Low-rank parity-check codes over Galois rings

Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite ring...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Designs, codes, and cryptography Ročník 89; číslo 2; s. 351 - 386
Hlavní autori: Renner, Julian, Neri, Alessandro, Puchinger, Sven
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2021
Springer Nature B.V
Predmet:
ISSN:0925-1022, 1573-7586, 1573-7586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.
AbstractList Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718-7735, 2019), we define and study LRPC codes over Galois rings-a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.'s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.
Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718-7735, 2019), we define and study LRPC codes over Galois rings-a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.'s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718-7735, 2019), we define and study LRPC codes over Galois rings-a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.'s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.
Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.
Author Neri, Alessandro
Puchinger, Sven
Renner, Julian
Author_xml – sequence: 1
  givenname: Julian
  surname: Renner
  fullname: Renner, Julian
  organization: Institute for Communications Engineering, Technical University of Munich (TUM)
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0002-2020-1040
  surname: Neri
  fullname: Neri, Alessandro
  email: alessandro.neri@tum.de
  organization: Institute for Communications Engineering, Technical University of Munich (TUM)
– sequence: 3
  givenname: Sven
  surname: Puchinger
  fullname: Puchinger, Sven
  organization: Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33603280$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPHDEQhK2IKCyPP8ABjZQLFyftx_hxQYoQAaSVcglny-PtAcPseLFnifj38WaBJBw4WWrXV6527ZGdMY1IyBGDLwxAfy0MFBcUOFAAw1tqP5AZa7WgujVqh8zA1iEDznfJXil3AMAE8E9kVwgFghuYETpPv2j2432z8jlOTzTcYrhvQlpgadIj5ubCDymWJsfxphyQj70fCh4-n_vk-vv5z7NLOv9xcXX2bU6D1HKi3oTAwkJ2C9tzhVYZLeoIUHvUpvNMdEKpjlnToe6FbFEwzhRYZoH3zIt9crr1Xa27JS4CjlP2g1vluPT5ySUf3f83Y7x1N-nRaaNBG1YNTp4NcnpYY5ncMpaAw-BHTOviuKxvSSVtW6Wf30jv0jqPdb2qMlpK07KN4fG_iV6jvPxkFZitIORUSsbehTj5KaZNwDg4Bm5TmtuW5mpp7k9pzlaUv0Ff3N-FxBYqq001mP_Gfof6DUaEp6E
CitedBy_id crossref_primary_10_1109_TIT_2024_3404344
crossref_primary_10_1007_s00200_023_00641_3
crossref_primary_10_1007_s00200_024_00652_8
Cites_doi 10.1016/S0019-9958(78)90461-8
10.1109/TIT.2019.2933535
10.1109/TIT.2017.2778726
10.1109/TIT.2019.2933520
10.1109/TIT.2010.2068750
10.1016/S0019-9958(75)80001-5
10.1016/0097-3165(78)90015-8
10.1016/S0019-9958(72)90223-9
10.1109/WCNC.2018.8377229
10.1109/TIT.2014.2346079
10.37236/1489
10.1002/dac.3256
10.1109/TIT.2011.2165816
10.1109/18.75248
10.1109/TIT.2015.2451623
10.1109/REDUNDANCY48165.2019.9003356
10.1109/TIT.2008.928291
10.1109/18.312154
10.1109/TIT.2013.2274264
10.1109/ISIT44484.2020.9174384
10.1017/CBO9781139856065
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1007/s10623-020-00825-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1573-7586
EndPage 386
ExternalDocumentID PMC7870781
33603280
10_1007_s10623_020_00825_9
Genre Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 187711
  funderid: http://dx.doi.org/10.13039/501100001711
– fundername: H2020 Marie Sklodowska-Curie Actions
  grantid: 713683
  funderid: http://dx.doi.org/10.13039/100010665
– fundername: H2020 European Research Council
  grantid: 801434
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: ;
  grantid: 187711
– fundername: ;
  grantid: 801434
– fundername: ;
  grantid: 713683
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c474t-a8cc1cd4bd9f26e968738cc0e7ae78ba13b366b198be7f345e31216091902f1a3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598292300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-1022
1573-7586
IngestDate Tue Nov 04 01:56:16 EST 2025
Thu Oct 02 11:25:22 EDT 2025
Wed Sep 17 23:56:20 EDT 2025
Wed Feb 19 02:28:37 EST 2025
Sat Nov 29 02:35:59 EST 2025
Tue Nov 18 21:13:39 EST 2025
Fri Feb 21 02:48:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Rank-metric codes
Algebraic coding theory
11T71
Low-rank parity-check codes
Galois rings
Language English
License The Author(s) 2020.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-a8cc1cd4bd9f26e968738cc0e7ae78ba13b366b198be7f345e31216091902f1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by I. Landjev.
ORCID 0000-0002-2020-1040
OpenAccessLink https://link.springer.com/10.1007/s10623-020-00825-9
PMID 33603280
PQID 2487448511
PQPubID 2043752
PageCount 36
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7870781
proquest_miscellaneous_2491946495
proquest_journals_2487448511
pubmed_primary_33603280
crossref_citationtrail_10_1007_s10623_020_00825_9
crossref_primary_10_1007_s10623_020_00825_9
springer_journals_10_1007_s10623_020_00825_9
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Designs, codes, and cryptography
PublicationTitleAbbrev Des. Codes Cryptogr
PublicationTitleAlternate Des Codes Cryptogr
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DelsartePBilinear forms over a finite field, with applications to coding theoryJ. Comb. Theory Ser. A197825322624151461810.1016/0097-3165(78)90015-8
McDonaldBRFinite rings with identity1974New YorkMarcel Dekker Incorporated0294.16012
RothRMMaximum-rank array codes and their application to crisscross error correctionIEEE Trans. Inf. Theory1991372328336109374710.1109/18.75248
GabidulinEMTheory of codes with maximum rank distanceProblemy Peredachi Inf.19852113167915290585.94013
FengCNóbregaRWKschischangFRSilvaDCommunication over finite-chain-ring matrix channelsIEEE Trans. Inf. Theory2014601058995917326500210.1109/TIT.2014.2346079
BlakeIFCodes over integer residue ringsInf. Control197529429530043460710.1016/S0019-9958(75)80001-5
Von Zur GathenJGerhardJModern Computer Algebra2013CambridgeCambridge University Press10.1017/CBO9781139856065
GorlaERavagnaniAAn algebraic framework for end-to-end physical-layer network codingIEEE Trans. Inf. Theory201764644804495380975410.1109/TIT.2017.2778726
BlakeIFCodes over certain ringsInf. Control197220439640432344010.1016/S0019-9958(72)90223-9
Storjohann A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich (2000).
NazerBGastparMCompute-and-forward: harnessing interference through structured codesIEEE Trans. Inf. Theory2011571064636486288224010.1109/TIT.2011.2165816
Kiran T., Rajan B.S.: Optimal STBCs from codes over Galois rings. In: IEEE International Conference on Personal Wireless Communications (ICPWC), pp. 120–124 (2005).
Renner J., Jerkovits T., Bartz H.: Efficient decoding of interleaved low-rank parity-check codes. In: International Symposium on Problems of Redundancy in Information and Control Systems (REDUNDANCY) (2019).
KamcheHTMouahaCRank-metric codes over finite principal ideal rings and applicationsIEEE Trans. Inf. Theory2019651277187735403889510.1109/TIT.2019.2933520
Melchor C.A., et al.: Nist post-quantum cryptography standardization proposal: rank-Ouroboros, LAKE and LOCKER (ROLLO) (2020).
TunaliNEHuangYCBoutrosJJNarayananKRLattices over Eisenstein integers for compute-and-forwardIEEE Trans. Inf. Theory2015611053065321340028310.1109/TIT.2015.2451623
SilvaDKschischangFRKoetterRA rank-metric approach to error control in random network codingIEEE Trans. Inf. Theory200854939513967245076210.1109/TIT.2008.928291
Qachchach I.E., Habachi O., Cances J., Meghdadi V.: Efficient multi-source network coding using low rank parity check code. In: IEEE Wireless Communications and Networking Conference (WCNC) (2018).
BiniGFlaminiFFinite commutative rings and their applications2012New YorkSpringer Science & Business Media1095.13032
Renner J., Puchinger S., Wachter-Zeh A., Hollanti C., Freij-Hollanti R.: Low-rank parity-check codes over the ring of integers modulo a prime power. In: IEEE International Symposium on Information Theory (ISIT), conference version of this paper. arXiv:2001.04800 (2020).
SpiegelECodes over Zm, revisitedInf. Control197837110010410.1016/S0019-9958(78)90461-8
WilsonMPNarayananKPfisterHDSprintsonAJoint physical layer coding and network coding for bidirectional relayingIEEE Trans. Inf. Theory2010561156415654280859910.1109/TIT.2010.2068750
YazbekAKEL QachchachICancesJPMeghdadiVLow rank parity check codes and their application in power line communications smart grid networksInt. J. Commun. Syst.20173012e325610.1002/dac.3256
Aragon N., Gaborit P., Hauteville A., Ruatta O., Zémor G.: Low rank parity check codes: New decoding algorithms and applications to cryptography. arXiv:1904.00357 (2019).
HammonsARKumarPVCalderbankARSloaneNJSoléPThe Z4-linearity of Kerdock, Preparata, Goethals, and related codesIEEE Trans. Inf. Theory199440230131910.1109/18.312154
HonoldTLandjevILinear codes over finite chain ringsElectr. J. Comb.20007R11R11174133310.37236/1489
Gaborit P., Murat G., Ruatta O., Zémor G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography WCC. vol. 2013 (2013).
ConstantinescuIHeiseWA metric for codes over residue class ringsProblemy Peredachi Inf.1997333222814763680977.94055
FengCSilvaDKschischangFRAn algebraic approach to physical-layer network codingIEEE Trans. Inf. Theory2013591175767596312466110.1109/TIT.2013.2274264
E Gorla (825_CR11) 2017; 64
G Bini (825_CR2) 2012
C Feng (825_CR7) 2014; 60
825_CR15
AK Yazbek (825_CR29) 2017; 30
I Constantinescu (825_CR5) 1997; 33
825_CR10
825_CR1
EM Gabidulin (825_CR9) 1985; 21
RM Roth (825_CR22) 1991; 37
825_CR17
IF Blake (825_CR3) 1972; 20
825_CR19
AR Hammons (825_CR12) 1994; 40
E Spiegel (825_CR24) 1978; 37
C Feng (825_CR8) 2013; 59
D Silva (825_CR23) 2008; 54
J Von Zur Gathen (825_CR27) 2013
T Honold (825_CR13) 2000; 7
825_CR25
B Nazer (825_CR18) 2011; 57
825_CR20
HT Kamche (825_CR14) 2019; 65
BR McDonald (825_CR16) 1974
825_CR21
P Delsarte (825_CR6) 1978; 25
IF Blake (825_CR4) 1975; 29
NE Tunali (825_CR26) 2015; 61
MP Wilson (825_CR28) 2010; 56
References_xml – reference: NazerBGastparMCompute-and-forward: harnessing interference through structured codesIEEE Trans. Inf. Theory2011571064636486288224010.1109/TIT.2011.2165816
– reference: Storjohann A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich (2000).
– reference: FengCNóbregaRWKschischangFRSilvaDCommunication over finite-chain-ring matrix channelsIEEE Trans. Inf. Theory2014601058995917326500210.1109/TIT.2014.2346079
– reference: Renner J., Jerkovits T., Bartz H.: Efficient decoding of interleaved low-rank parity-check codes. In: International Symposium on Problems of Redundancy in Information and Control Systems (REDUNDANCY) (2019).
– reference: SilvaDKschischangFRKoetterRA rank-metric approach to error control in random network codingIEEE Trans. Inf. Theory200854939513967245076210.1109/TIT.2008.928291
– reference: BlakeIFCodes over certain ringsInf. Control197220439640432344010.1016/S0019-9958(72)90223-9
– reference: BlakeIFCodes over integer residue ringsInf. Control197529429530043460710.1016/S0019-9958(75)80001-5
– reference: Kiran T., Rajan B.S.: Optimal STBCs from codes over Galois rings. In: IEEE International Conference on Personal Wireless Communications (ICPWC), pp. 120–124 (2005).
– reference: Melchor C.A., et al.: Nist post-quantum cryptography standardization proposal: rank-Ouroboros, LAKE and LOCKER (ROLLO) (2020).
– reference: Von Zur GathenJGerhardJModern Computer Algebra2013CambridgeCambridge University Press10.1017/CBO9781139856065
– reference: GabidulinEMTheory of codes with maximum rank distanceProblemy Peredachi Inf.19852113167915290585.94013
– reference: BiniGFlaminiFFinite commutative rings and their applications2012New YorkSpringer Science & Business Media1095.13032
– reference: HonoldTLandjevILinear codes over finite chain ringsElectr. J. Comb.20007R11R11174133310.37236/1489
– reference: Qachchach I.E., Habachi O., Cances J., Meghdadi V.: Efficient multi-source network coding using low rank parity check code. In: IEEE Wireless Communications and Networking Conference (WCNC) (2018).
– reference: KamcheHTMouahaCRank-metric codes over finite principal ideal rings and applicationsIEEE Trans. Inf. Theory2019651277187735403889510.1109/TIT.2019.2933520
– reference: Renner J., Puchinger S., Wachter-Zeh A., Hollanti C., Freij-Hollanti R.: Low-rank parity-check codes over the ring of integers modulo a prime power. In: IEEE International Symposium on Information Theory (ISIT), conference version of this paper. arXiv:2001.04800 (2020).
– reference: RothRMMaximum-rank array codes and their application to crisscross error correctionIEEE Trans. Inf. Theory1991372328336109374710.1109/18.75248
– reference: Gaborit P., Murat G., Ruatta O., Zémor G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography WCC. vol. 2013 (2013).
– reference: YazbekAKEL QachchachICancesJPMeghdadiVLow rank parity check codes and their application in power line communications smart grid networksInt. J. Commun. Syst.20173012e325610.1002/dac.3256
– reference: SpiegelECodes over Zm, revisitedInf. Control197837110010410.1016/S0019-9958(78)90461-8
– reference: WilsonMPNarayananKPfisterHDSprintsonAJoint physical layer coding and network coding for bidirectional relayingIEEE Trans. Inf. Theory2010561156415654280859910.1109/TIT.2010.2068750
– reference: TunaliNEHuangYCBoutrosJJNarayananKRLattices over Eisenstein integers for compute-and-forwardIEEE Trans. Inf. Theory2015611053065321340028310.1109/TIT.2015.2451623
– reference: DelsartePBilinear forms over a finite field, with applications to coding theoryJ. Comb. Theory Ser. A197825322624151461810.1016/0097-3165(78)90015-8
– reference: McDonaldBRFinite rings with identity1974New YorkMarcel Dekker Incorporated0294.16012
– reference: HammonsARKumarPVCalderbankARSloaneNJSoléPThe Z4-linearity of Kerdock, Preparata, Goethals, and related codesIEEE Trans. Inf. Theory199440230131910.1109/18.312154
– reference: GorlaERavagnaniAAn algebraic framework for end-to-end physical-layer network codingIEEE Trans. Inf. Theory201764644804495380975410.1109/TIT.2017.2778726
– reference: ConstantinescuIHeiseWA metric for codes over residue class ringsProblemy Peredachi Inf.1997333222814763680977.94055
– reference: Aragon N., Gaborit P., Hauteville A., Ruatta O., Zémor G.: Low rank parity check codes: New decoding algorithms and applications to cryptography. arXiv:1904.00357 (2019).
– reference: FengCSilvaDKschischangFRAn algebraic approach to physical-layer network codingIEEE Trans. Inf. Theory2013591175767596312466110.1109/TIT.2013.2274264
– volume: 37
  start-page: 100
  issue: 1
  year: 1978
  ident: 825_CR24
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(78)90461-8
– ident: 825_CR1
  doi: 10.1109/TIT.2019.2933535
– volume-title: Finite commutative rings and their applications
  year: 2012
  ident: 825_CR2
– volume: 64
  start-page: 4480
  issue: 6
  year: 2017
  ident: 825_CR11
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2778726
– ident: 825_CR10
– volume: 65
  start-page: 7718
  issue: 12
  year: 2019
  ident: 825_CR14
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2933520
– volume: 56
  start-page: 5641
  issue: 11
  year: 2010
  ident: 825_CR28
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2010.2068750
– volume: 29
  start-page: 295
  issue: 4
  year: 1975
  ident: 825_CR4
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(75)80001-5
– volume: 25
  start-page: 226
  issue: 3
  year: 1978
  ident: 825_CR6
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/0097-3165(78)90015-8
– volume: 20
  start-page: 396
  issue: 4
  year: 1972
  ident: 825_CR3
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(72)90223-9
– ident: 825_CR19
  doi: 10.1109/WCNC.2018.8377229
– volume: 60
  start-page: 5899
  issue: 10
  year: 2014
  ident: 825_CR7
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2346079
– volume: 33
  start-page: 22
  issue: 3
  year: 1997
  ident: 825_CR5
  publication-title: Problemy Peredachi Inf.
– ident: 825_CR25
– volume: 7
  start-page: R11
  year: 2000
  ident: 825_CR13
  publication-title: Electr. J. Comb.
  doi: 10.37236/1489
– volume: 30
  start-page: e3256
  issue: 12
  year: 2017
  ident: 825_CR29
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.3256
– volume-title: Finite rings with identity
  year: 1974
  ident: 825_CR16
– volume: 57
  start-page: 6463
  issue: 10
  year: 2011
  ident: 825_CR18
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2165816
– volume: 37
  start-page: 328
  issue: 2
  year: 1991
  ident: 825_CR22
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.75248
– ident: 825_CR15
– ident: 825_CR17
– volume: 61
  start-page: 5306
  issue: 10
  year: 2015
  ident: 825_CR26
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2015.2451623
– ident: 825_CR20
  doi: 10.1109/REDUNDANCY48165.2019.9003356
– volume: 21
  start-page: 3
  issue: 1
  year: 1985
  ident: 825_CR9
  publication-title: Problemy Peredachi Inf.
– volume: 54
  start-page: 3951
  issue: 9
  year: 2008
  ident: 825_CR23
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.928291
– volume: 40
  start-page: 301
  issue: 2
  year: 1994
  ident: 825_CR12
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.312154
– volume: 59
  start-page: 7576
  issue: 11
  year: 2013
  ident: 825_CR8
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2013.2274264
– ident: 825_CR21
  doi: 10.1109/ISIT44484.2020.9174384
– volume-title: Modern Computer Algebra
  year: 2013
  ident: 825_CR27
  doi: 10.1017/CBO9781139856065
SSID ssj0001302
Score 2.295861
Snippet Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding...
Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms Algorithms
Binary system
Codes
Coding and Information Theory
Computer Science
Cryptography
Cryptology
Decoding
Discrete Mathematics in Computer Science
Fields (mathematics)
Parity
Rings (mathematics)
Upper bounds
Title Low-rank parity-check codes over Galois rings
URI https://link.springer.com/article/10.1007/s10623-020-00825-9
https://www.ncbi.nlm.nih.gov/pubmed/33603280
https://www.proquest.com/docview/2487448511
https://www.proquest.com/docview/2491946495
https://pubmed.ncbi.nlm.nih.gov/PMC7870781
Volume 89
WOSCitedRecordID wos000598292300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6VLYdy6BbaQlqKgsSNWoof-HGsEJQDIMRLe4tixxGroiwiC1X_fT3eJLClVCrHxOM4nvF4PJrxNwBbwYjxitqMBC0siXBlSWypPalKqZSqSpfF3JzLQ3V8rEcjc9JeCmu6bPcuJBl36keX3YKpJujuRL-GmAV4HcydRnU8Pbvs918MxUWEPYYYm4y1V2X-_o15c_TkjPk0VfKPeGk0Q_vDl03gHbxtj53pt9k6WYZXvl6BYVfSIW01fAWWHuEThqejHtS1eQ_kcPKTYI33FCsXTn-RIG_3I8VL8U2KmaDp9-J6Mm5S7Nx8gIv9vfPdA9JWWyBOKDElhXaOulLY0lRMeiO14uFV5lXhlbYF5ZZLaanR1quKix3PKaMynDdMxipa8I8wqCe1X4MUpeKZqbwUVnCtbBGcSGpMlVkE-CsSoB3Tc9dCkWNFjOv8AUQZeZUHXuWRV7lJYLvvczMD4vgn9Xony7xVyiZnArH-8YiZwGbfHNQJYyRF7Sd3SBPmI2RwGxNYnYm-H45zieiDWQJqblH0BAjVPd9Sj68iZDdui0qHcb92S-Pht56fxaf_I_8Mbxhm3MSc8nUYTG_v_BdYdPfTcXO7AQtqpDeiqvwG98sJ_w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8okggPICBQQa2Jb7JJ94P9eDQExHhcjCLhrelut_EC6RF6QPjv2dlrCydqoo_tzna7szs7M5nZ3wC8D0qMV9RmJEhhSYQrS2JL7UlVSqVUVbos5uacDNRwqE9Pzdf2UljTZbt3Icl4Uj-47BZUNUF3J_o1xDyFZyJoLEzk-_b9pD9_MRQXEfYYYmwy1l6V-f03ZtXRIxvzcarkL_HSqIYOlv9vAi9gqTU704_TfbICT3y9CstdSYe0lfBVWHyATxiejnpQ12YNyGB8Q7DGe4qVCye3JKy3O0vxUnyTYiZo-qk4H4-aFDs3L-HHwf7x3iFpqy0QJ5SYkEI7R10pbGkqJr2RWvHwKvOq8ErbgnLLpbTUaOtVxcWu55RRGewNk7GKFnwd5upx7TchDUaI9sxUXgoruFa2CE4kNabKLAL8FQnQjum5a6HIsSLGeX4Pooy8ygOv8sir3CTwoe9zMQXi-Cv1dreWeSuUTc4EYv2jiZnAu745iBPGSIraj6-QJsxHyOA2JrAxXfp-OM4log9mCaiZTdETIFT3bEs9-hkhu_FYVDqMu9Ntjfvf-vMsXv0b-Vt4fnh8NMgHn4dftmCBYfZNzC_fhrnJ5ZV_DfPuejJqLt9EgbkDMoYL-w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIDQeGIwNCgOKxBtEa5qQj0cEHCCO0yRg2lvVfIkTU29aOxD_PXGu7e4YICEe2zhNk9iJLds_AzyJlxgL1BQkSqEj3DpHjFOeBCeklMHZIsXmHE7lbKaOjvTBShZ_inYfXJLLnAZEaWq6_RMX9lcS3-K1TdD0STYO0ZfhCseiQWivfzwcz2J0yyW0vRLxNsuyT5v5_TfWr6YL-ubFsMlffKfpSpps_f9kbsKNXh3NXyz55xZc8s02bA2lHvJe8rfh-gpuYXz6MIK9treBTBffCdZ-z7GiYfeDRD6wX3NMlm9zjBDN39THi3mbY-d2Bz5PXn96-Zb0VRiI5ZJ3pFbWUuu4cTqUwmuhJIuvCi9rL5WpKTNMCEO1Ml4Gxp97Rksqoh6iizLQmu3CRrNo_F3Io3KifKmDF9xwpqSpo3FJtQ6FQeC_OgM6bEBle4hyrJRxXJ2DK-NaVXGtqrRWlc7g6djnZAnQ8VfqvWFfq15Y26rkWAMAVc8MHo_NUczQd1I3fnGGNHE-XERzMoM7SzYYh2NMICphkYFcY5CRACG811ua-ZcE5Y3HpVRx3GcDm5z_1p9nce_fyB_BtYNXk2r6bvb-PmyWGJSTws73YKM7PfMP4Kr91s3b04dJdn4CYykU3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-rank+parity-check+codes+over+Galois+rings&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Renner%2C+Julian&rft.au=Neri%2C+Alessandro&rft.au=Puchinger%2C+Sven&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=89&rft.issue=2&rft.spage=351&rft.epage=386&rft_id=info:doi/10.1007%2Fs10623-020-00825-9&rft_id=info%3Apmid%2F33603280&rft.externalDocID=PMC7870781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon