Population variability in the generation and selection of T-cell repertoires

The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 16; číslo 12; s. e1008394
Hlavní autoři: Sethna, Zachary, Isacchini, Giulio, Dupic, Thomas, Mora, Thierry, Walczak, Aleksandra M., Elhanati, Yuval
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 01.12.2020
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs.
AbstractList The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs. The adaptive immune system is a naturally diverse set of many T cells with the potential to activate the organisms defense against specific threats. T cells express different surface receptors that can specifically bind molecules from viruses, bacteria or cancer cells. Using statistical models we learned the statistics of the processes generating this diversity from a large cohort of 651 individuals, including random generation and selection of T cells and their receptors. We identify the different sources of the observed variability, separating generation and selection effects. For this purpose, we developed a new computational tool SONIA that quantifies selection patterns in any sample of T cells by comparing statistics to background samples. We find common sources of variability in the population, showing that the variability in the population is secondary compared to the diversity of T cells in one individual. We characterize the variability and its sources so it can be used in future studies in reactive T cell populations.
The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs.
The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs.The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs.
Author Walczak, Aleksandra M.
Mora, Thierry
Isacchini, Giulio
Dupic, Thomas
Sethna, Zachary
Elhanati, Yuval
AuthorAffiliation University College London, UNITED KINGDOM
3 Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, Göttingen, Germany
2 Laboratoire de physique de l’École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
1 Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
4 Computational Oncology, Department of Epidemiology and Biostatistics, and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
AuthorAffiliation_xml – name: 4 Computational Oncology, Department of Epidemiology and Biostatistics, and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
– name: 1 Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
– name: 3 Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, Göttingen, Germany
– name: 2 Laboratoire de physique de l’École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université de Paris 24 rue Lhomond, Paris, France
– name: University College London, UNITED KINGDOM
Author_xml – sequence: 1
  givenname: Zachary
  orcidid: 0000-0001-8859-1084
  surname: Sethna
  fullname: Sethna, Zachary
– sequence: 2
  givenname: Giulio
  orcidid: 0000-0003-2040-1058
  surname: Isacchini
  fullname: Isacchini, Giulio
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0003-1803-1617
  surname: Dupic
  fullname: Dupic, Thomas
– sequence: 4
  givenname: Thierry
  orcidid: 0000-0002-5456-9361
  surname: Mora
  fullname: Mora, Thierry
– sequence: 5
  givenname: Aleksandra M.
  orcidid: 0000-0002-2686-5702
  surname: Walczak
  fullname: Walczak, Aleksandra M.
– sequence: 6
  givenname: Yuval
  orcidid: 0000-0002-4354-8864
  surname: Elhanati
  fullname: Elhanati, Yuval
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33296360$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URD_gHyCUI5csTmzHMQckVPFRaSU4lLM1cSZbr7x2sJ1K_fd4P4paDpw845l53tG8l-TMB4-EvG3oqmGy-bANS_TgVrMZ7KqhtGeKvyAXjRCslkz0Z0_ic3KZ0pbSEqruFTlnrFUd6-gFWf8M8-Ig2-Cre4gWButsfqisr_IdVhv0GI9V8GOV0KE5ZGGqbmuDzlURZ4w52IjpNXk5gUv45vRekV9fv9xef6_XP77dXH9e14ZLnmsQtJfIFFMll8OoyjaKj4wKSjn0So1CirJ2SxveyQkH6NrRcKXkxIREyq7IzZE7BtjqOdodxAcdwOrDR4gbDTFb41CLoS9QMxRJxdsWFahpYlNDUQ4UelNYn46seRl2OBr0OYJ7Bn1e8fZOb8K9lrIVrOsK4P0JEMPvBVPWO5v2lwGPYUm65Z2iUjEmSuu7p1p_RR7tKA0fjw0mhpQiTtrYfDh_kbZON1Tvvdcn7_Xee33yvgzzf4Yf-f8d-wOyjrdT
CitedBy_id crossref_primary_10_7554_eLife_81622
crossref_primary_10_1158_1078_0432_CCR_22_2469
crossref_primary_10_1016_j_compbiomed_2024_107956
crossref_primary_10_3389_fimmu_2022_798300
crossref_primary_10_1111_imr_13439
crossref_primary_10_7554_eLife_85145
crossref_primary_10_1038_s42256_025_01085_9
crossref_primary_10_1101_gr_275373_121
crossref_primary_10_7554_eLife_85126
crossref_primary_10_1016_j_cels_2024_11_006
crossref_primary_10_1038_s42256_024_00913_8
crossref_primary_10_1103_14j1_wrh5
crossref_primary_10_1371_journal_pcbi_1009297
crossref_primary_10_1073_pnas_2311348121
crossref_primary_10_1038_s41467_024_47461_8
crossref_primary_10_1126_science_adp2407
crossref_primary_10_1038_s41587_023_01734_7
crossref_primary_10_1117_1_JBO_29_S2_S22702
crossref_primary_10_1126_sciadv_ads5589
crossref_primary_10_1016_j_ccell_2024_05_005
crossref_primary_10_3389_fimmu_2023_1181825
crossref_primary_10_1371_journal_pgen_1010652
crossref_primary_10_1093_gigascience_giad074
crossref_primary_10_1038_s41591_022_02110_9
crossref_primary_10_1073_pnas_2023141118
Cites_doi 10.1007/s00109-014-1145-2
10.1016/j.coisb.2016.12.009
10.1073/pnas.1409572111
10.1146/annurev.immunol.21.120601.141107
10.1182/blood-2006-11-056168
10.1186/gm502
10.1093/bioinformatics/btu523
10.1073/pnas.89.22.11011
10.1146/annurev-genet-110410-132552
10.1038/ng.3822
10.1038/s41467-018-02832-w
10.1158/2326-6066.CIR-16-0001
10.1073/pnas.0608907103
10.1016/j.coisb.2019.10.007
10.1111/imr.12665
10.1146/annurev.biochem.052308.093131
10.1038/nature22976
10.1073/pnas.73.10.3628
10.1126/science.274.5284.94
10.7554/eLife.38358
10.1093/bioinformatics/btz035
10.1073/pnas.1212755109
10.1146/annurev.immunol.23.021704.115601
10.1073/pnas.1809642115
10.1038/nature22383
ContentType Journal Article
Copyright 2020 Sethna et al 2020 Sethna et al
Copyright_xml – notice: 2020 Sethna et al 2020 Sethna et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1008394
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Population variability of T-cell repertoires
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_5b8004cb5089422e9a9ff3f10e7b0a8c
PMC7725366
33296360
10_1371_journal_pcbi_1008394
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
7X8
5PM
ID FETCH-LOGICAL-c474t-a5087e3939c477bd932994d305004a899d575735201467feba62dc4997f357e03
IEDL.DBID DOA
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000597932800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Fri Oct 03 12:44:15 EDT 2025
Tue Nov 04 02:00:54 EST 2025
Sun Nov 09 10:50:21 EST 2025
Thu Apr 03 07:04:46 EDT 2025
Sat Nov 29 06:13:43 EST 2025
Tue Nov 18 21:48:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-a5087e3939c477bd932994d305004a899d575735201467feba62dc4997f357e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-1803-1617
0000-0001-8859-1084
0000-0003-2040-1058
0000-0002-5456-9361
0000-0002-4354-8864
0000-0002-2686-5702
OpenAccessLink https://doaj.org/article/5b8004cb5089422e9a9ff3f10e7b0a8c
PMID 33296360
PQID 2469079335
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5b8004cb5089422e9a9ff3f10e7b0a8c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7725366
proquest_miscellaneous_2469079335
pubmed_primary_33296360
crossref_citationtrail_10_1371_journal_pcbi_1008394
crossref_primary_10_1371_journal_pcbi_1008394
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References ET Clambey (pcbi.1008394.ref007) 2014; 92
M Bogue (pcbi.1008394.ref018) 1992; 89
V Venturi (pcbi.1008394.ref003) 2006; 103
pcbi.1008394.ref036
JM Heather (pcbi.1008394.ref008) 2017; 19
pcbi.1008394.ref035
A Pasetto (pcbi.1008394.ref030) 2016; 4
MR Lieber (pcbi.1008394.ref022) 2010; 79
N Hozumi (pcbi.1008394.ref002) 1976; 73
S DeWitt I William (pcbi.1008394.ref012) 2018; 7
RO Emerson (pcbi.1008394.ref014) 2017; 49
CA Janeway (pcbi.1008394.ref001) 2001
B Kyewski (pcbi.1008394.ref005) 2006; 24
JD Altman (pcbi.1008394.ref027) 1996; 274
P Dash (pcbi.1008394.ref029) 2017; 547
P Lindau (pcbi.1008394.ref009) 2017; 1
PG Thomas (pcbi.1008394.ref023) 2019; 18
DJ Woodsworth (pcbi.1008394.ref011) 2013; 5
S Luo (pcbi.1008394.ref021) 2016; 12
Y Elhanati (pcbi.1008394.ref013) 2018; 284
J Glanville (pcbi.1008394.ref028) 2017
TK Starr (pcbi.1008394.ref006) 2003; 21
Y Elhanati (pcbi.1008394.ref017) 2014; 111
DG Schatz (pcbi.1008394.ref020) 2011; 45
JW Sidhom (pcbi.1008394.ref032) 2018
Z Sethna (pcbi.1008394.ref016) 2019; 35
E Jokinen (pcbi.1008394.ref034) 2019
Q Marcou (pcbi.1008394.ref015) 2018; 9
MV Pogorelyy (pcbi.1008394.ref025) 2018; 115
VI Jurtz (pcbi.1008394.ref031) 2018
I Springer (pcbi.1008394.ref033) 2019
N Thomas (pcbi.1008394.ref024) 2014; 30
A Murugan (pcbi.1008394.ref004) 2012; 109
A Six (pcbi.1008394.ref010) 2013; 4
DV Bagaev (pcbi.1008394.ref019) 2019
M Wolfl (pcbi.1008394.ref026) 2007; 110
References_xml – volume: 4
  start-page: 413
  issue: 413
  year: 2013
  ident: pcbi.1008394.ref010
  article-title: The past, present and future of immune repertoire biology—the rise of next-generation repertoire analysis
  publication-title: Front Immunol
– volume: 92
  start-page: 735
  issue: 7
  year: 2014
  ident: pcbi.1008394.ref007
  article-title: Molecules in medicine mini review: the αβ T cell receptor
  publication-title: Journal of Molecular Medicine
  doi: 10.1007/s00109-014-1145-2
– volume: 1
  start-page: 62
  year: 2017
  ident: pcbi.1008394.ref009
  article-title: Advances and applications of immune receptor sequencing in systems immunology
  publication-title: Current Opinion in Systems Biology
  doi: 10.1016/j.coisb.2016.12.009
– volume: 111
  start-page: 9875
  issue: 27
  year: 2014
  ident: pcbi.1008394.ref017
  article-title: Quantifying selection in immune receptor repertoires
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1409572111
– start-page: 4
  issue: 2017
  year: 2019
  ident: pcbi.1008394.ref034
  publication-title: TCRGP: Determining epitope specificity of T cell receptors
– volume: 21
  start-page: 139
  issue: 1
  year: 2003
  ident: pcbi.1008394.ref006
  article-title: Positive and Negative Selection of T Cells
  publication-title: Annual Review of Immunology
  doi: 10.1146/annurev.immunol.21.120601.141107
– volume: 110
  start-page: 201
  issue: 1
  year: 2007
  ident: pcbi.1008394.ref026
  article-title: Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities
  publication-title: Blood
  doi: 10.1182/blood-2006-11-056168
– ident: pcbi.1008394.ref036
– volume: 5
  start-page: 98
  issue: 10
  year: 2013
  ident: pcbi.1008394.ref011
  article-title: Sequence analysis of T-cell repertoires in health and disease
  publication-title: Genome Med
  doi: 10.1186/gm502
– volume: 30
  start-page: 3181
  issue: 22
  year: 2014
  ident: pcbi.1008394.ref024
  article-title: Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu523
– volume: 89
  start-page: 11011
  issue: 22
  year: 1992
  ident: pcbi.1008394.ref018
  article-title: Regulation of N-region diversity in antigen receptors through thymocyte differentiation and thymus ontogeny
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.22.11011
– start-page: 1
  issue: 13
  year: 2019
  ident: pcbi.1008394.ref019
  article-title: VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium
  publication-title: Nucleic Acids Research
– volume: 45
  start-page: 167
  issue: D
  year: 2011
  ident: pcbi.1008394.ref020
  article-title: V(D)J recombination: mechanisms of initiation
  publication-title: Annual review of genetics
  doi: 10.1146/annurev-genet-110410-132552
– volume: 49
  start-page: 659
  issue: 5
  year: 2017
  ident: pcbi.1008394.ref014
  article-title: Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire
  publication-title: Nature Genetics
  doi: 10.1038/ng.3822
– volume: 9
  start-page: 561
  issue: 1
  year: 2018
  ident: pcbi.1008394.ref015
  article-title: High-throughput immune repertoire analysis with IGoR
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-02832-w
– volume: 4
  start-page: 734
  issue: 9
  year: 2016
  ident: pcbi.1008394.ref030
  article-title: Tumor- and Neoantigen-Reactive T-cell Receptors Can Be Identified Based on Their Frequency in Fresh Tumor
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-16-0001
– volume: 103
  start-page: 18691
  issue: 49
  year: 2006
  ident: pcbi.1008394.ref003
  article-title: Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0608907103
– volume: 18
  start-page: 36
  year: 2019
  ident: pcbi.1008394.ref023
  article-title: Selected before selection: A case for inherent antigen bias in the T cell receptor repertoire
  publication-title: Current Opinion in Systems Biology
  doi: 10.1016/j.coisb.2019.10.007
– volume: 284
  start-page: 167
  issue: 1
  year: 2018
  ident: pcbi.1008394.ref013
  article-title: Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination
  publication-title: Immunological Reviews
  doi: 10.1111/imr.12665
– volume: 79
  start-page: 181
  issue: 1
  year: 2010
  ident: pcbi.1008394.ref022
  article-title: The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway
  publication-title: Annual review of biochemistry
  doi: 10.1146/annurev.biochem.052308.093131
– volume-title: Immunobiology: The Immune System in Health and Disease
  year: 2001
  ident: pcbi.1008394.ref001
– start-page: 464107
  year: 2018
  ident: pcbi.1008394.ref032
  article-title: DeepTCR: a deep learning framework for revealing structural concepts within TCR Repertoire
  publication-title: bioRxiv
– start-page: 94
  year: 2017
  ident: pcbi.1008394.ref028
  article-title: Identifying specificity groups in the T cell receptor repertoire
  publication-title: Nature
  doi: 10.1038/nature22976
– volume: 73
  start-page: 3628
  issue: 10
  year: 1976
  ident: pcbi.1008394.ref002
  article-title: Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.73.10.3628
– volume: 274
  start-page: 94
  issue: 5284
  year: 1996
  ident: pcbi.1008394.ref027
  article-title: Phenotypic Analysis of Antigen-Specific T Lymphocytes
  publication-title: Science
  doi: 10.1126/science.274.5284.94
– volume: 19
  start-page: 554
  issue: 4
  year: 2017
  ident: pcbi.1008394.ref008
  article-title: High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities
  publication-title: Briefings in Bioinformatics
– volume: 7
  start-page: e38358
  year: 2018
  ident: pcbi.1008394.ref012
  article-title: Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity
  publication-title: eLife
  doi: 10.7554/eLife.38358
– ident: pcbi.1008394.ref035
– start-page: 433706
  issue: 5
  year: 2018
  ident: pcbi.1008394.ref031
  article-title: NetTCR: sequence-based prediction of TCR binding to peptide-MHC complexes using convolutional neural networks
  publication-title: bioRxiv
– volume: 35
  start-page: 2974
  issue: 17
  year: 2019
  ident: pcbi.1008394.ref016
  article-title: OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz035
– volume: 109
  start-page: 16161
  issue: 40
  year: 2012
  ident: pcbi.1008394.ref004
  article-title: Statistical inference of the generation probability of T-cell receptors from sequence repertoires
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1212755109
– volume: 24
  start-page: 571
  issue: 1
  year: 2006
  ident: pcbi.1008394.ref005
  article-title: A CENTRAL ROLE FOR CENTRAL TOLERANCE
  publication-title: Annual Review of Immunology
  doi: 10.1146/annurev.immunol.23.021704.115601
– volume: 12
  start-page: 1
  issue: 9
  year: 2016
  ident: pcbi.1008394.ref021
  article-title: Estimating Copy Number and Allelic Variation at the Immunoglobulin Heavy Chain Locus Using Short Reads
  publication-title: PLoS Computational Biology
– start-page: 650861
  year: 2019
  ident: pcbi.1008394.ref033
  article-title: Prediction of specific TCR-peptide binding from large dictionaries of TCR-peptide pairs
  publication-title: bioRxiv
– volume: 115
  start-page: 12704
  issue: 50
  year: 2018
  ident: pcbi.1008394.ref025
  article-title: Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1809642115
– volume: 547
  start-page: 89
  issue: 7661
  year: 2017
  ident: pcbi.1008394.ref029
  article-title: Quantifiable predictive features define epitope-specific T cell receptor repertoires
  publication-title: Nature
  doi: 10.1038/nature22383
SSID ssj0035896
Score 2.492757
Snippet The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008394
SubjectTerms Adaptive Immunity
Biology and Life Sciences
Humans
Medicine and Health Sciences
Physical Sciences
Receptors, Antigen, T-Cell, alpha-beta - immunology
Receptors, Antigen, T-Cell, alpha-beta - metabolism
Research and Analysis Methods
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
V(D)J Recombination
Title Population variability in the generation and selection of T-cell repertoires
URI https://www.ncbi.nlm.nih.gov/pubmed/33296360
https://www.proquest.com/docview/2469079335
https://pubmed.ncbi.nlm.nih.gov/PMC7725366
https://doaj.org/article/5b8004cb5089422e9a9ff3f10e7b0a8c
Volume 16
WOSCitedRecordID wos000597932800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7oquCLeLdehgi-xu00SU_z6MoOiuNQZJXRl5K0iQ5IZ5iZXdh_70nSGXZE2BdfAm1TGr6Ty3fSk-8AvMmxVZbWSV7KKufS2IIbV1S8VOPOo-5yG89WfZvibFbN57q-kuorxIQleeAE3LGyRGlka4lIaFkUThvtvfDj3KHNTdWG2TdHvXOm0hwsVBUzc4WkOByFnA-H5gSOjwcbvV21dhFiBIghyINFKWr3_4tw_h03eWUhmtyHewODZO9Syx_ADdc_hDspp-TlI5jW-5Rc7IIc4aTDfckWPSOux35Gmen41PQd28Q0OOFq6dkZD9v4bO1Wbr1d0ly4eQxfJ6dn7z_wIWUCbyXKLTcEEzqhhaZrtB2xM61lR4OaQDTkW3VEz5BIV9CMQe-sKYuuJa8HvVDocvEEjvpl754Bk7nRhZW2o1EtiVZVPpxh1c5rrUxpywzEDrOmHfTEQ1qL3038SYbkVyRAmoB0MyCdAd-_tUp6GtfUPwnm2NcNatjxBvWRZugjzXV9JIPXO2M2NHoClqZ3y_NNU8TdAS2EyuBpMu7-U4KwC2pqGeCB2Q_acvikX_yKCt3ksihRls__R-NfwN0i-PgxhOYlHG3X5-4V3G4vtovNegQ3cY6xrEZw6-R0Vn8ZxaFA5aSeUvkJ-ShEtNZU1uoH1ao_fq6__wHMXRCI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+variability+in+the+generation+and+selection+of+T-cell+repertoires&rft.jtitle=PLoS+computational+biology&rft.au=Sethna%2C+Zachary&rft.au=Isacchini%2C+Giulio&rft.au=Dupic%2C+Thomas&rft.au=Mora%2C+Thierry&rft.date=2020-12-01&rft.eissn=1553-7358&rft.volume=16&rft.issue=12&rft.spage=e1008394&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008394&rft_id=info%3Apmid%2F33296360&rft.externalDocID=33296360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon