Survey of State-of-the-Art Mixed Data Clustering Algorithms

Mixed data comprises both numeric and categorical features, and mixed datasets occur frequently in many domains, such as health, finance, and marketing. Clustering is often applied to mixed datasets to find structures and to group similar objects for further analysis. However, clustering mixed data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 7; s. 31883 - 31902
Hlavní autoři: Ahmad, Amir, Khan, Shehroz S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mixed data comprises both numeric and categorical features, and mixed datasets occur frequently in many domains, such as health, finance, and marketing. Clustering is often applied to mixed datasets to find structures and to group similar objects for further analysis. However, clustering mixed data are challenging because it is difficult to directly apply mathematical operations, such as summation or averaging, to the feature values of these datasets. In this paper, we present a taxonomy for the study of mixed data clustering algorithms by identifying five major research themes. We then present the state-of-the-art review of the research works within each research theme. We analyze the strengths and weaknesses of these methods with pointers for future research directions. At last, we present an in-depth analysis of the overall challenges in this field, highlight open research questions, and discuss guidelines to make progress in the field.
AbstractList Mixed data comprises both numeric and categorical features, and mixed datasets occur frequently in many domains, such as health, finance, and marketing. Clustering is often applied to mixed datasets to find structures and to group similar objects for further analysis. However, clustering mixed data are challenging because it is difficult to directly apply mathematical operations, such as summation or averaging, to the feature values of these datasets. In this paper, we present a taxonomy for the study of mixed data clustering algorithms by identifying five major research themes. We then present the state-of-the-art review of the research works within each research theme. We analyze the strengths and weaknesses of these methods with pointers for future research directions. At last, we present an in-depth analysis of the overall challenges in this field, highlight open research questions, and discuss guidelines to make progress in the field.
Author Khan, Shehroz S.
Ahmad, Amir
Author_xml – sequence: 1
  givenname: Amir
  orcidid: 0000-0002-9062-8170
  surname: Ahmad
  fullname: Ahmad, Amir
  email: amirahmad@uaeu.ac.ae
  organization: College of Information Technology, United Arab Emirates University, Al Ain, UAE
– sequence: 2
  givenname: Shehroz S.
  surname: Khan
  fullname: Khan, Shehroz S.
  organization: Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
BookMark eNqFkMtOwzAQRS0EElD6BWwisU6J40dssYrCqxKIRWFt2c60dZXG4DiI_j2BoAqxYTYzGs29d3RO0WHrW0DoHGczjDN5WVbVzWIxyzMsZ7nMCOPiAJ3kmMuUMMIPf83HaNp1m2woMaxYcYKuFn14h13il8ki6gipX6ZxDWkZYvLoPqBOrnXUSdX0XYTg2lVSNisfXFxvuzN0tNRNB9OfPkEvtzfP1X368HQ3r8qH1NKCxtQIClwQrbnVheRCi9zK2kqOtTG4rjEhpmCaMUwApOWMUbAUBNCsYBYLMkHz0bf2eqNeg9vqsFNeO_W98GGldIjONqBEbgwnWGa0MFTWRlvDDCO5AFkLw2Hwuhi9XoN_66GLauP70A7vq5wyxgmV34lkvLLBd12A5T4VZ-oLuhqhqy_o6gf6oJJ_VNYNTJ1vY9Cu-Ud7PmodAOzTBOc545h8Aml9kAU
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_s23125578
crossref_primary_10_1007_s12599_025_00946_2
crossref_primary_10_3389_fonc_2021_576007
crossref_primary_10_1186_s12913_021_07116_6
crossref_primary_10_1016_j_jbi_2021_103788
crossref_primary_10_1109_ACCESS_2022_3218067
crossref_primary_10_3233_IDA_205453
crossref_primary_10_1016_j_engappai_2022_105795
crossref_primary_10_1007_s10100_022_00802_8
crossref_primary_10_1016_j_is_2023_102178
crossref_primary_10_1007_s10479_022_04900_3
crossref_primary_10_3390_risks9030047
crossref_primary_10_3390_antibiotics14010013
crossref_primary_10_3390_stats5010001
crossref_primary_10_1038_s41598_020_67016_3
crossref_primary_10_1109_ACCESS_2022_3162690
crossref_primary_10_1177_10591478241234991
crossref_primary_10_1007_s10489_020_02067_7
crossref_primary_10_1007_s11634_022_00521_7
crossref_primary_10_1007_s00530_023_01099_6
crossref_primary_10_1177_13872877251351622
crossref_primary_10_1007_s00521_020_05185_y
crossref_primary_10_1093_jamia_ocaa060
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_1109_ACCESS_2020_3003046
crossref_primary_10_1002_clc_70094
crossref_primary_10_1016_j_ins_2021_07_039
crossref_primary_10_1088_1757_899X_1070_1_012065
crossref_primary_10_1186_s12889_022_12650_x
crossref_primary_10_3390_e24091234
crossref_primary_10_1186_s43067_025_00249_2
crossref_primary_10_1016_j_patcog_2023_109815
crossref_primary_10_1007_s00521_022_07411_1
crossref_primary_10_3390_smartcities7010004
crossref_primary_10_1109_ACCESS_2019_2946321
crossref_primary_10_1371_journal_pone_0272413
crossref_primary_10_1016_j_asoc_2021_107924
crossref_primary_10_3389_fdata_2024_1375818
crossref_primary_10_1080_13510347_2025_2527205
crossref_primary_10_1186_s40537_024_01052_y
crossref_primary_10_3390_a14060184
crossref_primary_10_1016_j_knosys_2020_106178
crossref_primary_10_1016_j_trf_2025_05_034
crossref_primary_10_1007_s11227_020_03480_y
crossref_primary_10_1002_ehf2_13344
crossref_primary_10_1109_ACCESS_2023_3296790
crossref_primary_10_1016_j_iot_2023_100954
crossref_primary_10_1186_s12874_024_02427_8
crossref_primary_10_1002_mcda_70014
crossref_primary_10_1016_j_patcog_2023_109353
crossref_primary_10_1007_s10115_024_02319_9
crossref_primary_10_1016_j_knosys_2023_111315
crossref_primary_10_1016_j_cie_2024_110066
crossref_primary_10_1007_s11634_025_00639_4
crossref_primary_10_1007_s00180_024_01490_5
crossref_primary_10_1007_s10742_020_00214_8
crossref_primary_10_3390_sym14030623
crossref_primary_10_1093_bioadv_vbae165
crossref_primary_10_3390_sym14040781
crossref_primary_10_1007_s10489_025_06770_1
crossref_primary_10_1016_j_ins_2024_121528
crossref_primary_10_1016_j_jbi_2023_104439
crossref_primary_10_1007_s41237_022_00165_z
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1016_j_egyr_2024_09_009
crossref_primary_10_1016_j_seps_2020_100907
crossref_primary_10_1007_s00357_022_09422_y
crossref_primary_10_1016_j_anucene_2024_110630
crossref_primary_10_1016_j_kint_2020_08_026
crossref_primary_10_1186_s44147_023_00329_y
crossref_primary_10_18267_j_aip_201
crossref_primary_10_1007_s00357_025_09516_3
crossref_primary_10_3389_fneur_2021_701946
crossref_primary_10_1016_j_jpdc_2020_06_010
crossref_primary_10_1038_s41598_021_83340_8
crossref_primary_10_1109_ACCESS_2019_2947640
crossref_primary_10_1111_1468_5973_12321
crossref_primary_10_1016_j_eswa_2020_114149
crossref_primary_10_1016_j_neucom_2020_12_032
crossref_primary_10_1007_s13042_024_02145_z
crossref_primary_10_1007_s00500_021_06424_7
crossref_primary_10_1007_s10115_021_01650_9
crossref_primary_10_3390_systems8040035
crossref_primary_10_1007_s12243_021_00889_1
crossref_primary_10_3390_app13052908
crossref_primary_10_1109_ACCESS_2024_3496929
crossref_primary_10_3390_ijgi11070397
crossref_primary_10_1007_s10479_025_06674_w
crossref_primary_10_1016_j_patcog_2024_110674
crossref_primary_10_1093_bib_bbae342
crossref_primary_10_3390_en14123422
crossref_primary_10_1109_ACCESS_2021_3118411
crossref_primary_10_1007_s11205_020_02537_y
crossref_primary_10_1007_s11408_025_00481_w
crossref_primary_10_1016_j_asoc_2022_109704
crossref_primary_10_1109_ACCESS_2020_3041367
crossref_primary_10_1161_JAHA_123_030577
crossref_primary_10_1145_3522711
crossref_primary_10_3389_frai_2022_1055294
crossref_primary_10_1080_0951192X_2020_1829062
crossref_primary_10_1007_s11634_024_00595_5
crossref_primary_10_3390_math9080891
crossref_primary_10_1109_TPAMI_2022_3230414
crossref_primary_10_1007_s10462_021_10072_6
crossref_primary_10_1007_s10660_021_09478_9
crossref_primary_10_2478_amns_2025_0056
crossref_primary_10_1016_j_knosys_2021_107599
crossref_primary_10_1080_19393555_2024_2338438
crossref_primary_10_1007_s11042_023_17909_y
crossref_primary_10_1007_s11257_021_09305_8
crossref_primary_10_1093_forestry_cpaf017
crossref_primary_10_1007_s11634_021_00466_3
crossref_primary_10_1088_1742_6596_1693_1_012095
crossref_primary_10_3390_agriculture12111784
crossref_primary_10_1109_ACCESS_2021_3069684
crossref_primary_10_1016_j_procs_2023_10_231
crossref_primary_10_1109_ACCESS_2020_2971270
crossref_primary_10_1016_j_swevo_2025_102119
crossref_primary_10_1016_j_envpol_2025_125904
Cites_doi 10.1016/j.amc.2018.04.035
10.1016/B978-1-4832-0773-5.50018-3
10.1145/2020408.2020584
10.1007/978-3-642-25330-0_21
10.1145/1007730.1007731
10.1109/TKDE.2007.1048
10.1002/sim.7371
10.1002/widm.32
10.1109/69.204089
10.1109/ICBK.2017.38
10.1109/TSMCA.2005.853501
10.1016/0005-1098(78)90005-5
10.1016/j.knosys.2012.01.006
10.1007/978-3-642-56927-2
10.1016/j.ins.2016.01.071
10.1080/03610926.2016.1277753
10.1126/science.1242072
10.1016/j.patrec.2011.02.017
10.1007/11604655_63
10.1007/978-1-4757-0450-1
10.1109/TNNLS.2011.2178323
10.1214/ss/1028905828
10.1016/j.patrec.2017.07.001
10.1145/967900.968029
10.1198/106186006X94072
10.1016/j.eswa.2007.08.049
10.1109/NAFIPS.2004.1336254
10.1109/TPAMI.2005.95
10.1023/A:1010924920739
10.1016/j.patrec.2006.10.008
10.1016/0167-7152(88)90004-1
10.1137/1.9781611972719.6
10.1080/01969727308546046
10.1214/09-SS053
10.1109/91.669013
10.1111/j.1475-4754.1983.tb00671.x
10.1137/1.9781611972788.22
10.1007/s10994-016-5624-2
10.1007/s00500-014-1296-7
10.1016/S0167-9473(02)00190-1
10.1007/s10844-014-0348-x
10.3844/jcssp.2011.1875.1880
10.1109/TKDE.2002.1019208
10.1109/ICDMW.2017.98
10.1109/CEC.2010.5586136
10.1016/j.csda.2004.03.001
10.1007/BF00337288
10.1016/j.patcog.2016.02.013
10.1109/34.865189
10.3844/jcssp.2011.1639.1645
10.1016/j.asoc.2016.06.019
10.1109/CISE.2009.5366556
10.1002/widm.33
10.1109/72.846732
10.1016/j.asoc.2015.06.058
10.1016/j.datak.2007.03.016
10.1023/B:MACH.0000033116.57574.95
10.1007/s10994-016-5575-7
10.1016/j.jspi.2012.05.001
10.1016/j.asoc.2017.04.031
10.1038/nrg3208
10.1007/978-3-642-59471-7_4
10.1016/j.neunet.2012.09.017
10.3390/e17031535
10.1109/ICDM.2010.35
10.1007/978-3-642-03739-9_6
10.1109/ACCESS.2018.2855437
10.1109/72.977314
10.1016/j.asoc.2012.04.004
10.1007/BF02948829
10.1016/j.eswa.2008.06.100
10.1016/j.patcog.2013.01.027
10.1007/s40815-016-0168-y
10.1002/wics.1456
10.3390/su10082614
10.1016/j.eswa.2017.08.004
10.1109/TNB.2015.2477407
10.1016/j.procs.2018.03.067
10.5121/ijaia.2010.1203
10.1016/j.eswa.2011.01.074
10.1109/ICDM.2014.34
10.1111/j.1467-9876.2012.01066.x
10.1111/insr.12274
10.5351/CKSS.2006.13.3.719
10.1007/978-3-030-01851-1_36
10.1016/j.knosys.2014.08.011
10.1109/TNNLS.2017.2728138
10.1002/sim.7697
10.1504/IJDMB.2006.009920
10.1002/9780470191613
10.1016/j.neucom.2013.04.011
10.1111/j.2517-6161.1977.tb01600.x
10.1109/AICCSA.2015.7507121
10.1016/0893-6080(91)90056-B
10.1007/s11634-014-0195-1
10.1016/S0167-8655(02)00130-7
10.1126/science.1136800
10.1109/TKDE.2018.2807444
10.1007/s12046-018-0823-0
10.1016/j.neunet.2009.08.007
10.1007/11595014_31
10.1145/2339530.2339589
10.1007/s11634-018-0316-3
10.1016/j.eswa.2005.11.017
10.1142/S0218001411008683
10.1016/j.neunet.2005.04.006
10.1007/978-3-642-13657-3_7
10.1145/1327452.1327492
10.1016/j.ins.2007.05.003
10.1007/s10844-011-0187-y
10.1007/978-3-319-75429-1_7
10.2307/2528080
10.1016/0004-3702(89)90046-5
10.7551/mitpress/3927.001.0001
10.1109/TFUZZ.2004.840104
10.1109/ACCESS.2015.2477216
10.1007/978-3-540-73599-1_25
10.1109/SoCPaR.2009.21
10.1016/j.patrec.2004.04.007
10.1007/978-3-540-71701-0_129
10.1155/2014/486075
10.1016/j.knosys.2017.07.027
10.2307/2528823
10.1109/BigComp.2018.00093
10.19026/rjaset.10.1846
10.1145/502512.502549
10.1023/A:1024016609528
10.1007/s11634-016-0238-x
10.1016/0895-7177(93)90202-A
10.1016/j.patcog.2011.12.017
10.1080/0308107021000013635
10.1109/FSKD.2016.7603350
10.1080/03610927408827101
10.1214/aos/1176344136
10.1007/978-3-319-98812-2_2
10.1007/11811305_38
10.1007/s13042-015-0341-x
10.1007/978-3-642-34289-9_11
10.1016/j.medengphy.2016.10.014
10.18637/jss.v050.i13
10.1016/j.eswa.2013.07.002
10.1016/j.jalz.2018.02.004
10.1109/TNN.2005.863415
10.1155/2015/747628
10.1023/A:1009769707641
10.1002/int.20108
10.1007/BF00114265
10.1007/s10586-017-0818-3
10.1109/FSKD.2008.32
10.1023/A:1009783824328
10.1016/j.patcog.2011.07.006
10.1007/BF00161577
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2903568
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 2169-3536
EndPage 31902
ExternalDocumentID oai_doaj_org_article_82bb6319047b49dbacb5b5328e9d8b6e
10_1109_ACCESS_2019_2903568
8662561
Genre orig-research
GrantInformation_xml – fundername: United Arab Emirates University
  grantid: 31T101; G00002668
  funderid: 10.13039/501100006013
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c474t-b84e683aa6ca7968a82c9dc961abb1dd133b75a5513ee9c6554ec4e8e4075c183
IEDL.DBID DOA
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462848200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:36 EDT 2025
Sun Nov 30 04:48:01 EST 2025
Tue Nov 18 22:26:30 EST 2025
Sat Nov 29 03:33:46 EST 2025
Wed Aug 27 02:50:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-b84e683aa6ca7968a82c9dc961abb1dd133b75a5513ee9c6554ec4e8e4075c183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9062-8170
OpenAccessLink https://doaj.org/article/82bb6319047b49dbacb5b5328e9d8b6e
PQID 2455634918
PQPubID 4845423
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_82bb6319047b49dbacb5b5328e9d8b6e
crossref_citationtrail_10_1109_ACCESS_2019_2903568
crossref_primary_10_1109_ACCESS_2019_2903568
proquest_journals_2455634918
ieee_primary_8662561
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref205
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref202
mitchell (ref125) 1998
ref209
khan (ref114) 2003
bishop (ref3) 2008
ref210
ref51
ref50
carpenter (ref131) 2010
ref45
ji (ref33) 2015; 9
ref48
ref42
ref41
ref44
ref43
macqueen (ref104) 1967; 1
ref8
ref7
ref9
rajan (ref59) 2016
ref6
ref5
ref100
ref101
ref40
ref35
ref37
ref31
ref30
ref32
ref39
ref38
(ref167) 2016
ref24
ref23
ref20
ref21
ref28
ref27
ref29
wagstaff (ref109) 2001
mcparland (ref166) 2017
lakshmi (ref36) 2017
hummel (ref169) 2017
(ref164) 2008
ref128
jia (ref79) 2018; 29
ref97
ref96
ref127
ref99
ref124
ref98
hsu (ref68) 2006
chen (ref34) 2017; 57
houghton (ref195) 2018
zengyou (ref160) 2002; 17
ref133
ref134
ref95
wang (ref22) 2015
ref94
ref132
ref130
ref91
jardine (ref159) 1971
ref90
ref89
ref139
ref86
rahman (ref126) 2012
ref137
he (ref92) 2005
ref88
ref135
ref87
ref136
gluck (ref120) 1985
ref82
ref144
ref81
ref145
ref142
ref83
ref143
ref140
ref141
ref80
ref108
ref78
ref106
ref107
ng (ref150) 2001
ref75
ref74
ref77
ref102
shih (ref46) 2010; 13
ref76
ref103
jain (ref2) 1988
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref119
ref67
ref117
ref69
ref118
ref64
ref63
ref116
ref66
ref113
cheeseman (ref49) 1996
ref65
rendón (ref208) 2011
biernacki (ref174) 2016
(ref192) 2018
ref60
ref123
ref62
ref61
ref121
ref168
aljalbout (ref200) 2018
ester (ref155) 1996
ref177
halawani (ref178) 2012; 71
ref175
ref176
ref179
nelsen (ref138) 2006
bushel (ref180) 2006
ref188
ref189
ref187
ref184
ref185
ref182
han (ref129) 1994
ref183
ref148
ref149
ref146
huang (ref10) 1997
ref147
khan (ref105) 2007
ref156
ref153
ref154
ref151
rényi (ref122) 1961
ref152
kacem (ref26) 2015
ref157
ref158
ref162
rodriguez (ref115) 2014; 344
abidin (ref181) 2017; 45
ref163
ref161
lim (ref47) 2012
ref12
alsahaf (ref172) 2016
ref15
bock (ref173) 2016
ref14
marbac (ref171) 2014
ref11
hai (ref93) 2005
ref17
ref16
ref19
ref18
mckusick (ref85) 1990
witten (ref4) 2005
balaji (ref13) 2018; 18
chiodi (ref25) 1990; 2
ref1
hunt (ref54) 1996
ref191
ref190
milenova (ref84) 2003
ref199
ref197
ref198
ref196
ref193
ref194
foss (ref170) 2016
huang (ref186) 1997
szepannek (ref165) 2017
References_xml – start-page: 1861
  year: 2015
  ident: ref22
  article-title: Coupled interdependent attribute analysis on mixed data
  publication-title: Proc 29th AAAI Conf Artif Intell
– start-page: 1
  year: 2015
  ident: ref26
  article-title: Mapreduce-based k-prototypes clustering method for big data
  publication-title: Proc IEEE Data Sci Adv Anal (DSAA)
– start-page: 252
  year: 2005
  ident: ref93
  article-title: Performances of parallel clustering algorithm for categorical and mixed data
  publication-title: Parallel and Distributed Computing Applications and Technologies
– ident: ref94
  doi: 10.1016/j.amc.2018.04.035
– start-page: 21
  year: 1997
  ident: ref10
  article-title: Clustering large data sets with mixed numeric and categorical values
  publication-title: Proc Pacific-Asia Conf Adv Knowledge Discovery Data Mining
– year: 2016
  ident: ref172
  publication-title: Mixed K-Means Package
– year: 2003
  ident: ref84
  article-title: Clustering large databases with numeric and nominal values using orthogonal projections
– ident: ref86
  doi: 10.1016/B978-1-4832-0773-5.50018-3
– ident: ref202
  doi: 10.1145/2020408.2020584
– ident: ref32
  doi: 10.1007/978-3-642-25330-0_21
– ident: ref152
  doi: 10.1145/1007730.1007731
– ident: ref153
  doi: 10.1109/TKDE.2007.1048
– ident: ref58
  doi: 10.1002/sim.7371
– year: 1990
  ident: ref85
  article-title: Cobweb/3: A portable implementation
– ident: ref197
  doi: 10.1002/widm.32
– ident: ref130
  doi: 10.1109/69.204089
– start-page: 158
  year: 2011
  ident: ref208
  article-title: A comparison of internal and external cluster validation indexes
  publication-title: Proc Amer Conf Appl Math 5th WSEAS Int Conf Comput Eng Appl (AMERICAN-MATH/CEA)
– ident: ref103
  doi: 10.1109/ICBK.2017.38
– volume: 2
  start-page: 135
  year: 1990
  ident: ref25
  article-title: A partition type method for clustering mixed data
  publication-title: Riv Stat Appl
– ident: ref98
  doi: 10.1109/TSMCA.2005.853501
– volume: 13
  start-page: 11
  year: 2010
  ident: ref46
  article-title: A two-step method for clustering mixed categroical and numeric data
  publication-title: Tamkang J Sci Eng
– ident: ref154
  doi: 10.1016/0005-1098(78)90005-5
– year: 2016
  ident: ref174
  publication-title: Mixtcomp Software for Full Mixed Data
– ident: ref31
  doi: 10.1016/j.knosys.2012.01.006
– ident: ref144
  doi: 10.1007/978-3-642-56927-2
– ident: ref17
  doi: 10.1016/j.ins.2016.01.071
– ident: ref61
  doi: 10.1080/03610926.2016.1277753
– volume: 344
  start-page: 1492
  year: 2014
  ident: ref115
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: ref78
  doi: 10.1016/j.patrec.2011.02.017
– ident: ref30
  doi: 10.1007/11604655_63
– ident: ref113
  doi: 10.1007/978-1-4757-0450-1
– ident: ref69
  doi: 10.1109/TNNLS.2011.2178323
– ident: ref161
  doi: 10.1214/ss/1028905828
– ident: ref81
  doi: 10.1016/j.patrec.2017.07.001
– ident: ref107
  doi: 10.1145/967900.968029
– ident: ref162
  doi: 10.1198/106186006X94072
– ident: ref45
  doi: 10.1016/j.eswa.2007.08.049
– ident: ref63
  doi: 10.1109/NAFIPS.2004.1336254
– ident: ref15
  doi: 10.1109/TPAMI.2005.95
– volume: 71
  start-page: 594
  year: 2012
  ident: ref178
  article-title: A study of digital mammograms by using clustering algorithms
  publication-title: J Sci Ind Res
– ident: ref121
  doi: 10.1023/A:1010924920739
– ident: ref204
  doi: 10.1016/j.patrec.2006.10.008
– volume: 1
  start-page: 281
  year: 1967
  ident: ref104
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statist Probab
– ident: ref50
  doi: 10.1016/0167-7152(88)90004-1
– year: 2018
  ident: ref195
  article-title: People analytics: Driving business performance with people data
– start-page: 21
  year: 1997
  ident: ref186
  article-title: Clustering large data sets with mixed numeric and categorical values
  publication-title: Proc Pacific-Asia Conf Adv Knowledge Discovery Data Mining
– ident: ref118
  doi: 10.1137/1.9781611972719.6
– ident: ref205
  doi: 10.1145/1007730.1007731
– ident: ref112
  doi: 10.1080/01969727308546046
– year: 2016
  ident: ref173
  publication-title: Mixed K-Means Clustering Algorithm With Variable Discretization
– year: 2005
  ident: ref4
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– ident: ref132
  doi: 10.1214/09-SS053
– ident: ref111
  doi: 10.1109/91.669013
– ident: ref40
  doi: 10.1111/j.1475-4754.1983.tb00671.x
– ident: ref5
  doi: 10.1137/1.9781611972788.22
– year: 2006
  ident: ref138
  publication-title: An Introduction to Copulas
– ident: ref60
  doi: 10.1007/s10994-016-5624-2
– ident: ref73
  doi: 10.1007/s00500-014-1296-7
– ident: ref134
  doi: 10.1016/S0167-9473(02)00190-1
– ident: ref100
  doi: 10.1007/s10844-014-0348-x
– ident: ref88
  doi: 10.3844/jcssp.2011.1875.1880
– year: 2016
  ident: ref170
  publication-title: Kamila Methods for Clustering Mixed-Type Data
– ident: ref41
  doi: 10.1109/TKDE.2002.1019208
– start-page: 1
  year: 2012
  ident: ref47
  article-title: A framework for clustering mixed attribute type datasets
  publication-title: Proc 4th Int Conf Emerg Databases (EDB)
– ident: ref193
  doi: 10.1109/ICDMW.2017.98
– ident: ref119
  doi: 10.1109/CEC.2010.5586136
– ident: ref137
  doi: 10.1002/sim.7371
– ident: ref51
  doi: 10.1016/j.csda.2004.03.001
– ident: ref143
  doi: 10.1007/BF00337288
– year: 1971
  ident: ref159
  publication-title: Mathematical Taxonomy
– ident: ref203
  doi: 10.1016/j.patcog.2016.02.013
– ident: ref140
  doi: 10.1109/34.865189
– ident: ref66
  doi: 10.3844/jcssp.2011.1639.1645
– ident: ref37
  doi: 10.1016/j.asoc.2016.06.019
– ident: ref184
  doi: 10.1109/CISE.2009.5366556
– ident: ref135
  doi: 10.1002/widm.33
– ident: ref147
  doi: 10.1109/72.846732
– ident: ref72
  doi: 10.1016/j.asoc.2015.06.058
– ident: ref6
  doi: 10.1016/j.datak.2007.03.016
– start-page: 1967
  year: 2016
  ident: ref59
  article-title: Dependency clustering of mixed data with Gaussian mixture copulas
  publication-title: Proc Intern Joint Conf Artificial Intel (IJCAI)
– ident: ref207
  doi: 10.1023/B:MACH.0000033116.57574.95
– ident: ref62
  doi: 10.1007/s10994-016-5575-7
– start-page: 375
  year: 1996
  ident: ref54
  article-title: Mixture model clustering of data sets with categorical and continuous variables
  publication-title: Information Statistics and Induction in Science
– year: 2005
  ident: ref92
  publication-title: Clustering Mixed Numeric and Categorical Data A Cluster Ensemble Approach
– ident: ref52
  doi: 10.1016/j.jspi.2012.05.001
– volume: 57
  start-page: 539
  year: 2017
  ident: ref34
  article-title: A novel cluster center fast determination clustering algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.04.031
– year: 2014
  ident: ref171
  publication-title: Copules-Package Mixed Data Clustering by a Mixture Model of Gaussian Copulas
– ident: ref190
  doi: 10.1038/nrg3208
– ident: ref87
  doi: 10.1007/978-3-642-59471-7_4
– ident: ref145
  doi: 10.1016/j.neunet.2012.09.017
– ident: ref23
  doi: 10.3390/e17031535
– year: 2006
  ident: ref180
  article-title: Clustering of mixed data types with application to toxicogenomics
– start-page: 283
  year: 1985
  ident: ref120
  article-title: Information, uncertainty and the utility of categories
  publication-title: Proc 7th Ann Conf Cognitive Sci Soc
– ident: ref209
  doi: 10.1109/ICDM.2010.35
– ident: ref183
  doi: 10.1007/978-3-642-03739-9_6
– start-page: 2784
  year: 2007
  ident: ref105
  article-title: Computation of initial modes for k-modes clustering algorithm using evidence accumulation
  publication-title: Proc 20th Int Joint Conf Artif Intell
– ident: ref201
  doi: 10.1109/ACCESS.2018.2855437
– ident: ref146
  doi: 10.1109/72.977314
– start-page: 226
  year: 1996
  ident: ref155
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc 1st Intl Conf on Knowledge Discovery and Data Mining (KDD)
– start-page: 27
  year: 2012
  ident: ref126
  article-title: CRUDAW: A novel fuzzy technique for clustering records following user defined attribute weights
  publication-title: Proc Data Mining Anal (AusDM)
– volume: 18
  start-page: 547
  year: 2018
  ident: ref13
  article-title: Clustering algorithms for mixed datasets: A review
  publication-title: Int J Pure Appl Math
– ident: ref70
  doi: 10.1016/j.asoc.2012.04.004
– volume: 17
  start-page: 611
  year: 2002
  ident: ref160
  article-title: Squeezer: An efficient algorithm for clustering categorical data
  publication-title: J Comput Sci Technol
  doi: 10.1007/BF02948829
– ident: ref29
  doi: 10.1016/j.eswa.2008.06.100
– ident: ref99
  doi: 10.1016/j.patcog.2013.01.027
– ident: ref65
  doi: 10.1007/s40815-016-0168-y
– ident: ref11
  doi: 10.1002/wics.1456
– year: 2008
  ident: ref3
  publication-title: Pattern Recognition and Machine Learning
– ident: ref27
  doi: 10.3390/su10082614
– start-page: 157
  year: 1994
  ident: ref129
  article-title: Dynamic generation and refinement of concept hierarchies for knowledge discovery in databases
  publication-title: Proc 3rd Int Conf Knowledge Discovery and Data Mining
– year: 2003
  ident: ref114
  article-title: Computing initial points using density based multiscale data condensation for clustering categorical data
  publication-title: Proc 2nd Int Conf Appl Artif Intell (ICAAIP)
– ident: ref35
  doi: 10.1016/j.eswa.2017.08.004
– year: 1988
  ident: ref2
  publication-title: Algorithms for clustering data
– ident: ref177
  doi: 10.1109/TNB.2015.2477407
– year: 2017
  ident: ref169
  publication-title: CluMix Clustering and Visualization of Mixed-Type Data
– ident: ref39
  doi: 10.1016/j.procs.2018.03.067
– ident: ref21
  doi: 10.5121/ijaia.2010.1203
– year: 2017
  ident: ref165
  publication-title: clustMixType K-Prototypes Clustering for Mixed Variable-Type Data
– ident: ref57
  doi: 10.1109/TNB.2015.2477407
– start-page: 22
  year: 2010
  ident: ref131
  article-title: Adaptive resonance theory
  publication-title: Encyclopedia of Machine Learning and Data Mining
– year: 2008
  ident: ref164
– start-page: 129
  year: 2017
  ident: ref36
  article-title: Clustering mixed datasets using k-prototype algorithm based on crow-search optimization
  publication-title: Developments and Trends in Intelligent Technologies and Smart Systems
– year: 2018
  ident: ref192
  publication-title: What is an electronic health record (EHR)?
– ident: ref64
  doi: 10.1016/j.eswa.2011.01.074
– ident: ref206
  doi: 10.1109/ICDM.2014.34
– ident: ref7
  doi: 10.1111/j.1467-9876.2012.01066.x
– ident: ref12
  doi: 10.1111/insr.12274
– ident: ref48
  doi: 10.5351/CKSS.2006.13.3.719
– start-page: 577
  year: 2001
  ident: ref109
  article-title: Constrained k-means clustering with background knowledge
  publication-title: Proc 18th Int Conf Mach Learning
– ident: ref163
  doi: 10.1007/978-3-030-01851-1_36
– ident: ref124
  doi: 10.1016/j.knosys.2014.08.011
– volume: 29
  start-page: 3308
  year: 2018
  ident: ref79
  article-title: Subspace clustering of categorical and numerical data with an unknown number of clusters
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2728138
– start-page: 849
  year: 2001
  ident: ref150
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc 14th Int Conf Neural Inf Process Syst Natural Synth (NIPS)
– ident: ref176
  doi: 10.1002/sim.7697
– ident: ref53
  doi: 10.1504/IJDMB.2006.009920
– ident: ref136
  doi: 10.1002/9780470191613
– ident: ref19
  doi: 10.1016/j.neucom.2013.04.011
– ident: ref133
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref182
  doi: 10.1109/AICCSA.2015.7507121
– year: 2017
  ident: ref166
  publication-title: clustMD Model Based Clustering for Mixed Data
– ident: ref149
  doi: 10.1016/0893-6080(91)90056-B
– ident: ref199
  doi: 10.1007/s11634-014-0195-1
– ident: ref142
  doi: 10.1016/S0167-8655(02)00130-7
– ident: ref89
  doi: 10.1126/science.1136800
– ident: ref101
  doi: 10.1109/TKDE.2018.2807444
– ident: ref20
  doi: 10.1007/s12046-018-0823-0
– ident: ref196
  doi: 10.1016/j.neunet.2009.08.007
– ident: ref71
  doi: 10.1007/11595014_31
– ident: ref97
  doi: 10.1145/2339530.2339589
– ident: ref102
  doi: 10.1007/s11634-018-0316-3
– ident: ref44
  doi: 10.1016/j.eswa.2005.11.017
– ident: ref198
  doi: 10.1142/S0218001411008683
– ident: ref148
  doi: 10.1016/j.neunet.2005.04.006
– ident: ref95
  doi: 10.1007/978-3-642-13657-3_7
– ident: ref108
  doi: 10.1145/1327452.1327492
– start-page: 547
  year: 1961
  ident: ref122
  article-title: On measures of entropy and information
  publication-title: Proc 4th Berkeley Symp Math Statist Probab
– ident: ref43
  doi: 10.1016/j.ins.2007.05.003
– ident: ref28
  doi: 10.1007/s10844-011-0187-y
– ident: ref14
  doi: 10.1007/978-3-319-75429-1_7
– ident: ref128
  doi: 10.2307/2528080
– ident: ref158
  doi: 10.1016/0004-3702(89)90046-5
– year: 1998
  ident: ref125
  publication-title: An Introduction to Genetic Algorithms
  doi: 10.7551/mitpress/3927.001.0001
– ident: ref141
  doi: 10.1109/TFUZZ.2004.840104
– ident: ref74
  doi: 10.1109/ACCESS.2015.2477216
– ident: ref175
  doi: 10.1007/978-3-540-73599-1_25
– ident: ref116
  doi: 10.1109/SoCPaR.2009.21
– ident: ref185
  doi: 10.1109/CISE.2009.5366556
– ident: ref1
  doi: 10.1016/j.patrec.2004.04.007
– ident: ref24
  doi: 10.1007/978-3-540-71701-0_129
– ident: ref90
  doi: 10.1155/2014/486075
– ident: ref82
  doi: 10.1016/j.knosys.2017.07.027
– ident: ref117
  doi: 10.2307/2528823
– ident: ref156
  doi: 10.1109/BigComp.2018.00093
– ident: ref210
  doi: 10.19026/rjaset.10.1846
– ident: ref42
  doi: 10.1145/502512.502549
– start-page: 218
  year: 2006
  ident: ref68
  article-title: Visualized analysis of multivariate mixed-type data via an extended self-organizing map
  publication-title: Proc 6th Int Conf Inf Technol Appl (ICITA)
– ident: ref16
  doi: 10.1023/A:1024016609528
– ident: ref56
  doi: 10.1007/s11634-016-0238-x
– ident: ref110
  doi: 10.1016/0895-7177(93)90202-A
– ident: ref38
  doi: 10.1016/j.patcog.2011.12.017
– ident: ref8
  doi: 10.1007/978-3-642-03739-9_6
– ident: ref123
  doi: 10.1080/0308107021000013635
– ident: ref18
  doi: 10.1109/FSKD.2016.7603350
– ident: ref151
  doi: 10.1080/03610927408827101
– ident: ref139
  doi: 10.1214/aos/1176344136
– ident: ref96
  doi: 10.1007/978-3-319-98812-2_2
– volume: 45
  start-page: 53e
  year: 2017
  ident: ref181
  article-title: Flexible model-based clustering of mixed binary and continuous data: Application to genetic regulation and cancer
  publication-title: Nucleic Acids Res
– year: 2016
  ident: ref167
  publication-title: Clustering Mixed Data Types in R
– ident: ref75
  doi: 10.1007/11811305_38
– ident: ref187
  doi: 10.1007/s13042-015-0341-x
– ident: ref188
  doi: 10.1007/978-3-642-34289-9_11
– ident: ref191
  doi: 10.1016/j.medengphy.2016.10.014
– ident: ref168
  doi: 10.18637/jss.v050.i13
– ident: ref179
  doi: 10.1007/978-3-642-25330-0_21
– ident: ref106
  doi: 10.1016/j.eswa.2013.07.002
– ident: ref194
  doi: 10.1016/j.jalz.2018.02.004
– volume: 9
  start-page: 2933
  year: 2015
  ident: ref33
  article-title: A novel cluster center initialization method for the k-prototypes algorithms using centrality and distance
  publication-title: Appl Math Inf Sci
– start-page: 153
  year: 1996
  ident: ref49
  article-title: Bayesian classification (AutoClass): Theory and results
  publication-title: Advances in Knowledge Discovery and Data Mining
– ident: ref67
  doi: 10.1109/TNN.2005.863415
– ident: ref77
  doi: 10.1155/2015/747628
– ident: ref9
  doi: 10.1023/A:1009769707641
– ident: ref91
  doi: 10.1002/int.20108
– ident: ref157
  doi: 10.1007/BF00114265
– ident: ref80
  doi: 10.1145/2020408.2020584
– ident: ref83
  doi: 10.1007/s10586-017-0818-3
– ident: ref189
  doi: 10.1109/FSKD.2008.32
– ident: ref127
  doi: 10.1023/A:1009783824328
– ident: ref76
  doi: 10.1016/j.patcog.2011.07.006
– year: 2018
  ident: ref200
  publication-title: Clustering with deep learning Taxonomy and new methods
– ident: ref55
  doi: 10.1007/BF00161577
SSID ssj0000816957
Score 2.5546627
Snippet Mixed data comprises both numeric and categorical features, and mixed datasets occur frequently in many domains, such as health, finance, and marketing....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31883
SubjectTerms Algorithms
Categorical features
Clustering
Clustering algorithms
Cost function
Datasets
Education
Guidelines
Hamming distance
mixed datasets
numeric features
Partitioning algorithms
State-of-the-art reviews
Taxonomy
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEOPFoQWwrKgWPdbhw_xWlZqDhAhcRDvVl-TOhKywbtZqv239fjuFElEBK3yPJETj57PDMef0PIm5orbyBG6kVMDkqUjrpGOKpTYwtRsjaf6P74pM7O9Pm5-bJDjsa7MACQk8_gGB_zWX7swhZDZSdaJmsdfZ17SsnhrtYYT8ECEkaoQixUT83JbD5P34DZW-aYmWkjkE71zuaTOfpLUZU_NHHeXk4f_9_AnpBHxYysZgPuT8kOrPawAnPJ1tgjD-8QDe6Tt1-360u4rrq2ytYl7VqaLD-a5KvPiyuI1XvXu2q-3CJvQhKpZsuf3XrRX_zaPCPfTz98m3-kpWwCDVzxnnrNQerGORmcMlI7zYKJwcjaeV_HmLxSr4TDyi4AJshkUEDgoCH5diKkJf6c7K66FbwgFSTzD2RrkibyXDHvhMNzQ2Z8o1ojxISw2_9pQ-EUx9IWS5t9i6mxAwgWQbAFhAk5GoV-D5Qa_-7-DoEauyIfdm5ICNiyvKxm3sukTaZp6nETvQteeNEwDSZqL2FC9hG18SUFsAk5vIXdlrW7sYwjaRo3tT74u9RL8gAHOARiDsluv97CK3I_XPaLzfp1npY3aEPe7w
  priority: 102
  providerName: IEEE
Title Survey of State-of-the-Art Mixed Data Clustering Algorithms
URI https://ieeexplore.ieee.org/document/8662561
https://www.proquest.com/docview/2455634918
https://doaj.org/article/82bb6319047b49dbacb5b5328e9d8b6e
Volume 7
WOSCitedRecordID wos000462848200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCCiIhVLlwBHTxPFrxGlZWnGgFRIP9Wb5MYGVtrtoN1vBhd_O2ElXKyHBhUsOlseJv7HHM7bzDWMvGmkCYEo8qEQBStKe-1Z5bqmww6RFV050v7w3Fxf28hI-7KX6ynfCBnrgAbgTK0LQNE5qalRCCj4GFVQrLEKyQWO2vrWBvWCq2GDbaFBmpBlqajiZzmbUo3yXC14JqFuVyVX3lqLC2D-mWPnDLpfF5uw-uzd6idV0-LoH7BYuH7K7e9yBh-z1x-36Gn9Wq64qDiNfdZycOU4y1fn8B6bqre99NVtsMxUCiVTTxdfVet5_u9o8Yp_PTj_N3vExEwKP0sieBytR29Z7Hb0Bbb0VEVIE3fgQmpQo0AxG-ZysBRGiJh8Bo0SLFK6pSLP2MTtYrpb4hFVIHh3qDsi4BGlE8Mrno0ABoTUdKDVh4gYUF0ea8JytYuFKuFCDG5B0GUk3IjlhL3dC3weWjL9Xf5PR3lXNFNelgBTvRsW7fyl-wg6zrnaNWE2hnG4m7OhGd26cjhsnZOZBk9DYp__j1c_YndydYSfmiB306y0-Z7fjdT_frI_LSKTn-a_T4_I_4W9vReDR
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1daxQxFA2lFdQHq63iatV58LFpdzJJJsGn7WqpuF0Eq_Qt5ONOXVh3ZHe21H9vbjYdCorg2xByh8ycfNx7k5xDyNuS105DCNSJEAOUIC21lbBUxcIGgmRN2tH9NqmnU3V5qT9vkcP-LgwApMNncISPaS8_tH6NqbJjJaO3jrHODipn5dtafUYFJSS0qDO1UDnUx6PxOH4Fnt_SR0wPK4GEqneWn8TSn2VV_piL0wJzuvt_TXtMHmVHshhtkH9CtmCxhxrM-bzGHnl4h2pwn7z7sl5ew6-ibYrkX9K2odH3o9G-OJ_dQCje284W4_kamROiSTGaX7XLWff9x-op-Xr64WJ8RrNwAvW85h11ioNUlbXS21pLZRXzOngtS-tcGUKMS10tLGq7AGgvo0sBnoOCGN0JHwf5M7K9aBfwnBQQHUCQjY5zkeM1c1ZY3Dlk2lV1o4UYEHb7P43PrOIobjE3KboYarMBwSAIJoMwIIe90c8Nqca_q58gUH1VZMROBREBkweYUcw5GeeTYex8XAdnvRNOVEyBDspJGJB9RK1_SQZsQA5uYTd59K4M40ibxnWpXvzd6g25f3ZxPjGTj9NPL8kDbOwmLXNAtrvlGl6Re_66m62Wr1MX_Q0uH-I4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+of+State-of-the-Art+Mixed+Data+Clustering+Algorithms&rft.jtitle=IEEE+access&rft.au=Ahmad%2C+Amir&rft.au=Khan%2C+Shehroz+S.&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=31883&rft.epage=31902&rft_id=info:doi/10.1109%2FACCESS.2019.2903568&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2903568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon