Low-rank parity-check codes over Galois rings

Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite ring...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Designs, codes, and cryptography Ročník 89; číslo 2; s. 351 - 386
Hlavní autoři: Renner, Julian, Neri, Alessandro, Puchinger, Sven
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2021
Springer Nature B.V
Témata:
ISSN:0925-1022, 1573-7586, 1573-7586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by I. Landjev.
ISSN:0925-1022
1573-7586
1573-7586
DOI:10.1007/s10623-020-00825-9