Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders
The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone to be contaminated with various noises, which may lead to wrong interpretation. Therefore, significant attention has been paid on denoising of...
Uložené v:
| Vydané v: | IEEE access Ročník 7; s. 60806 - 60813 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone to be contaminated with various noises, which may lead to wrong interpretation. Therefore, significant attention has been paid on denoising of ECG for accurate diagnosis and analysis. A denoising autoencoder (DAE) can be applied to reconstruct the clean data from its noisy version. In this paper, a DAE using the fully convolutional network (FCN) is proposed for ECG signal denoising. Meanwhile, the proposed FCN-based DAE can perform compression with regard to the DAE architecture. The proposed approach is applied to ECG signals from the MIT-BIH Arrhythmia database and the added noise signals are obtained from the MIT-BIH Noise Stress Test database. The denoising performance is evaluated using the root-mean-square error (RMSE), percentage-root-mean-square difference (PRD), and improvement in signal-to-noise ratio (SNR<inline-formula> <tex-math notation="LaTeX">_{\textit{imp}} </tex-math></inline-formula>). The results of the experiments conducted on noisy ECG signals of different levels of input SNR show that the FCN acquires better performance as compared to the deep fully connected neural network- and convolutional neural network-based denoising models. Moreover, the proposed FCN-based DAE reduces the size of the input ECG signals, where the compressed data is 32 times smaller than the original. The results of the study demonstrate the superiority of FCN in denoising, with lower RMSE and PRD, as well as higher SNR<inline-formula> <tex-math notation="LaTeX">_{\textit{imp}} </tex-math></inline-formula>. According to the results, we believe that the proposed FCN-based DAE has a good application prospect in clinical practice. |
|---|---|
| AbstractList | The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone to be contaminated with various noises, which may lead to wrong interpretation. Therefore, significant attention has been paid on denoising of ECG for accurate diagnosis and analysis. A denoising autoencoder (DAE) can be applied to reconstruct the clean data from its noisy version. In this paper, a DAE using the fully convolutional network (FCN) is proposed for ECG signal denoising. Meanwhile, the proposed FCN-based DAE can perform compression with regard to the DAE architecture. The proposed approach is applied to ECG signals from the MIT-BIH Arrhythmia database and the added noise signals are obtained from the MIT-BIH Noise Stress Test database. The denoising performance is evaluated using the root-mean-square error (RMSE), percentage-root-mean-square difference (PRD), and improvement in signal-to-noise ratio (SNRimp). The results of the experiments conducted on noisy ECG signals of different levels of input SNR show that the FCN acquires better performance as compared to the deep fully connected neural network- and convolutional neural network-based denoising models. Moreover, the proposed FCN-based DAE reduces the size of the input ECG signals, where the compressed data is 32 times smaller than the original. The results of the study demonstrate the superiority of FCN in denoising, with lower RMSE and PRD, as well as higher SNRimp. According to the results, we believe that the proposed FCN-based DAE has a good application prospect in clinical practice. The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone to be contaminated with various noises, which may lead to wrong interpretation. Therefore, significant attention has been paid on denoising of ECG for accurate diagnosis and analysis. A denoising autoencoder (DAE) can be applied to reconstruct the clean data from its noisy version. In this paper, a DAE using the fully convolutional network (FCN) is proposed for ECG signal denoising. Meanwhile, the proposed FCN-based DAE can perform compression with regard to the DAE architecture. The proposed approach is applied to ECG signals from the MIT-BIH Arrhythmia database and the added noise signals are obtained from the MIT-BIH Noise Stress Test database. The denoising performance is evaluated using the root-mean-square error (RMSE), percentage-root-mean-square difference (PRD), and improvement in signal-to-noise ratio (SNR<inline-formula> <tex-math notation="LaTeX">_{\textit{imp}} </tex-math></inline-formula>). The results of the experiments conducted on noisy ECG signals of different levels of input SNR show that the FCN acquires better performance as compared to the deep fully connected neural network- and convolutional neural network-based denoising models. Moreover, the proposed FCN-based DAE reduces the size of the input ECG signals, where the compressed data is 32 times smaller than the original. The results of the study demonstrate the superiority of FCN in denoising, with lower RMSE and PRD, as well as higher SNR<inline-formula> <tex-math notation="LaTeX">_{\textit{imp}} </tex-math></inline-formula>. According to the results, we believe that the proposed FCN-based DAE has a good application prospect in clinical practice. |
| Author | Hsieh, Yi-Yen Hung, Kuo-Hsuan Tsao, Yu Fu, Szu-Wei Chien, Shao-Yi Chiang, Hsin-Tien |
| Author_xml | – sequence: 1 givenname: Hsin-Tien surname: Chiang fullname: Chiang, Hsin-Tien organization: Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan – sequence: 2 givenname: Yi-Yen surname: Hsieh fullname: Hsieh, Yi-Yen organization: Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan – sequence: 3 givenname: Szu-Wei surname: Fu fullname: Fu, Szu-Wei organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan – sequence: 4 givenname: Kuo-Hsuan surname: Hung fullname: Hung, Kuo-Hsuan organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan – sequence: 5 givenname: Yu orcidid: 0000-0001-6956-0418 surname: Tsao fullname: Tsao, Yu email: yu.tsao@citi.sinica.edu.tw organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan – sequence: 6 givenname: Shao-Yi surname: Chien fullname: Chien, Shao-Yi organization: Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan |
| BookMark | eNqFkU9r4zAQxUVpYbNtP0Euhj0n1R9Llo7BTbuB0MJmexayNA4KrtSV7IV--7XXpZReqovE6P3eMPO-o_MQAyC0JHhNCFY3m7reHg5riolaU0UoZuIMLSgRasU4E-cf3t_Qdc4nPB45lni1QI8P0WcofoEbbO9jKHwotvV9cfDHYLpcPGUfjsXd0HWvRR3D39gNk8x0xS2EEZ1-N0MfIdjoIOUrdNGOHFy_3Zfo6W77u_652j_e7-rNfmXLquxXxoEkDXNc8EaW2DFTCWwFtcJKaUpGsAWOG0YbgAYLhwlpgTFjW0zkKGWXaDf7umhO-iX5Z5NedTRe_y_EdNQm9d52oCVpS9EqUXHelEI2xlrBqXNU2lJaxUavH7PXS4p_Bsi9PsUhTeNrWnIucEUlGVVsVtkUc07QvnclWE9B6DkIPQWh34IYKfWJsr430wr7ZHz3BbucWQ8A792kUKxSmP0DDkGXNA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105480 crossref_primary_10_1049_iet_spr_2020_0104 crossref_primary_10_1016_j_jmsy_2024_09_021 crossref_primary_10_1016_j_knosys_2025_113090 crossref_primary_10_1109_JBHI_2024_3475817 crossref_primary_10_1016_j_compbiomed_2025_110341 crossref_primary_10_3390_rs16040715 crossref_primary_10_1111_exsy_13535 crossref_primary_10_3390_bioengineering11111109 crossref_primary_10_1007_s40998_025_00838_x crossref_primary_10_1016_j_bspc_2023_105242 crossref_primary_10_1109_COMST_2023_3308717 crossref_primary_10_1109_TBME_2021_3108621 crossref_primary_10_1016_j_compbiomed_2020_103801 crossref_primary_10_1088_1742_6596_2188_1_012009 crossref_primary_10_1016_j_egyr_2022_08_004 crossref_primary_10_1016_j_jelectrocard_2024_153783 crossref_primary_10_1038_s41598_023_50334_7 crossref_primary_10_3390_a18040236 crossref_primary_10_1016_j_physletb_2024_139016 crossref_primary_10_1109_TSP_2021_3060619 crossref_primary_10_3390_app11073248 crossref_primary_10_1016_j_measurement_2025_117067 crossref_primary_10_1109_TIM_2022_3198762 crossref_primary_10_1016_j_measurement_2024_116251 crossref_primary_10_3390_ai6090234 crossref_primary_10_1155_2023_6048087 crossref_primary_10_3390_electronics11030496 crossref_primary_10_1109_TIM_2023_3335528 crossref_primary_10_1186_s40537_020_00382_x crossref_primary_10_1007_s11517_023_02802_5 crossref_primary_10_1016_j_measurement_2024_116234 crossref_primary_10_1016_j_eswa_2022_118093 crossref_primary_10_1109_ACCESS_2023_3309643 crossref_primary_10_1016_j_compbiomed_2024_107984 crossref_primary_10_1080_17434440_2022_2115887 crossref_primary_10_3390_s25051412 crossref_primary_10_1109_ACCESS_2024_3424972 crossref_primary_10_1177_10775463231151721 crossref_primary_10_1016_j_bspc_2022_103750 crossref_primary_10_1016_j_jhazmat_2025_138472 crossref_primary_10_1016_j_bspc_2021_102751 crossref_primary_10_3390_nu14040885 crossref_primary_10_1007_s11277_024_10912_y crossref_primary_10_1016_j_bspc_2023_105504 crossref_primary_10_1111_cns_70584 crossref_primary_10_47164_ijngc_v15i3_1773 crossref_primary_10_1007_s00500_023_08610_1 crossref_primary_10_1109_ACCESS_2025_3579999 crossref_primary_10_1109_TCE_2025_3562388 crossref_primary_10_1109_TBME_2022_3172125 crossref_primary_10_1109_ACCESS_2022_3206620 crossref_primary_10_1080_15732479_2023_2165118 crossref_primary_10_1016_j_sigpro_2022_108605 crossref_primary_10_1016_j_inffus_2024_102697 crossref_primary_10_3390_s20216179 crossref_primary_10_3390_s24165222 crossref_primary_10_1016_j_measurement_2023_113674 crossref_primary_10_1016_j_bspc_2022_103484 crossref_primary_10_1007_s11760_025_04597_4 crossref_primary_10_1016_j_bspc_2020_102225 crossref_primary_10_1109_ACCESS_2020_3026968 crossref_primary_10_1515_bmt_2022_0199 crossref_primary_10_3390_s24144645 crossref_primary_10_1109_LSP_2023_3275499 crossref_primary_10_1109_TCSI_2025_3533544 crossref_primary_10_1109_TIM_2024_3493872 crossref_primary_10_1007_s11042_022_12597_6 crossref_primary_10_1016_j_jelectrocard_2024_153761 crossref_primary_10_3390_s20102875 crossref_primary_10_1007_s11760_023_02902_7 crossref_primary_10_1016_j_future_2020_10_024 crossref_primary_10_1109_MAP_2020_3043469 crossref_primary_10_1016_j_compeleceng_2025_110177 crossref_primary_10_1109_ACCESS_2021_3123367 crossref_primary_10_1007_s44163_025_00292_y crossref_primary_10_1109_ACCESS_2025_3550949 crossref_primary_10_1002_ett_4115 crossref_primary_10_1109_TBME_2023_3307400 crossref_primary_10_1007_s00542_019_04654_2 crossref_primary_10_1007_s10489_025_06471_9 crossref_primary_10_1109_TIM_2022_3197757 crossref_primary_10_3390_app11041591 crossref_primary_10_1093_ijlct_ctaf015 crossref_primary_10_1109_JTEHM_2022_3206488 crossref_primary_10_3390_s20164611 crossref_primary_10_1007_s44258_024_00043_1 crossref_primary_10_1007_s00521_021_06159_4 crossref_primary_10_1016_j_bspc_2022_103767 crossref_primary_10_1109_ACCESS_2021_3072640 crossref_primary_10_1007_s10470_022_02120_0 crossref_primary_10_1016_j_eswa_2023_120975 crossref_primary_10_1016_j_dsp_2025_105053 crossref_primary_10_1016_j_neucom_2020_07_056 crossref_primary_10_1016_j_engappai_2024_108685 crossref_primary_10_1109_TIM_2023_3341134 crossref_primary_10_3389_fphys_2022_912739 crossref_primary_10_1038_s41467_024_54704_1 crossref_primary_10_3390_app10175842 crossref_primary_10_1109_TIM_2024_3368495 crossref_primary_10_1155_er_6184508 crossref_primary_10_3390_s21155186 crossref_primary_10_1088_1742_6596_2822_1_012084 crossref_primary_10_1109_ACCESS_2021_3125728 crossref_primary_10_1088_1361_6579_ac34ea crossref_primary_10_1145_3744654 crossref_primary_10_1109_ACCESS_2020_3040257 crossref_primary_10_1155_2020_8811962 crossref_primary_10_1007_s42417_022_00848_7 crossref_primary_10_1109_JSEN_2024_3382720 crossref_primary_10_1016_j_bspc_2023_104992 crossref_primary_10_1109_ACCESS_2020_2972935 crossref_primary_10_1109_JBHI_2024_3355960 crossref_primary_10_3390_app12146957 crossref_primary_10_1016_j_bspc_2024_107225 crossref_primary_10_1016_j_bspc_2025_108316 crossref_primary_10_1109_JSEN_2024_3404566 crossref_primary_10_1016_j_expthermflusci_2024_111195 crossref_primary_10_1049_cmu2_12706 crossref_primary_10_1016_j_eswa_2022_117499 crossref_primary_10_1016_j_trac_2024_117578 crossref_primary_10_1109_JSEN_2022_3213586 crossref_primary_10_1109_ACCESS_2022_3178847 crossref_primary_10_1088_1741_2552_adc48e crossref_primary_10_1016_j_engappai_2025_112286 crossref_primary_10_4108_eetpht_10_6421 crossref_primary_10_3390_w14162492 crossref_primary_10_1109_ACCESS_2021_3128151 crossref_primary_10_1002_ett_4654 crossref_primary_10_1007_s40032_025_01210_y crossref_primary_10_1109_JSEN_2022_3195038 crossref_primary_10_1109_TIM_2025_3542875 crossref_primary_10_1109_TIM_2023_3251408 crossref_primary_10_1109_LSP_2025_3528365 crossref_primary_10_3390_electronics11234021 crossref_primary_10_1186_s12938_025_01426_0 crossref_primary_10_1007_s11004_022_09997_7 crossref_primary_10_1016_j_measurement_2021_109584 crossref_primary_10_1016_j_elerap_2023_101250 crossref_primary_10_1109_TBME_2022_3174509 crossref_primary_10_1109_ACCESS_2020_3021068 crossref_primary_10_1109_TSP_2024_3443875 crossref_primary_10_1007_s12204_023_2591_1 crossref_primary_10_1016_j_knosys_2025_114250 crossref_primary_10_3390_en16207069 crossref_primary_10_1371_journal_pone_0260612 crossref_primary_10_1109_TBME_2020_3046252 crossref_primary_10_3390_s24123789 crossref_primary_10_1080_10589759_2024_2383325 crossref_primary_10_1109_ACCESS_2022_3225899 crossref_primary_10_1109_TNSRE_2020_3019063 crossref_primary_10_1109_ACCESS_2023_3292551 crossref_primary_10_1109_JIOT_2024_3421918 crossref_primary_10_1016_j_comcom_2022_07_027 crossref_primary_10_1016_j_neuroimage_2022_119586 crossref_primary_10_1088_1361_6579_ad605c crossref_primary_10_1038_s41598_022_19128_1 crossref_primary_10_1080_21681163_2023_2192833 crossref_primary_10_1109_TBME_2024_3392537 crossref_primary_10_1109_TIM_2023_3330182 crossref_primary_10_1007_s42600_022_00237_9 crossref_primary_10_1088_2631_8695_adede3 crossref_primary_10_1007_s00034_025_03142_5 crossref_primary_10_1002_ima_23009 crossref_primary_10_1016_j_apacoust_2024_110301 crossref_primary_10_1016_j_bspc_2021_102992 crossref_primary_10_1109_JBHI_2023_3304299 crossref_primary_10_1016_j_bspc_2023_104964 crossref_primary_10_3390_electronics9010135 crossref_primary_10_1016_j_icte_2025_05_009 crossref_primary_10_1109_JBHI_2023_3237712 crossref_primary_10_1109_JBHI_2024_3392532 crossref_primary_10_1007_s11760_023_02737_2 crossref_primary_10_1016_j_chaos_2023_113168 crossref_primary_10_1016_j_chaos_2022_112333 crossref_primary_10_1016_j_cmpb_2020_105856 crossref_primary_10_1108_JEDT_05_2021_0252 crossref_primary_10_1016_j_bspc_2021_103275 crossref_primary_10_3390_bios12030144 crossref_primary_10_3390_electronics12071606 crossref_primary_10_3103_S1060992X24601337 crossref_primary_10_1007_s00034_020_01498_4 crossref_primary_10_1109_TIM_2025_3570370 crossref_primary_10_1109_ACCESS_2025_3582668 crossref_primary_10_3390_s22249900 crossref_primary_10_1016_j_compbiomed_2023_107553 crossref_primary_10_1088_1361_6579_ac826e crossref_primary_10_3390_s23249698 crossref_primary_10_1155_2023_6737102 crossref_primary_10_1007_s13534_025_00507_2 crossref_primary_10_1109_RBME_2022_3216531 crossref_primary_10_1016_j_apacoust_2023_109426 |
| Cites_doi | 10.1109/CVPR.2014.220 10.21437/Interspeech.2010-487 10.1155/2014/960980 10.1109/TASLP.2018.2821903 10.1109/ICDMW.2016.0041 10.1155/2017/4108720 10.1016/S0140-6736(12)61413-5 10.1109/CVPR.2015.7298965 10.1016/j.cogsys.2018.07.004 10.1109/TBME.2016.2631620 10.1186/s12938-017-0315-1 10.1155/2013/896056 10.1109/TBME.2016.2613960 10.1161/CIR.0000000000000485 10.12733/jics20102845 10.1088/0967-3334/37/12/2214 10.1109/IEMBS.2006.259340 10.1016/j.bspc.2011.11.003 10.1016/j.ijcard.2014.03.128 10.1016/j.engappai.2016.02.015 10.21437/Interspeech.2013-130 10.1109/51.932728 10.1166/jmihi.2015.1649 10.1145/1390156.1390294 10.1109/JSEN.2011.2111453 10.1109/APSIPA.2017.8281993 10.1016/0022-0736(92)90060-D 10.1098/rspa.1998.0193 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2912036 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 60813 |
| ExternalDocumentID | oai_doaj_org_article_81f46f96755b468bacc652dd28c48c93 10_1109_ACCESS_2019_2912036 8693790 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Intel Corporation funderid: 10.13039/100002418 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 107-2633-E-002-001; MOST 107-2221-E-001-012-MY2; MOST 106-2221-E-001-017-MY2 funderid: 10.13039/501100004663 – fundername: National Taiwan University grantid: NTU-107L104039 funderid: 10.13039/501100006477 – fundername: Delta funderid: 10.13039/100002465 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c474t-ade81b3d565b840d3a760c62c6c88a4310ce50b32beeb06d011fe33acf0187603 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 229 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468683800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:03 EDT 2025 Sun Jun 29 15:56:30 EDT 2025 Sat Nov 29 03:57:36 EST 2025 Tue Nov 18 22:19:48 EST 2025 Wed Aug 27 02:46:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-ade81b3d565b840d3a760c62c6c88a4310ce50b32beeb06d011fe33acf0187603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6956-0418 |
| OpenAccessLink | https://doaj.org/article/81f46f96755b468bacc652dd28c48c93 |
| PQID | 2455607281 |
| PQPubID | 4845423 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8693790 crossref_citationtrail_10_1109_ACCESS_2019_2912036 proquest_journals_2455607281 crossref_primary_10_1109_ACCESS_2019_2912036 doaj_primary_oai_doaj_org_article_81f46f96755b468bacc652dd28c48c93 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref15 ref14 clevert (ref29) 2015 ref33 ref32 ref10 ref17 reddy (ref11) 2009; 9 ref16 ref19 ref18 deng (ref20) 2010 ioffe (ref30) 2015 jin (ref36) 2018 ref24 ref23 ref26 ref25 kingma (ref35) 2014 benjamin (ref2) 2017; 135 ref21 ref28 ref27 alwan (ref1) 2011 lu (ref22) 2013 ref7 ref9 ref4 ref3 ref6 mao (ref31) 2016 ref5 chandrakar (ref8) 2012; 2 |
| References_xml | – year: 2016 ident: ref31 publication-title: Image restoration using convolutional auto-encoders with symmetric skip connections – ident: ref28 doi: 10.1109/CVPR.2014.220 – start-page: 1692 year: 2010 ident: ref20 article-title: Binary coding of speech spectrograms using a deep auto-encoder publication-title: Proc INTERSPEECH doi: 10.21437/Interspeech.2010-487 – year: 2014 ident: ref35 publication-title: Adam A method for stochastic optimization – year: 2015 ident: ref30 publication-title: Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift – ident: ref7 doi: 10.1155/2014/960980 – year: 2011 ident: ref1 publication-title: Global Status Report on Noncommunicable Diseases 2010 – ident: ref27 doi: 10.1109/TASLP.2018.2821903 – ident: ref24 doi: 10.1109/ICDMW.2016.0041 – ident: ref33 doi: 10.1155/2017/4108720 – ident: ref3 doi: 10.1016/S0140-6736(12)61413-5 – ident: ref25 doi: 10.1109/CVPR.2015.7298965 – ident: ref34 doi: 10.1016/j.cogsys.2018.07.004 – ident: ref21 doi: 10.1109/TBME.2016.2631620 – volume: 9 start-page: 221 year: 2009 ident: ref11 article-title: ECG de-noising using improved thresholding based on wavelet transforms publication-title: Int J Comput Sci Netw Secur – ident: ref13 doi: 10.1186/s12938-017-0315-1 – ident: ref5 doi: 10.1155/2013/896056 – ident: ref23 doi: 10.1109/TBME.2016.2613960 – volume: 135 start-page: 146e year: 2017 ident: ref2 article-title: Heart disease and stroke statistics-2017 update: A report from the American heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000485 – ident: ref12 doi: 10.12733/jics20102845 – ident: ref18 doi: 10.1088/0967-3334/37/12/2214 – year: 2018 ident: ref36 publication-title: Deep ordinal hashing with spatial attention – ident: ref15 doi: 10.1109/IEMBS.2006.259340 – ident: ref16 doi: 10.1016/j.bspc.2011.11.003 – ident: ref10 doi: 10.1016/j.ijcard.2014.03.128 – ident: ref4 doi: 10.1016/j.engappai.2016.02.015 – start-page: 436 year: 2013 ident: ref22 article-title: Speech enhancement based on deep denoising autoencoder publication-title: Proc INTERSPEECH doi: 10.21437/Interspeech.2013-130 – ident: ref32 doi: 10.1109/51.932728 – year: 2015 ident: ref29 publication-title: Fast and accurate deep network learning by exponential linear units (ELUs) – ident: ref17 doi: 10.1166/jmihi.2015.1649 – ident: ref19 doi: 10.1145/1390156.1390294 – ident: ref9 doi: 10.1109/JSEN.2011.2111453 – ident: ref26 doi: 10.1109/APSIPA.2017.8281993 – volume: 2 start-page: 120 year: 2012 ident: ref8 article-title: Denoising ECG signals using adaptive filter algorithm publication-title: Int J Soft Comput Eng – ident: ref6 doi: 10.1016/0022-0736(92)90060-D – ident: ref14 doi: 10.1098/rspa.1998.0193 |
| SSID | ssj0000816957 |
| Score | 2.5613651 |
| Snippet | The electrocardiogram (ECG) is an efficient and noninvasive indicator for arrhythmia detection and prevention. In real-world scenarios, ECG signals are prone... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 60806 |
| SubjectTerms | Arrhythmia Artificial neural networks Cardiac arrhythmia Cardiac stress tests Convolution Decoding denoising autoencoders Electrocardiography fully convolutional network Neural networks Noise Noise measurement Noise reduction Performance evaluation Root-mean-square errors signal denoising Signal to noise ratio |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVK1UM5lNKCutAiHzg2bWI7_jguaQunLYJW6s2K7QlaCSWou1uJf4_HcSMQCKm3KLEt288Tz4zHbwh5rzvZtS5KmnOtLITUotAdd4UDBl4apzWElGxCLRb67s583iKn010YAEjBZ3CGj-ksPwx-g66ycy3jZmqigf5MKTXe1Zr8KZhAwtQqEwtVpTmfN00cA0ZvmTNmKjxx-2PzSRz9OanKX3_itL1cvXhax_bJXlYj6XzE_SXZgv6APP-NXPCQXC-G5QroF-Rmxdmny55eNh_p1-U35EymKViAogn6kzZD_5DXYGz1AvpYFb_ON-sBmS4x2vkVub26vGk-FTl9QuGFEuuiDRB1Uh6iyuaiGRd4q2TpJfPSa91GxaH0UJeOMwfgShmipHfAees7TNQnS_6abPdDD0eEChWgDKaFUCshPNcCKu5qFRvXoDo3I-xxXq3P3OKY4uK7TTZGaewIhkUwbAZjRk6nSj9Gao3_F_-AgE1FkRc7vYhI2CxmVledkJ2JVlDt4sJzrfeyZiEw7YX2hs_IIaI3NZKBm5HjR_htluGVZaKO6qBiunrz71pvyS52cHTIHJPt9f0GTsiOf1gvV_fv0vL8BeqH4zk priority: 102 providerName: IEEE |
| Title | Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders |
| URI | https://ieeexplore.ieee.org/document/8693790 https://www.proquest.com/docview/2455607281 https://doaj.org/article/81f46f96755b468bacc652dd28c48c93 |
| Volume | 7 |
| WOSCitedRecordID | wos000468683800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCFoQC23lQ4-EOrbjx3GbbsuFLeIh9WbF9gSthLJVd1uJS397x4672goJLlxySOxJPDO2v0km3xByZHrVdx5nmvedqqQysjK98JUHDkFZbwzEXGxCz-fm8tJ-2Sr1lXLCRnrgUXHHpu6l6i3i2sajKN-FoBoeIzdBmmAzzyeinq1gKq_Bpla20YVmqGb2eNq2OKKUy2U_clun72-PtqLM2F9KrPyxLufN5uwleVFQIp2OT_eKPIFhlzzf4g7cIxfz5WIF9GuiXk3KpYuBztpz-m3xM1Ei05wLQFOE-Zu2y-G2uBhKPYUBu6ar05v1MhFZpmTm1-TH2ex7-6kq1RGqILVcV10EhJwiIiLzGKVF0WnFguJBBWM6xAUsQMO84B7AMxVxIvcgRBf6VIdPMfGG7AzLAd4SKnUEFm0HsdFSBmEk1MI3GoUb0L2fEP6gKBcKdXiqYPHL5RCCWTdq1yXtuqLdCfmw6XQ1Mmf8vflJssCmaaK9zifQGVxxBvcvZ5iQvWS_jRCjEH1ZNiH7D_Z0ZYquHJcNoj3NTf3uf9z6PXmWhjO-ndknO-vrGzggT8PterG6PszeicfPd7PD_I_hPTDf6BY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQcyqNUbCngA8emTWzHj-MSWoooC4Ii9WbF9gSthBLU3a3Ev8fjuBEIhMQtSmzL9ueJZ8bjbwh5qTvZtS5KmnOtLITUotAdd4UDBl4apzWElGxCLRb68tJ83CKH010YAEjBZ3CEj-ksPwx-g66yYy3jZmqigX6rFoJV422tyaOCKSRMrTK1UFWa43nTxFFg_JY5YqbCM7fftp_E0p_TqvzxL04bzOn9_-vaA7KTFUk6H5F_SLagf0Tu_UIvuEs-LIblCugnZGfF-afLnp40b-jn5VdkTaYpXICiEfqDNkN_nVdhbPU19LEqfp1v1gNyXWK882Py5fTkojkrcgKFwgsl1kUbIGqlPESlzUVDLvBWydJL5qXXuo2qQ-mhLh1nDsCVMkRZ74Dz1neYqk-WfI9s90MPTwgVKkAZTAuhVkJ4rgVU3NUqNq5BdW5G2M28Wp_ZxTHJxTebrIzS2BEMi2DYDMaMHE6Vvo_kGv8u_goBm4oiM3Z6EZGwWdCsrjohOxPtoNrFpeda72XNQmDaC-0Nn5FdRG9qJAM3Iwc38NssxSvLRB0VQsV0tf_3Wi_InbOL9-f2_O3i3VNyFzs7umcOyPb6agPPyG1_vV6urp6npfoT4YzmgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+in+ECG+Signals+Using+Fully+Convolutional+Denoising+Autoencoders&rft.jtitle=IEEE+access&rft.au=Chiang%2C+Hsin-Tien&rft.au=Hsieh%2C+Yi-Yen&rft.au=Fu%2C+Szu-Wei&rft.au=Hung%2C+Kuo-Hsuan&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=60806&rft.epage=60813&rft_id=info:doi/10.1109%2FACCESS.2019.2912036&rft.externalDocID=8693790 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |