Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders

The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone to be contaminated with various noises, which may lead to wrong interpretation. Therefore, significant attention has been paid on denoising of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 7; s. 60806 - 60813
Hlavní autori: Chiang, Hsin-Tien, Hsieh, Yi-Yen, Fu, Szu-Wei, Hung, Kuo-Hsuan, Tsao, Yu, Chien, Shao-Yi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone to be contaminated with various noises, which may lead to wrong interpretation. Therefore, significant attention has been paid on denoising of ECG for accurate diagnosis and analysis. A denoising autoencoder (DAE) can be applied to reconstruct the clean data from its noisy version. In this paper, a DAE using the fully convolutional network (FCN) is proposed for ECG signal denoising. Meanwhile, the proposed FCN-based DAE can perform compression with regard to the DAE architecture. The proposed approach is applied to ECG signals from the MIT-BIH Arrhythmia database and the added noise signals are obtained from the MIT-BIH Noise Stress Test database. The denoising performance is evaluated using the root-mean-square error (RMSE), percentage-root-mean-square difference (PRD), and improvement in signal-to-noise ratio (SNR<inline-formula> <tex-math notation="LaTeX">_{\textit{imp}} </tex-math></inline-formula>). The results of the experiments conducted on noisy ECG signals of different levels of input SNR show that the FCN acquires better performance as compared to the deep fully connected neural network- and convolutional neural network-based denoising models. Moreover, the proposed FCN-based DAE reduces the size of the input ECG signals, where the compressed data is 32 times smaller than the original. The results of the study demonstrate the superiority of FCN in denoising, with lower RMSE and PRD, as well as higher SNR<inline-formula> <tex-math notation="LaTeX">_{\textit{imp}} </tex-math></inline-formula>. According to the results, we believe that the proposed FCN-based DAE has a good application prospect in clinical practice.
AbstractList The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone to be contaminated with various noises, which may lead to wrong interpretation. Therefore, significant attention has been paid on denoising of ECG for accurate diagnosis and analysis. A denoising autoencoder (DAE) can be applied to reconstruct the clean data from its noisy version. In this paper, a DAE using the fully convolutional network (FCN) is proposed for ECG signal denoising. Meanwhile, the proposed FCN-based DAE can perform compression with regard to the DAE architecture. The proposed approach is applied to ECG signals from the MIT-BIH Arrhythmia database and the added noise signals are obtained from the MIT-BIH Noise Stress Test database. The denoising performance is evaluated using the root-mean-square error (RMSE), percentage-root-mean-square difference (PRD), and improvement in signal-to-noise ratio (SNRimp). The results of the experiments conducted on noisy ECG signals of different levels of input SNR show that the FCN acquires better performance as compared to the deep fully connected neural network- and convolutional neural network-based denoising models. Moreover, the proposed FCN-based DAE reduces the size of the input ECG signals, where the compressed data is 32 times smaller than the original. The results of the study demonstrate the superiority of FCN in denoising, with lower RMSE and PRD, as well as higher SNRimp. According to the results, we believe that the proposed FCN-based DAE has a good application prospect in clinical practice.
The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone to be contaminated with various noises, which may lead to wrong interpretation. Therefore, significant attention has been paid on denoising of ECG for accurate diagnosis and analysis. A denoising autoencoder (DAE) can be applied to reconstruct the clean data from its noisy version. In this paper, a DAE using the fully convolutional network (FCN) is proposed for ECG signal denoising. Meanwhile, the proposed FCN-based DAE can perform compression with regard to the DAE architecture. The proposed approach is applied to ECG signals from the MIT-BIH Arrhythmia database and the added noise signals are obtained from the MIT-BIH Noise Stress Test database. The denoising performance is evaluated using the root-mean-square error (RMSE), percentage-root-mean-square difference (PRD), and improvement in signal-to-noise ratio (SNR<inline-formula> <tex-math notation="LaTeX">_{\textit{imp}} </tex-math></inline-formula>). The results of the experiments conducted on noisy ECG signals of different levels of input SNR show that the FCN acquires better performance as compared to the deep fully connected neural network- and convolutional neural network-based denoising models. Moreover, the proposed FCN-based DAE reduces the size of the input ECG signals, where the compressed data is 32 times smaller than the original. The results of the study demonstrate the superiority of FCN in denoising, with lower RMSE and PRD, as well as higher SNR<inline-formula> <tex-math notation="LaTeX">_{\textit{imp}} </tex-math></inline-formula>. According to the results, we believe that the proposed FCN-based DAE has a good application prospect in clinical practice.
Author Hsieh, Yi-Yen
Hung, Kuo-Hsuan
Tsao, Yu
Fu, Szu-Wei
Chien, Shao-Yi
Chiang, Hsin-Tien
Author_xml – sequence: 1
  givenname: Hsin-Tien
  surname: Chiang
  fullname: Chiang, Hsin-Tien
  organization: Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: Yi-Yen
  surname: Hsieh
  fullname: Hsieh, Yi-Yen
  organization: Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Szu-Wei
  surname: Fu
  fullname: Fu, Szu-Wei
  organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
– sequence: 4
  givenname: Kuo-Hsuan
  surname: Hung
  fullname: Hung, Kuo-Hsuan
  organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
– sequence: 5
  givenname: Yu
  orcidid: 0000-0001-6956-0418
  surname: Tsao
  fullname: Tsao, Yu
  email: yu.tsao@citi.sinica.edu.tw
  organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
– sequence: 6
  givenname: Shao-Yi
  surname: Chien
  fullname: Chien, Shao-Yi
  organization: Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan
BookMark eNqFkU9r4zAQxUVpYbNtP0Euhj0n1R9Llo7BTbuB0MJmexayNA4KrtSV7IV--7XXpZReqovE6P3eMPO-o_MQAyC0JHhNCFY3m7reHg5riolaU0UoZuIMLSgRasU4E-cf3t_Qdc4nPB45lni1QI8P0WcofoEbbO9jKHwotvV9cfDHYLpcPGUfjsXd0HWvRR3D39gNk8x0xS2EEZ1-N0MfIdjoIOUrdNGOHFy_3Zfo6W77u_652j_e7-rNfmXLquxXxoEkDXNc8EaW2DFTCWwFtcJKaUpGsAWOG0YbgAYLhwlpgTFjW0zkKGWXaDf7umhO-iX5Z5NedTRe_y_EdNQm9d52oCVpS9EqUXHelEI2xlrBqXNU2lJaxUavH7PXS4p_Bsi9PsUhTeNrWnIucEUlGVVsVtkUc07QvnclWE9B6DkIPQWh34IYKfWJsr430wr7ZHz3BbucWQ8A792kUKxSmP0DDkGXNA
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105480
crossref_primary_10_1049_iet_spr_2020_0104
crossref_primary_10_1016_j_jmsy_2024_09_021
crossref_primary_10_1016_j_knosys_2025_113090
crossref_primary_10_1109_JBHI_2024_3475817
crossref_primary_10_1016_j_compbiomed_2025_110341
crossref_primary_10_3390_rs16040715
crossref_primary_10_1111_exsy_13535
crossref_primary_10_3390_bioengineering11111109
crossref_primary_10_1007_s40998_025_00838_x
crossref_primary_10_1016_j_bspc_2023_105242
crossref_primary_10_1109_COMST_2023_3308717
crossref_primary_10_1109_TBME_2021_3108621
crossref_primary_10_1016_j_compbiomed_2020_103801
crossref_primary_10_1088_1742_6596_2188_1_012009
crossref_primary_10_1016_j_egyr_2022_08_004
crossref_primary_10_1016_j_jelectrocard_2024_153783
crossref_primary_10_1038_s41598_023_50334_7
crossref_primary_10_3390_a18040236
crossref_primary_10_1016_j_physletb_2024_139016
crossref_primary_10_1109_TSP_2021_3060619
crossref_primary_10_3390_app11073248
crossref_primary_10_1016_j_measurement_2025_117067
crossref_primary_10_1109_TIM_2022_3198762
crossref_primary_10_1016_j_measurement_2024_116251
crossref_primary_10_3390_ai6090234
crossref_primary_10_1155_2023_6048087
crossref_primary_10_3390_electronics11030496
crossref_primary_10_1109_TIM_2023_3335528
crossref_primary_10_1186_s40537_020_00382_x
crossref_primary_10_1007_s11517_023_02802_5
crossref_primary_10_1016_j_measurement_2024_116234
crossref_primary_10_1016_j_eswa_2022_118093
crossref_primary_10_1109_ACCESS_2023_3309643
crossref_primary_10_1016_j_compbiomed_2024_107984
crossref_primary_10_1080_17434440_2022_2115887
crossref_primary_10_3390_s25051412
crossref_primary_10_1109_ACCESS_2024_3424972
crossref_primary_10_1177_10775463231151721
crossref_primary_10_1016_j_bspc_2022_103750
crossref_primary_10_1016_j_jhazmat_2025_138472
crossref_primary_10_1016_j_bspc_2021_102751
crossref_primary_10_3390_nu14040885
crossref_primary_10_1007_s11277_024_10912_y
crossref_primary_10_1016_j_bspc_2023_105504
crossref_primary_10_1111_cns_70584
crossref_primary_10_47164_ijngc_v15i3_1773
crossref_primary_10_1007_s00500_023_08610_1
crossref_primary_10_1109_ACCESS_2025_3579999
crossref_primary_10_1109_TCE_2025_3562388
crossref_primary_10_1109_TBME_2022_3172125
crossref_primary_10_1109_ACCESS_2022_3206620
crossref_primary_10_1080_15732479_2023_2165118
crossref_primary_10_1016_j_sigpro_2022_108605
crossref_primary_10_1016_j_inffus_2024_102697
crossref_primary_10_3390_s20216179
crossref_primary_10_3390_s24165222
crossref_primary_10_1016_j_measurement_2023_113674
crossref_primary_10_1016_j_bspc_2022_103484
crossref_primary_10_1007_s11760_025_04597_4
crossref_primary_10_1016_j_bspc_2020_102225
crossref_primary_10_1109_ACCESS_2020_3026968
crossref_primary_10_1515_bmt_2022_0199
crossref_primary_10_3390_s24144645
crossref_primary_10_1109_LSP_2023_3275499
crossref_primary_10_1109_TCSI_2025_3533544
crossref_primary_10_1109_TIM_2024_3493872
crossref_primary_10_1007_s11042_022_12597_6
crossref_primary_10_1016_j_jelectrocard_2024_153761
crossref_primary_10_3390_s20102875
crossref_primary_10_1007_s11760_023_02902_7
crossref_primary_10_1016_j_future_2020_10_024
crossref_primary_10_1109_MAP_2020_3043469
crossref_primary_10_1016_j_compeleceng_2025_110177
crossref_primary_10_1109_ACCESS_2021_3123367
crossref_primary_10_1007_s44163_025_00292_y
crossref_primary_10_1109_ACCESS_2025_3550949
crossref_primary_10_1002_ett_4115
crossref_primary_10_1109_TBME_2023_3307400
crossref_primary_10_1007_s00542_019_04654_2
crossref_primary_10_1007_s10489_025_06471_9
crossref_primary_10_1109_TIM_2022_3197757
crossref_primary_10_3390_app11041591
crossref_primary_10_1093_ijlct_ctaf015
crossref_primary_10_1109_JTEHM_2022_3206488
crossref_primary_10_3390_s20164611
crossref_primary_10_1007_s44258_024_00043_1
crossref_primary_10_1007_s00521_021_06159_4
crossref_primary_10_1016_j_bspc_2022_103767
crossref_primary_10_1109_ACCESS_2021_3072640
crossref_primary_10_1007_s10470_022_02120_0
crossref_primary_10_1016_j_eswa_2023_120975
crossref_primary_10_1016_j_dsp_2025_105053
crossref_primary_10_1016_j_neucom_2020_07_056
crossref_primary_10_1016_j_engappai_2024_108685
crossref_primary_10_1109_TIM_2023_3341134
crossref_primary_10_3389_fphys_2022_912739
crossref_primary_10_1038_s41467_024_54704_1
crossref_primary_10_3390_app10175842
crossref_primary_10_1109_TIM_2024_3368495
crossref_primary_10_1155_er_6184508
crossref_primary_10_3390_s21155186
crossref_primary_10_1088_1742_6596_2822_1_012084
crossref_primary_10_1109_ACCESS_2021_3125728
crossref_primary_10_1088_1361_6579_ac34ea
crossref_primary_10_1145_3744654
crossref_primary_10_1109_ACCESS_2020_3040257
crossref_primary_10_1155_2020_8811962
crossref_primary_10_1007_s42417_022_00848_7
crossref_primary_10_1109_JSEN_2024_3382720
crossref_primary_10_1016_j_bspc_2023_104992
crossref_primary_10_1109_ACCESS_2020_2972935
crossref_primary_10_1109_JBHI_2024_3355960
crossref_primary_10_3390_app12146957
crossref_primary_10_1016_j_bspc_2024_107225
crossref_primary_10_1016_j_bspc_2025_108316
crossref_primary_10_1109_JSEN_2024_3404566
crossref_primary_10_1016_j_expthermflusci_2024_111195
crossref_primary_10_1049_cmu2_12706
crossref_primary_10_1016_j_eswa_2022_117499
crossref_primary_10_1016_j_trac_2024_117578
crossref_primary_10_1109_JSEN_2022_3213586
crossref_primary_10_1109_ACCESS_2022_3178847
crossref_primary_10_1088_1741_2552_adc48e
crossref_primary_10_1016_j_engappai_2025_112286
crossref_primary_10_4108_eetpht_10_6421
crossref_primary_10_3390_w14162492
crossref_primary_10_1109_ACCESS_2021_3128151
crossref_primary_10_1002_ett_4654
crossref_primary_10_1007_s40032_025_01210_y
crossref_primary_10_1109_JSEN_2022_3195038
crossref_primary_10_1109_TIM_2025_3542875
crossref_primary_10_1109_TIM_2023_3251408
crossref_primary_10_1109_LSP_2025_3528365
crossref_primary_10_3390_electronics11234021
crossref_primary_10_1186_s12938_025_01426_0
crossref_primary_10_1007_s11004_022_09997_7
crossref_primary_10_1016_j_measurement_2021_109584
crossref_primary_10_1016_j_elerap_2023_101250
crossref_primary_10_1109_TBME_2022_3174509
crossref_primary_10_1109_ACCESS_2020_3021068
crossref_primary_10_1109_TSP_2024_3443875
crossref_primary_10_1007_s12204_023_2591_1
crossref_primary_10_1016_j_knosys_2025_114250
crossref_primary_10_3390_en16207069
crossref_primary_10_1371_journal_pone_0260612
crossref_primary_10_1109_TBME_2020_3046252
crossref_primary_10_3390_s24123789
crossref_primary_10_1080_10589759_2024_2383325
crossref_primary_10_1109_ACCESS_2022_3225899
crossref_primary_10_1109_TNSRE_2020_3019063
crossref_primary_10_1109_ACCESS_2023_3292551
crossref_primary_10_1109_JIOT_2024_3421918
crossref_primary_10_1016_j_comcom_2022_07_027
crossref_primary_10_1016_j_neuroimage_2022_119586
crossref_primary_10_1088_1361_6579_ad605c
crossref_primary_10_1038_s41598_022_19128_1
crossref_primary_10_1080_21681163_2023_2192833
crossref_primary_10_1109_TBME_2024_3392537
crossref_primary_10_1109_TIM_2023_3330182
crossref_primary_10_1007_s42600_022_00237_9
crossref_primary_10_1088_2631_8695_adede3
crossref_primary_10_1007_s00034_025_03142_5
crossref_primary_10_1002_ima_23009
crossref_primary_10_1016_j_apacoust_2024_110301
crossref_primary_10_1016_j_bspc_2021_102992
crossref_primary_10_1109_JBHI_2023_3304299
crossref_primary_10_1016_j_bspc_2023_104964
crossref_primary_10_3390_electronics9010135
crossref_primary_10_1016_j_icte_2025_05_009
crossref_primary_10_1109_JBHI_2023_3237712
crossref_primary_10_1109_JBHI_2024_3392532
crossref_primary_10_1007_s11760_023_02737_2
crossref_primary_10_1016_j_chaos_2023_113168
crossref_primary_10_1016_j_chaos_2022_112333
crossref_primary_10_1016_j_cmpb_2020_105856
crossref_primary_10_1108_JEDT_05_2021_0252
crossref_primary_10_1016_j_bspc_2021_103275
crossref_primary_10_3390_bios12030144
crossref_primary_10_3390_electronics12071606
crossref_primary_10_3103_S1060992X24601337
crossref_primary_10_1007_s00034_020_01498_4
crossref_primary_10_1109_TIM_2025_3570370
crossref_primary_10_1109_ACCESS_2025_3582668
crossref_primary_10_3390_s22249900
crossref_primary_10_1016_j_compbiomed_2023_107553
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_3390_s23249698
crossref_primary_10_1155_2023_6737102
crossref_primary_10_1007_s13534_025_00507_2
crossref_primary_10_1109_RBME_2022_3216531
crossref_primary_10_1016_j_apacoust_2023_109426
Cites_doi 10.1109/CVPR.2014.220
10.21437/Interspeech.2010-487
10.1155/2014/960980
10.1109/TASLP.2018.2821903
10.1109/ICDMW.2016.0041
10.1155/2017/4108720
10.1016/S0140-6736(12)61413-5
10.1109/CVPR.2015.7298965
10.1016/j.cogsys.2018.07.004
10.1109/TBME.2016.2631620
10.1186/s12938-017-0315-1
10.1155/2013/896056
10.1109/TBME.2016.2613960
10.1161/CIR.0000000000000485
10.12733/jics20102845
10.1088/0967-3334/37/12/2214
10.1109/IEMBS.2006.259340
10.1016/j.bspc.2011.11.003
10.1016/j.ijcard.2014.03.128
10.1016/j.engappai.2016.02.015
10.21437/Interspeech.2013-130
10.1109/51.932728
10.1166/jmihi.2015.1649
10.1145/1390156.1390294
10.1109/JSEN.2011.2111453
10.1109/APSIPA.2017.8281993
10.1016/0022-0736(92)90060-D
10.1098/rspa.1998.0193
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2912036
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 60813
ExternalDocumentID oai_doaj_org_article_81f46f96755b468bacc652dd28c48c93
10_1109_ACCESS_2019_2912036
8693790
Genre orig-research
GrantInformation_xml – fundername: Intel Corporation
  funderid: 10.13039/100002418
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 107-2633-E-002-001; MOST 107-2221-E-001-012-MY2; MOST 106-2221-E-001-017-MY2
  funderid: 10.13039/501100004663
– fundername: National Taiwan University
  grantid: NTU-107L104039
  funderid: 10.13039/501100006477
– fundername: Delta
  funderid: 10.13039/100002465
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c474t-ade81b3d565b840d3a760c62c6c88a4310ce50b32beeb06d011fe33acf0187603
IEDL.DBID DOA
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468683800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:03 EDT 2025
Sun Jun 29 15:56:30 EDT 2025
Sat Nov 29 03:57:36 EST 2025
Tue Nov 18 22:19:48 EST 2025
Wed Aug 27 02:46:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ade81b3d565b840d3a760c62c6c88a4310ce50b32beeb06d011fe33acf0187603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6956-0418
OpenAccessLink https://doaj.org/article/81f46f96755b468bacc652dd28c48c93
PQID 2455607281
PQPubID 4845423
PageCount 8
ParticipantIDs ieee_primary_8693790
crossref_citationtrail_10_1109_ACCESS_2019_2912036
proquest_journals_2455607281
crossref_primary_10_1109_ACCESS_2019_2912036
doaj_primary_oai_doaj_org_article_81f46f96755b468bacc652dd28c48c93
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
clevert (ref29) 2015
ref33
ref32
ref10
ref17
reddy (ref11) 2009; 9
ref16
ref19
ref18
deng (ref20) 2010
ioffe (ref30) 2015
jin (ref36) 2018
ref24
ref23
ref26
ref25
kingma (ref35) 2014
benjamin (ref2) 2017; 135
ref21
ref28
ref27
alwan (ref1) 2011
lu (ref22) 2013
ref7
ref9
ref4
ref3
ref6
mao (ref31) 2016
ref5
chandrakar (ref8) 2012; 2
References_xml – year: 2016
  ident: ref31
  publication-title: Image restoration using convolutional auto-encoders with symmetric skip connections
– ident: ref28
  doi: 10.1109/CVPR.2014.220
– start-page: 1692
  year: 2010
  ident: ref20
  article-title: Binary coding of speech spectrograms using a deep auto-encoder
  publication-title: Proc INTERSPEECH
  doi: 10.21437/Interspeech.2010-487
– year: 2014
  ident: ref35
  publication-title: Adam A method for stochastic optimization
– year: 2015
  ident: ref30
  publication-title: Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift
– ident: ref7
  doi: 10.1155/2014/960980
– year: 2011
  ident: ref1
  publication-title: Global Status Report on Noncommunicable Diseases 2010
– ident: ref27
  doi: 10.1109/TASLP.2018.2821903
– ident: ref24
  doi: 10.1109/ICDMW.2016.0041
– ident: ref33
  doi: 10.1155/2017/4108720
– ident: ref3
  doi: 10.1016/S0140-6736(12)61413-5
– ident: ref25
  doi: 10.1109/CVPR.2015.7298965
– ident: ref34
  doi: 10.1016/j.cogsys.2018.07.004
– ident: ref21
  doi: 10.1109/TBME.2016.2631620
– volume: 9
  start-page: 221
  year: 2009
  ident: ref11
  article-title: ECG de-noising using improved thresholding based on wavelet transforms
  publication-title: Int J Comput Sci Netw Secur
– ident: ref13
  doi: 10.1186/s12938-017-0315-1
– ident: ref5
  doi: 10.1155/2013/896056
– ident: ref23
  doi: 10.1109/TBME.2016.2613960
– volume: 135
  start-page: 146e
  year: 2017
  ident: ref2
  article-title: Heart disease and stroke statistics-2017 update: A report from the American heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000485
– ident: ref12
  doi: 10.12733/jics20102845
– ident: ref18
  doi: 10.1088/0967-3334/37/12/2214
– year: 2018
  ident: ref36
  publication-title: Deep ordinal hashing with spatial attention
– ident: ref15
  doi: 10.1109/IEMBS.2006.259340
– ident: ref16
  doi: 10.1016/j.bspc.2011.11.003
– ident: ref10
  doi: 10.1016/j.ijcard.2014.03.128
– ident: ref4
  doi: 10.1016/j.engappai.2016.02.015
– start-page: 436
  year: 2013
  ident: ref22
  article-title: Speech enhancement based on deep denoising autoencoder
  publication-title: Proc INTERSPEECH
  doi: 10.21437/Interspeech.2013-130
– ident: ref32
  doi: 10.1109/51.932728
– year: 2015
  ident: ref29
  publication-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– ident: ref17
  doi: 10.1166/jmihi.2015.1649
– ident: ref19
  doi: 10.1145/1390156.1390294
– ident: ref9
  doi: 10.1109/JSEN.2011.2111453
– ident: ref26
  doi: 10.1109/APSIPA.2017.8281993
– volume: 2
  start-page: 120
  year: 2012
  ident: ref8
  article-title: Denoising ECG signals using adaptive filter algorithm
  publication-title: Int J Soft Comput Eng
– ident: ref6
  doi: 10.1016/0022-0736(92)90060-D
– ident: ref14
  doi: 10.1098/rspa.1998.0193
SSID ssj0000816957
Score 2.5613651
Snippet The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60806
SubjectTerms Arrhythmia
Artificial neural networks
Cardiac arrhythmia
Cardiac stress tests
Convolution
Decoding
denoising autoencoders
Electrocardiography
fully convolutional network
Neural networks
Noise
Noise measurement
Noise reduction
Performance evaluation
Root-mean-square errors
signal denoising
Signal to noise ratio
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVK1UM5lNKCutAiHzg2bWI7_jguaQunLYJW6s2K7QlaCSWou1uJf4_HcSMQCKm3KLEt288Tz4zHbwh5rzvZtS5KmnOtLITUotAdd4UDBl4apzWElGxCLRb67s583iKn010YAEjBZ3CGj-ksPwx-g66ycy3jZmqigf5MKTXe1Zr8KZhAwtQqEwtVpTmfN00cA0ZvmTNmKjxx-2PzSRz9OanKX3_itL1cvXhax_bJXlYj6XzE_SXZgv6APP-NXPCQXC-G5QroF-Rmxdmny55eNh_p1-U35EymKViAogn6kzZD_5DXYGz1AvpYFb_ON-sBmS4x2vkVub26vGk-FTl9QuGFEuuiDRB1Uh6iyuaiGRd4q2TpJfPSa91GxaH0UJeOMwfgShmipHfAees7TNQnS_6abPdDD0eEChWgDKaFUCshPNcCKu5qFRvXoDo3I-xxXq3P3OKY4uK7TTZGaewIhkUwbAZjRk6nSj9Gao3_F_-AgE1FkRc7vYhI2CxmVledkJ2JVlDt4sJzrfeyZiEw7YX2hs_IIaI3NZKBm5HjR_htluGVZaKO6qBiunrz71pvyS52cHTIHJPt9f0GTsiOf1gvV_fv0vL8BeqH4zk
  priority: 102
  providerName: IEEE
Title Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders
URI https://ieeexplore.ieee.org/document/8693790
https://www.proquest.com/docview/2455607281
https://doaj.org/article/81f46f96755b468bacc652dd28c48c93
Volume 7
WOSCitedRecordID wos000468683800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCFoQC23lQ4-EOrbjx3GbbsuFLeIh9WbF9gSthLJVd1uJS397x4672goJLlxySOxJPDO2v0km3xByZHrVdx5nmvedqqQysjK98JUHDkFZbwzEXGxCz-fm8tJ-2Sr1lXLCRnrgUXHHpu6l6i3i2sajKN-FoBoeIzdBmmAzzyeinq1gKq_Bpla20YVmqGb2eNq2OKKUy2U_clun72-PtqLM2F9KrPyxLufN5uwleVFQIp2OT_eKPIFhlzzf4g7cIxfz5WIF9GuiXk3KpYuBztpz-m3xM1Ei05wLQFOE-Zu2y-G2uBhKPYUBu6ar05v1MhFZpmTm1-TH2ex7-6kq1RGqILVcV10EhJwiIiLzGKVF0WnFguJBBWM6xAUsQMO84B7AMxVxIvcgRBf6VIdPMfGG7AzLAd4SKnUEFm0HsdFSBmEk1MI3GoUb0L2fEP6gKBcKdXiqYPHL5RCCWTdq1yXtuqLdCfmw6XQ1Mmf8vflJssCmaaK9zifQGVxxBvcvZ5iQvWS_jRCjEH1ZNiH7D_Z0ZYquHJcNoj3NTf3uf9z6PXmWhjO-ndknO-vrGzggT8PterG6PszeicfPd7PD_I_hPTDf6BY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQcyqNUbCngA8emTWzHj-MSWoooC4Ii9WbF9gSthBLU3a3Ev8fjuBEIhMQtSmzL9ueJZ8bjbwh5qTvZtS5KmnOtLITUotAdd4UDBl4apzWElGxCLRb68tJ83CKH010YAEjBZ3CEj-ksPwx-g66yYy3jZmqigX6rFoJV422tyaOCKSRMrTK1UFWa43nTxFFg_JY5YqbCM7fftp_E0p_TqvzxL04bzOn9_-vaA7KTFUk6H5F_SLagf0Tu_UIvuEs-LIblCugnZGfF-afLnp40b-jn5VdkTaYpXICiEfqDNkN_nVdhbPU19LEqfp1v1gNyXWK882Py5fTkojkrcgKFwgsl1kUbIGqlPESlzUVDLvBWydJL5qXXuo2qQ-mhLh1nDsCVMkRZ74Dz1neYqk-WfI9s90MPTwgVKkAZTAuhVkJ4rgVU3NUqNq5BdW5G2M28Wp_ZxTHJxTebrIzS2BEMi2DYDMaMHE6Vvo_kGv8u_goBm4oiM3Z6EZGwWdCsrjohOxPtoNrFpeda72XNQmDaC-0Nn5FdRG9qJAM3Iwc38NssxSvLRB0VQsV0tf_3Wi_InbOL9-f2_O3i3VNyFzs7umcOyPb6agPPyG1_vV6urp6npfoT4YzmgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+in+ECG+Signals+Using+Fully+Convolutional+Denoising+Autoencoders&rft.jtitle=IEEE+access&rft.au=Chiang%2C+Hsin-Tien&rft.au=Hsieh%2C+Yi-Yen&rft.au=Fu%2C+Szu-Wei&rft.au=Hung%2C+Kuo-Hsuan&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=60806&rft.epage=60813&rft_id=info:doi/10.1109%2FACCESS.2019.2912036&rft.externalDocID=8693790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon