Low-rank parity-check codes over Galois rings
Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite ring...
Uložené v:
| Vydané v: | Designs, codes, and cryptography Ročník 89; číslo 2; s. 351 - 386 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.02.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0925-1022, 1573-7586, 1573-7586 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. |
|---|---|
| AbstractList | Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718-7735, 2019), we define and study LRPC codes over Galois rings-a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.'s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718-7735, 2019), we define and study LRPC codes over Galois rings-a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.'s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718-7735, 2019), we define and study LRPC codes over Galois rings-a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.'s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. |
| Author | Neri, Alessandro Puchinger, Sven Renner, Julian |
| Author_xml | – sequence: 1 givenname: Julian surname: Renner fullname: Renner, Julian organization: Institute for Communications Engineering, Technical University of Munich (TUM) – sequence: 2 givenname: Alessandro orcidid: 0000-0002-2020-1040 surname: Neri fullname: Neri, Alessandro email: alessandro.neri@tum.de organization: Institute for Communications Engineering, Technical University of Munich (TUM) – sequence: 3 givenname: Sven surname: Puchinger fullname: Puchinger, Sven organization: Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33603280$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPHDEQhK2IKCyPP8ABjZQLFyftx_hxQYoQAaSVcglny-PtAcPseLFnifj38WaBJBw4WWrXV6527ZGdMY1IyBGDLwxAfy0MFBcUOFAAw1tqP5AZa7WgujVqh8zA1iEDznfJXil3AMAE8E9kVwgFghuYETpPv2j2432z8jlOTzTcYrhvQlpgadIj5ubCDymWJsfxphyQj70fCh4-n_vk-vv5z7NLOv9xcXX2bU6D1HKi3oTAwkJ2C9tzhVYZLeoIUHvUpvNMdEKpjlnToe6FbFEwzhRYZoH3zIt9crr1Xa27JS4CjlP2g1vluPT5ySUf3f83Y7x1N-nRaaNBG1YNTp4NcnpYY5ncMpaAw-BHTOviuKxvSSVtW6Wf30jv0jqPdb2qMlpK07KN4fG_iV6jvPxkFZitIORUSsbehTj5KaZNwDg4Bm5TmtuW5mpp7k9pzlaUv0Ff3N-FxBYqq001mP_Gfof6DUaEp6E |
| CitedBy_id | crossref_primary_10_1109_TIT_2024_3404344 crossref_primary_10_1007_s00200_023_00641_3 crossref_primary_10_1007_s00200_024_00652_8 |
| Cites_doi | 10.1016/S0019-9958(78)90461-8 10.1109/TIT.2019.2933535 10.1109/TIT.2017.2778726 10.1109/TIT.2019.2933520 10.1109/TIT.2010.2068750 10.1016/S0019-9958(75)80001-5 10.1016/0097-3165(78)90015-8 10.1016/S0019-9958(72)90223-9 10.1109/WCNC.2018.8377229 10.1109/TIT.2014.2346079 10.37236/1489 10.1002/dac.3256 10.1109/TIT.2011.2165816 10.1109/18.75248 10.1109/TIT.2015.2451623 10.1109/REDUNDANCY48165.2019.9003356 10.1109/TIT.2008.928291 10.1109/18.312154 10.1109/TIT.2013.2274264 10.1109/ISIT44484.2020.9174384 10.1017/CBO9781139856065 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1007/s10623-020-00825-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1573-7586 |
| EndPage | 386 |
| ExternalDocumentID | PMC7870781 33603280 10_1007_s10623_020_00825_9 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 187711 funderid: http://dx.doi.org/10.13039/501100001711 – fundername: H2020 Marie Sklodowska-Curie Actions grantid: 713683 funderid: http://dx.doi.org/10.13039/100010665 – fundername: H2020 European Research Council grantid: 801434 funderid: http://dx.doi.org/10.13039/100010663 – fundername: ; grantid: 187711 – fundername: ; grantid: 801434 – fundername: ; grantid: 713683 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS NPM JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-a8cc1cd4bd9f26e968738cc0e7ae78ba13b366b198be7f345e31216091902f1a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598292300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-1022 1573-7586 |
| IngestDate | Tue Nov 04 01:56:16 EST 2025 Thu Oct 02 11:25:22 EDT 2025 Wed Sep 17 23:56:20 EDT 2025 Wed Feb 19 02:28:37 EST 2025 Sat Nov 29 02:35:59 EST 2025 Tue Nov 18 21:13:39 EST 2025 Fri Feb 21 02:48:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Rank-metric codes Algebraic coding theory 11T71 Low-rank parity-check codes Galois rings |
| Language | English |
| License | The Author(s) 2020. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-a8cc1cd4bd9f26e968738cc0e7ae78ba13b366b198be7f345e31216091902f1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by I. Landjev. |
| ORCID | 0000-0002-2020-1040 |
| OpenAccessLink | https://link.springer.com/10.1007/s10623-020-00825-9 |
| PMID | 33603280 |
| PQID | 2487448511 |
| PQPubID | 2043752 |
| PageCount | 36 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7870781 proquest_miscellaneous_2491946495 proquest_journals_2487448511 pubmed_primary_33603280 crossref_citationtrail_10_1007_s10623_020_00825_9 crossref_primary_10_1007_s10623_020_00825_9 springer_journals_10_1007_s10623_020_00825_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Designs, codes, and cryptography |
| PublicationTitleAbbrev | Des. Codes Cryptogr |
| PublicationTitleAlternate | Des Codes Cryptogr |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | DelsartePBilinear forms over a finite field, with applications to coding theoryJ. Comb. Theory Ser. A197825322624151461810.1016/0097-3165(78)90015-8 McDonaldBRFinite rings with identity1974New YorkMarcel Dekker Incorporated0294.16012 RothRMMaximum-rank array codes and their application to crisscross error correctionIEEE Trans. Inf. Theory1991372328336109374710.1109/18.75248 GabidulinEMTheory of codes with maximum rank distanceProblemy Peredachi Inf.19852113167915290585.94013 FengCNóbregaRWKschischangFRSilvaDCommunication over finite-chain-ring matrix channelsIEEE Trans. Inf. Theory2014601058995917326500210.1109/TIT.2014.2346079 BlakeIFCodes over integer residue ringsInf. Control197529429530043460710.1016/S0019-9958(75)80001-5 Von Zur GathenJGerhardJModern Computer Algebra2013CambridgeCambridge University Press10.1017/CBO9781139856065 GorlaERavagnaniAAn algebraic framework for end-to-end physical-layer network codingIEEE Trans. Inf. Theory201764644804495380975410.1109/TIT.2017.2778726 BlakeIFCodes over certain ringsInf. Control197220439640432344010.1016/S0019-9958(72)90223-9 Storjohann A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich (2000). NazerBGastparMCompute-and-forward: harnessing interference through structured codesIEEE Trans. Inf. Theory2011571064636486288224010.1109/TIT.2011.2165816 Kiran T., Rajan B.S.: Optimal STBCs from codes over Galois rings. In: IEEE International Conference on Personal Wireless Communications (ICPWC), pp. 120–124 (2005). Renner J., Jerkovits T., Bartz H.: Efficient decoding of interleaved low-rank parity-check codes. In: International Symposium on Problems of Redundancy in Information and Control Systems (REDUNDANCY) (2019). KamcheHTMouahaCRank-metric codes over finite principal ideal rings and applicationsIEEE Trans. Inf. Theory2019651277187735403889510.1109/TIT.2019.2933520 Melchor C.A., et al.: Nist post-quantum cryptography standardization proposal: rank-Ouroboros, LAKE and LOCKER (ROLLO) (2020). TunaliNEHuangYCBoutrosJJNarayananKRLattices over Eisenstein integers for compute-and-forwardIEEE Trans. Inf. Theory2015611053065321340028310.1109/TIT.2015.2451623 SilvaDKschischangFRKoetterRA rank-metric approach to error control in random network codingIEEE Trans. Inf. Theory200854939513967245076210.1109/TIT.2008.928291 Qachchach I.E., Habachi O., Cances J., Meghdadi V.: Efficient multi-source network coding using low rank parity check code. In: IEEE Wireless Communications and Networking Conference (WCNC) (2018). BiniGFlaminiFFinite commutative rings and their applications2012New YorkSpringer Science & Business Media1095.13032 Renner J., Puchinger S., Wachter-Zeh A., Hollanti C., Freij-Hollanti R.: Low-rank parity-check codes over the ring of integers modulo a prime power. In: IEEE International Symposium on Information Theory (ISIT), conference version of this paper. arXiv:2001.04800 (2020). SpiegelECodes over Zm, revisitedInf. Control197837110010410.1016/S0019-9958(78)90461-8 WilsonMPNarayananKPfisterHDSprintsonAJoint physical layer coding and network coding for bidirectional relayingIEEE Trans. Inf. Theory2010561156415654280859910.1109/TIT.2010.2068750 YazbekAKEL QachchachICancesJPMeghdadiVLow rank parity check codes and their application in power line communications smart grid networksInt. J. Commun. Syst.20173012e325610.1002/dac.3256 Aragon N., Gaborit P., Hauteville A., Ruatta O., Zémor G.: Low rank parity check codes: New decoding algorithms and applications to cryptography. arXiv:1904.00357 (2019). HammonsARKumarPVCalderbankARSloaneNJSoléPThe Z4-linearity of Kerdock, Preparata, Goethals, and related codesIEEE Trans. Inf. Theory199440230131910.1109/18.312154 HonoldTLandjevILinear codes over finite chain ringsElectr. J. Comb.20007R11R11174133310.37236/1489 Gaborit P., Murat G., Ruatta O., Zémor G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography WCC. vol. 2013 (2013). ConstantinescuIHeiseWA metric for codes over residue class ringsProblemy Peredachi Inf.1997333222814763680977.94055 FengCSilvaDKschischangFRAn algebraic approach to physical-layer network codingIEEE Trans. Inf. Theory2013591175767596312466110.1109/TIT.2013.2274264 E Gorla (825_CR11) 2017; 64 G Bini (825_CR2) 2012 C Feng (825_CR7) 2014; 60 825_CR15 AK Yazbek (825_CR29) 2017; 30 I Constantinescu (825_CR5) 1997; 33 825_CR10 825_CR1 EM Gabidulin (825_CR9) 1985; 21 RM Roth (825_CR22) 1991; 37 825_CR17 IF Blake (825_CR3) 1972; 20 825_CR19 AR Hammons (825_CR12) 1994; 40 E Spiegel (825_CR24) 1978; 37 C Feng (825_CR8) 2013; 59 D Silva (825_CR23) 2008; 54 J Von Zur Gathen (825_CR27) 2013 T Honold (825_CR13) 2000; 7 825_CR25 B Nazer (825_CR18) 2011; 57 825_CR20 HT Kamche (825_CR14) 2019; 65 BR McDonald (825_CR16) 1974 825_CR21 P Delsarte (825_CR6) 1978; 25 IF Blake (825_CR4) 1975; 29 NE Tunali (825_CR26) 2015; 61 MP Wilson (825_CR28) 2010; 56 |
| References_xml | – reference: NazerBGastparMCompute-and-forward: harnessing interference through structured codesIEEE Trans. Inf. Theory2011571064636486288224010.1109/TIT.2011.2165816 – reference: Storjohann A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich (2000). – reference: FengCNóbregaRWKschischangFRSilvaDCommunication over finite-chain-ring matrix channelsIEEE Trans. Inf. Theory2014601058995917326500210.1109/TIT.2014.2346079 – reference: Renner J., Jerkovits T., Bartz H.: Efficient decoding of interleaved low-rank parity-check codes. In: International Symposium on Problems of Redundancy in Information and Control Systems (REDUNDANCY) (2019). – reference: SilvaDKschischangFRKoetterRA rank-metric approach to error control in random network codingIEEE Trans. Inf. Theory200854939513967245076210.1109/TIT.2008.928291 – reference: BlakeIFCodes over certain ringsInf. Control197220439640432344010.1016/S0019-9958(72)90223-9 – reference: BlakeIFCodes over integer residue ringsInf. Control197529429530043460710.1016/S0019-9958(75)80001-5 – reference: Kiran T., Rajan B.S.: Optimal STBCs from codes over Galois rings. In: IEEE International Conference on Personal Wireless Communications (ICPWC), pp. 120–124 (2005). – reference: Melchor C.A., et al.: Nist post-quantum cryptography standardization proposal: rank-Ouroboros, LAKE and LOCKER (ROLLO) (2020). – reference: Von Zur GathenJGerhardJModern Computer Algebra2013CambridgeCambridge University Press10.1017/CBO9781139856065 – reference: GabidulinEMTheory of codes with maximum rank distanceProblemy Peredachi Inf.19852113167915290585.94013 – reference: BiniGFlaminiFFinite commutative rings and their applications2012New YorkSpringer Science & Business Media1095.13032 – reference: HonoldTLandjevILinear codes over finite chain ringsElectr. J. Comb.20007R11R11174133310.37236/1489 – reference: Qachchach I.E., Habachi O., Cances J., Meghdadi V.: Efficient multi-source network coding using low rank parity check code. In: IEEE Wireless Communications and Networking Conference (WCNC) (2018). – reference: KamcheHTMouahaCRank-metric codes over finite principal ideal rings and applicationsIEEE Trans. Inf. Theory2019651277187735403889510.1109/TIT.2019.2933520 – reference: Renner J., Puchinger S., Wachter-Zeh A., Hollanti C., Freij-Hollanti R.: Low-rank parity-check codes over the ring of integers modulo a prime power. In: IEEE International Symposium on Information Theory (ISIT), conference version of this paper. arXiv:2001.04800 (2020). – reference: RothRMMaximum-rank array codes and their application to crisscross error correctionIEEE Trans. Inf. Theory1991372328336109374710.1109/18.75248 – reference: Gaborit P., Murat G., Ruatta O., Zémor G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography WCC. vol. 2013 (2013). – reference: YazbekAKEL QachchachICancesJPMeghdadiVLow rank parity check codes and their application in power line communications smart grid networksInt. J. Commun. Syst.20173012e325610.1002/dac.3256 – reference: SpiegelECodes over Zm, revisitedInf. Control197837110010410.1016/S0019-9958(78)90461-8 – reference: WilsonMPNarayananKPfisterHDSprintsonAJoint physical layer coding and network coding for bidirectional relayingIEEE Trans. Inf. Theory2010561156415654280859910.1109/TIT.2010.2068750 – reference: TunaliNEHuangYCBoutrosJJNarayananKRLattices over Eisenstein integers for compute-and-forwardIEEE Trans. Inf. Theory2015611053065321340028310.1109/TIT.2015.2451623 – reference: DelsartePBilinear forms over a finite field, with applications to coding theoryJ. Comb. Theory Ser. A197825322624151461810.1016/0097-3165(78)90015-8 – reference: McDonaldBRFinite rings with identity1974New YorkMarcel Dekker Incorporated0294.16012 – reference: HammonsARKumarPVCalderbankARSloaneNJSoléPThe Z4-linearity of Kerdock, Preparata, Goethals, and related codesIEEE Trans. Inf. Theory199440230131910.1109/18.312154 – reference: GorlaERavagnaniAAn algebraic framework for end-to-end physical-layer network codingIEEE Trans. Inf. Theory201764644804495380975410.1109/TIT.2017.2778726 – reference: ConstantinescuIHeiseWA metric for codes over residue class ringsProblemy Peredachi Inf.1997333222814763680977.94055 – reference: Aragon N., Gaborit P., Hauteville A., Ruatta O., Zémor G.: Low rank parity check codes: New decoding algorithms and applications to cryptography. arXiv:1904.00357 (2019). – reference: FengCSilvaDKschischangFRAn algebraic approach to physical-layer network codingIEEE Trans. Inf. Theory2013591175767596312466110.1109/TIT.2013.2274264 – volume: 37 start-page: 100 issue: 1 year: 1978 ident: 825_CR24 publication-title: Inf. Control doi: 10.1016/S0019-9958(78)90461-8 – ident: 825_CR1 doi: 10.1109/TIT.2019.2933535 – volume-title: Finite commutative rings and their applications year: 2012 ident: 825_CR2 – volume: 64 start-page: 4480 issue: 6 year: 2017 ident: 825_CR11 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2778726 – ident: 825_CR10 – volume: 65 start-page: 7718 issue: 12 year: 2019 ident: 825_CR14 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2019.2933520 – volume: 56 start-page: 5641 issue: 11 year: 2010 ident: 825_CR28 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2010.2068750 – volume: 29 start-page: 295 issue: 4 year: 1975 ident: 825_CR4 publication-title: Inf. Control doi: 10.1016/S0019-9958(75)80001-5 – volume: 25 start-page: 226 issue: 3 year: 1978 ident: 825_CR6 publication-title: J. Comb. Theory Ser. A doi: 10.1016/0097-3165(78)90015-8 – volume: 20 start-page: 396 issue: 4 year: 1972 ident: 825_CR3 publication-title: Inf. Control doi: 10.1016/S0019-9958(72)90223-9 – ident: 825_CR19 doi: 10.1109/WCNC.2018.8377229 – volume: 60 start-page: 5899 issue: 10 year: 2014 ident: 825_CR7 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2014.2346079 – volume: 33 start-page: 22 issue: 3 year: 1997 ident: 825_CR5 publication-title: Problemy Peredachi Inf. – ident: 825_CR25 – volume: 7 start-page: R11 year: 2000 ident: 825_CR13 publication-title: Electr. J. Comb. doi: 10.37236/1489 – volume: 30 start-page: e3256 issue: 12 year: 2017 ident: 825_CR29 publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.3256 – volume-title: Finite rings with identity year: 1974 ident: 825_CR16 – volume: 57 start-page: 6463 issue: 10 year: 2011 ident: 825_CR18 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2165816 – volume: 37 start-page: 328 issue: 2 year: 1991 ident: 825_CR22 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.75248 – ident: 825_CR15 – ident: 825_CR17 – volume: 61 start-page: 5306 issue: 10 year: 2015 ident: 825_CR26 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2451623 – ident: 825_CR20 doi: 10.1109/REDUNDANCY48165.2019.9003356 – volume: 21 start-page: 3 issue: 1 year: 1985 ident: 825_CR9 publication-title: Problemy Peredachi Inf. – volume: 54 start-page: 3951 issue: 9 year: 2008 ident: 825_CR23 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2008.928291 – volume: 40 start-page: 301 issue: 2 year: 1994 ident: 825_CR12 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.312154 – volume: 59 start-page: 7576 issue: 11 year: 2013 ident: 825_CR8 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2013.2274264 – ident: 825_CR21 doi: 10.1109/ISIT44484.2020.9174384 – volume-title: Modern Computer Algebra year: 2013 ident: 825_CR27 doi: 10.1017/CBO9781139856065 |
| SSID | ssj0001302 |
| Score | 2.295861 |
| Snippet | Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding... Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 351 |
| SubjectTerms | Algorithms Binary system Codes Coding and Information Theory Computer Science Cryptography Cryptology Decoding Discrete Mathematics in Computer Science Fields (mathematics) Parity Rings (mathematics) Upper bounds |
| Title | Low-rank parity-check codes over Galois rings |
| URI | https://link.springer.com/article/10.1007/s10623-020-00825-9 https://www.ncbi.nlm.nih.gov/pubmed/33603280 https://www.proquest.com/docview/2487448511 https://www.proquest.com/docview/2491946495 https://pubmed.ncbi.nlm.nih.gov/PMC7870781 |
| Volume | 89 |
| WOSCitedRecordID | wos000598292300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-7586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001302 issn: 0925-1022 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6VLYdy6BbaQlqKgsSNWoof-HGsEJQDIMRLe4tixxGroiwiC1X_fT3eJLClVCrHxOM4nvF4PJrxNwBbwYjxitqMBC0siXBlSWypPalKqZSqSpfF3JzLQ3V8rEcjc9JeCmu6bPcuJBl36keX3YKpJujuRL-GmAV4HcydRnU8Pbvs918MxUWEPYYYm4y1V2X-_o15c_TkjPk0VfKPeGk0Q_vDl03gHbxtj53pt9k6WYZXvl6BYVfSIW01fAWWHuEThqejHtS1eQ_kcPKTYI33FCsXTn-RIG_3I8VL8U2KmaDp9-J6Mm5S7Nx8gIv9vfPdA9JWWyBOKDElhXaOulLY0lRMeiO14uFV5lXhlbYF5ZZLaanR1quKix3PKaMynDdMxipa8I8wqCe1X4MUpeKZqbwUVnCtbBGcSGpMlVkE-CsSoB3Tc9dCkWNFjOv8AUQZeZUHXuWRV7lJYLvvczMD4vgn9Xony7xVyiZnArH-8YiZwGbfHNQJYyRF7Sd3SBPmI2RwGxNYnYm-H45zieiDWQJqblH0BAjVPd9Sj68iZDdui0qHcb92S-Pht56fxaf_I_8Mbxhm3MSc8nUYTG_v_BdYdPfTcXO7AQtqpDeiqvwG98sJ_w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8okggPICBQQa2Jb7JJ94P9eDQExHhcjCLhrelut_EC6RF6QPjv2dlrCydqoo_tzna7szs7M5nZ3wC8D0qMV9RmJEhhSYQrS2JL7UlVSqVUVbos5uacDNRwqE9Pzdf2UljTZbt3Icl4Uj-47BZUNUF3J_o1xDyFZyJoLEzk-_b9pD9_MRQXEfYYYmwy1l6V-f03ZtXRIxvzcarkL_HSqIYOlv9vAi9gqTU704_TfbICT3y9CstdSYe0lfBVWHyATxiejnpQ12YNyGB8Q7DGe4qVCye3JKy3O0vxUnyTYiZo-qk4H4-aFDs3L-HHwf7x3iFpqy0QJ5SYkEI7R10pbGkqJr2RWvHwKvOq8ErbgnLLpbTUaOtVxcWu55RRGewNk7GKFnwd5upx7TchDUaI9sxUXgoruFa2CE4kNabKLAL8FQnQjum5a6HIsSLGeX4Pooy8ygOv8sir3CTwoe9zMQXi-Cv1dreWeSuUTc4EYv2jiZnAu745iBPGSIraj6-QJsxHyOA2JrAxXfp-OM4log9mCaiZTdETIFT3bEs9-hkhu_FYVDqMu9Ntjfvf-vMsXv0b-Vt4fnh8NMgHn4dftmCBYfZNzC_fhrnJ5ZV_DfPuejJqLt9EgbkDMoYL-w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIDQeGIwNCgOKxBtEa5qQj0cEHCCO0yRg2lvVfIkTU29aOxD_PXGu7e4YICEe2zhNk9iJLds_AzyJlxgL1BQkSqEj3DpHjFOeBCeklMHZIsXmHE7lbKaOjvTBShZ_inYfXJLLnAZEaWq6_RMX9lcS3-K1TdD0STYO0ZfhCseiQWivfzwcz2J0yyW0vRLxNsuyT5v5_TfWr6YL-ubFsMlffKfpSpps_f9kbsKNXh3NXyz55xZc8s02bA2lHvJe8rfh-gpuYXz6MIK9treBTBffCdZ-z7GiYfeDRD6wX3NMlm9zjBDN39THi3mbY-d2Bz5PXn96-Zb0VRiI5ZJ3pFbWUuu4cTqUwmuhJIuvCi9rL5WpKTNMCEO1Ml4Gxp97Rksqoh6iizLQmu3CRrNo_F3Io3KifKmDF9xwpqSpo3FJtQ6FQeC_OgM6bEBle4hyrJRxXJ2DK-NaVXGtqrRWlc7g6djnZAnQ8VfqvWFfq15Y26rkWAMAVc8MHo_NUczQd1I3fnGGNHE-XERzMoM7SzYYh2NMICphkYFcY5CRACG811ua-ZcE5Y3HpVRx3GcDm5z_1p9nce_fyB_BtYNXk2r6bvb-PmyWGJSTws73YKM7PfMP4Kr91s3b04dJdn4CYykU3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-rank+parity-check+codes+over+Galois+rings&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Renner%2C+Julian&rft.au=Neri%2C+Alessandro&rft.au=Puchinger%2C+Sven&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=89&rft.issue=2&rft.spage=351&rft.epage=386&rft_id=info:doi/10.1007%2Fs10623-020-00825-9&rft_id=info%3Apmid%2F33603280&rft.externalDocID=PMC7870781 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon |