.1016/j.dnarep.2018.08.021_bib0085) 2013; 49
Boersma (10.1016/j.dnarep.2018.08.021_bib0095) 2015; 521
Gupta (10.1016/j.dnarep.2018.08.021_bib0105) 2018; 173
Bryant (10.1016/j.dnarep.2018.08.021_bib0005) 2005; 434
Nik-Zainal (10.1016/j.dnarep.2018.08.021_bib0045) 2012; 149
Rondinelli (10.1016/j.dnarep.2018.08.021_bib0020) 2017; 19
Quigley (10.1016/j.dnarep.2018.08.021_bib0065) 2017; 7
Johnson (10.1016/j.dnarep.2018.08.021_bib0075) 2013; 110
Xu (10.1016/j.dnarep.2018.08.021_bib0100) 2015; 521
Johnson (10.1016/j.dnarep.2018.08.021_bib0120) 2011; 17
Edwards (10.1016/j.dnarep.2018.08.021_bib0055) 2008; 451
Pettitt (10.1016/j.dnarep.2018.08.021_bib0080) 2018; 9
Bouwman (10.1016/j.dnarep.2018.08.021_bib0090) 2010; 17
Lomonosov (10.1016/j.dnarep.2018.08.021_bib0115) 2003; 17
Murai (10.1016/j.dnarep.2018.08.021_bib0030) 2012; 72
Ray Chaudhuri (10.1016/j.dnarep.2018.08.021_bib0015) 2016; 535
Schlacher (10.1016/j.dnarep.2018.08.021_bib0025) 2012; 22
Drost (10.1016/j.dnarep.2018.08.021_bib0070) 2011; 20
References_xml – volume: 49
  start-page: 1476
  year: 2017
  end-page: 1486
  ident: bib0050
  article-title: A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer
  publication-title: Nat. Genet.
– volume: 434
  start-page: 913
  year: 2005
  end-page: 917
  ident: bib0005
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
– volume: 72
  start-page: 5588
  year: 2012
  end-page: 5599
  ident: bib0030
  article-title: Trapping of PARP1 and PARP2 by clinical PARP inhibitors
  publication-title: Cancer Res.
– volume: 521
  start-page: 541
  year: 2015
  end-page: 544
  ident: bib0100
  article-title: REV7 counteracts DNA double-strand break resection and affects PARP inhibition
  publication-title: Nature
– volume: 17
  start-page: 3017
  year: 2003
  end-page: 3022
  ident: bib0115
  article-title: Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein
  publication-title: Genes Dev.
– volume: 19
  start-page: 1371
  year: 2017
  end-page: 1378
  ident: bib0020
  article-title: EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation
  publication-title: Nat. Cell Biol.
– volume: 173
  year: 2018
  ident: bib0105
  article-title: DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity
  publication-title: Cell
– volume: 20
  start-page: 797
  year: 2011
  end-page: 809
  ident: bib0070
  article-title: BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance
  publication-title: Cancer Cell
– volume: 518
  start-page: 258
  year: 2015
  end-page: 262
  ident: bib0035
  article-title: Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair
  publication-title: Nature
– volume: 17
  start-page: 875
  year: 2011
  end-page: 882
  ident: bib0120
  article-title: Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition
  publication-title: Nat. Med.
– volume: 535
  start-page: 382
  year: 2016
  end-page: 387
  ident: bib0015
  article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells
  publication-title: Nature
– volume: 49
  start-page: 858
  year: 2013
  end-page: 871
  ident: bib0085
  article-title: RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection
  publication-title: Mol. Cell
– volume: 521
  start-page: 537
  year: 2015
  end-page: 540
  ident: bib0095
  article-title: MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5’ end resection
  publication-title: Nature
– volume: 434
  start-page: 917
  year: 2005
  end-page: 921
  ident: bib0010
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
– volume: 22
  start-page: 106
  year: 2012
  end-page: 116
  ident: bib0025
  article-title: A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2
  publication-title: Cancer Cell
– volume: 110
  start-page: 17041
  year: 2013
  end-page: 17046
  ident: bib0075
  article-title: Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 17
  start-page: 688
  year: 2010
  end-page: 695
  ident: bib0090
  article-title: 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers
  publication-title: Nat. Struct. Mol. Biol.
– volume: 451
  start-page: 1111
  year: 2008
  end-page: 1115
  ident: bib0055
  article-title: Resistance to therapy caused by intragenic deletion in BRCA2
  publication-title: Nature
– volume: 20
  start-page: 793
  year: 2014
  end-page: 807
  ident: bib0110
  article-title: ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development
  publication-title: Curr. Pharm. Des.
– volume: 518
  start-page: 254
  year: 2015
  end-page: 257
  ident: bib0040
  article-title: Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination
  publication-title: Nature
– volume: 7
  start-page: 999
  year: 2017
  end-page: 1005
  ident: bib0065
  article-title: Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors
  publication-title: Cancer Discov.
– volume: 451
  start-page: 1116
  year: 2008
  end-page: 1120
  ident: bib0060
  article-title: Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers
  publication-title: Nature
– volume: 149
  start-page: 979
  year: 2012
  end-page: 993
  ident: bib0045
  article-title: Mutational processes molding the genomes of 21 breast cancers
  publication-title: Cell
– volume: 9
  start-page: 1849
  year: 2018
  ident: bib0080
  article-title: Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance
  publication-title: Nat. Commun.
– volume: 49
  start-page: 1476
  year: 2017
  ident: 10.1016/j.dnarep.2018.08.021_bib0050
  article-title: A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3934
– volume: 434
  start-page: 913
  year: 2005
  ident: 10.1016/j.dnarep.2018.08.021_bib0005
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
  doi: 10.1038/nature03443
– volume: 535
  start-page: 382
  year: 2016
  ident: 10.1016/j.dnarep.2018.08.021_bib0015
  article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells
  publication-title: Nature
  doi: 10.1038/nature18325
– volume: 20
  start-page: 797
  year: 2011
  ident: 10.1016/j.dnarep.2018.08.021_bib0070
  article-title: BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.11.014
– volume: 451
  start-page: 1111
  year: 2008
  ident: 10.1016/j.dnarep.2018.08.021_bib0055
  article-title: Resistance to therapy caused by intragenic deletion in BRCA2
  publication-title: Nature
  doi: 10.1038/nature06548
– volume: 19
  start-page: 1371
  year: 2017
  ident: 10.1016/j.dnarep.2018.08.021_bib0020
  article-title: EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3626
– volume: 22
  start-page: 106
  year: 2012
  ident: 10.1016/j.dnarep.2018.08.021_bib0025
  article-title: A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.05.015
– volume: 17
  start-page: 875
  year: 2011
  ident: 10.1016/j.dnarep.2018.08.021_bib0120
  article-title: Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition
  publication-title: Nat. Med.
  doi: 10.1038/nm.2377
– volume: 17
  start-page: 688
  year: 2010
  ident: 10.1016/j.dnarep.2018.08.021_bib0090
  article-title: 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1831
– volume: 434
  start-page: 917
  year: 2005
  ident: 10.1016/j.dnarep.2018.08.021_bib0010
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
  doi: 10.1038/nature03445
– volume: 173
  year: 2018
  ident: 10.1016/j.dnarep.2018.08.021_bib0105
  article-title: DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.050
– volume: 518
  start-page: 254
  year: 2015
  ident: 10.1016/j.dnarep.2018.08.021_bib0040
  article-title: Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination
  publication-title: Nature
  doi: 10.1038/nature14157
– volume: 518
  start-page: 258
  year: 2015
  ident: 10.1016/j.dnarep.2018.08.021_bib0035
  article-title: Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair
  publication-title: Nature
  doi: 10.1038/nature14184
– volume: 72
  start-page: 5588
  year: 2012
  ident: 10.1016/j.dnarep.2018.08.021_bib0030
  article-title: Trapping of PARP1 and PARP2 by clinical PARP inhibitors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-2753
– volume: 149
  start-page: 979
  year: 2012
  ident: 10.1016/j.dnarep.2018.08.021_bib0045
  article-title: Mutational processes molding the genomes of 21 breast cancers
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.024
– volume: 451
  start-page: 1116
  year: 2008
  ident: 10.1016/j.dnarep.2018.08.021_bib0060
  article-title: Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers
  publication-title: Nature
  doi: 10.1038/nature06633
– volume: 521
  start-page: 541
  year: 2015
  ident: 10.1016/j.dnarep.2018.08.021_bib0100
  article-title: REV7 counteracts DNA double-strand break resection and affects PARP inhibition
  publication-title: Nature
  doi: 10.1038/nature14328
– volume: 110
  start-page: 17041
  year: 2013
  ident: 10.1016/j.dnarep.2018.08.021_bib0075
  article-title: Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1305170110
– volume: 20
  start-page: 793
  year: 2014
  ident: 10.1016/j.dnarep.2018.08.021_bib0110
  article-title: ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161282005140214165212
– volume: 17
  start-page: 3017
  year: 2003
  ident: 10.1016/j.dnarep.2018.08.021_bib0115
  article-title: Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein
  publication-title: Genes Dev.
  doi: 10.1101/gad.279003
– volume: 9
  start-page: 1849
  year: 2018
  ident: 10.1016/j.dnarep.2018.08.021_bib0080
  article-title: Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03917-2
– volume: 49
  start-page: 858
  year: 2013
  ident: 10.1016/j.dnarep.2018.08.021_bib0085
  article-title: RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.002
– volume: 7
  start-page: 999
  year: 2017
  ident: 10.1016/j.dnarep.2018.08.021_bib0065
  article-title: Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-17-0146
– volume: 521
  start-page: 537
  year: 2015
  ident: 10.1016/j.dnarep.2018.08.021_bib0095
  article-title: MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5’ end resection
  publication-title: Nature
  doi: 10.1038/nature14216
SSID ssj0015766
Score 2.664383
SecondaryResourceType review_article
Snippet BRCA1 and BRCA2 deficient tumor cells are sensitive to inhibitors of Poly ADP Ribose Polymerase (PARP1) through the mechanism of synthetic lethality. Several...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 172
SubjectTerms BRCA1/2
Homologous recombination
PARP1
Replication fork
Title Mechanisms of PARP inhibitor sensitivity and resistance
URI https://dx.doi.org/10.1016/j.dnarep.2018.08.021
https://www.ncbi.nlm.nih.gov/pubmed/30177437
https://www.proquest.com/docview/2099436324
Volume 71
WOSCitedRecordID wos000449896400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1568-7856
  dateEnd: 20200831
  omitProxy: false
  ssIdentifier: ssj0015766
  issn: 1568-7864
  databaseCode: AIEXJ
  dateStart: 20020122
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYBoIXBBuXcpmMBHuZgpqrncewdgI0yoQ6KW-WbxGZtrQ0HRr_nuNL0qIxbTzwEkVW3Fr-7JPvxOecD6G3CU_gNZGqgAgCDkqei4DDMg70UOZGKikiVFmxCTKZ0LLMj70EZ2vlBEjT0MvLfP5foYY2ANukzv4D3P2PQgPcA-hwBdjheivgv2iTzFu35y6-rfh2vF8332sBW3ex35p4dS8YYSPLdWsIZIe8Z6mjSWEOE3jdR-6O3kXExj66z7BnYBVG6x8MQuoz59ZsXEYDQlNfgfovbd4wOm0Ub9lCp7BzxeI65__0vWo4DMzEylFbE9XlPf9Z4HrylR2eHB2x6bic7s1_BEb7y5yReyGUDbQVkTQH27RVfBqXn_vTIPCJbJZYN8guBdLG6V394-soxnUuhKUS00foofcBcOGwe4zu6GYb7RQNX87Of-E9bKNy7XHHNrr3obu7f9Bp8-0gsgIZzypsQMY9yHgNZAwg4xXIT9DJ4Xh68DHwEhiBTEiyDIRMhjqjwKlylQihKlNeJ8yGqsqJgq1EYHOpUIKTyKtKZkIDI0xCwnnGTX6Jip-izWbW6OcIgydPK0JjAZwu4VpQGadSESWjKgf-kg5Q3M0ak74-vJEpOWNdIOApc3PNzFwzo14ahQMU9L3mrj7KDc-TDhDmOZ7jbgwW1A0933T4MZhtc67FGz27aJnJ_k5iozswQM8csP1Y4P0FDk5MXtyi90v0YLVfXqHN5eJCv0Z35c9l3S520QYp6a5fmr8BRcSCWA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+PARP+inhibitor+sensitivity+and+resistance&rft.jtitle=DNA+repair&rft.au=D%27Andrea%2C+Alan+D&rft.date=2018-11-01&rft.issn=1568-7856&rft.eissn=1568-7856&rft.volume=71&rft.spage=172&rft_id=info:doi/10.1016%2Fj.dnarep.2018.08.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-7864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-7864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-7864&client=summon