Self-supervised Learning: A Succinct Review

Machine learning has made significant advances in the field of image processing. The foundation of this success is supervised learning, which necessitates annotated labels generated by humans and hence learns from labelled data, whereas unsupervised learning learns from unlabeled data. Self-supervis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Archives of computational methods in engineering Ročník 30; číslo 4; s. 2761 - 2775
Hlavní autoři: Rani, Veenu, Nabi, Syed Tufael, Kumar, Munish, Mittal, Ajay, Kumar, Krishan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.05.2023
Springer Nature B.V
Témata:
ISSN:1134-3060, 1886-1784, 1886-1784
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning has made significant advances in the field of image processing. The foundation of this success is supervised learning, which necessitates annotated labels generated by humans and hence learns from labelled data, whereas unsupervised learning learns from unlabeled data. Self-supervised learning (SSL) is a type of un-supervised learning that helps in the performance of downstream computer vision tasks such as object detection, image comprehension, image segmentation, and so on. It can develop generic artificial intelligence systems at a low cost using unstructured and unlabeled data. The authors of this review article have presented detailed literature on self-supervised learning as well as its applications in different domains. The primary goal of this review article is to demonstrate how images learn from their visual features using self-supervised approaches. The authors have also discussed various terms used in self-supervised learning as well as different types of learning, such as contrastive learning, transfer learning, and so on. This review article describes in detail the pipeline of self-supervised learning, including its two main phases: pretext and downstream tasks. The authors have shed light on various challenges encountered while working on self-supervised learning at the end of the article.
AbstractList Machine learning has made significant advances in the field of image processing. The foundation of this success is supervised learning, which necessitates annotated labels generated by humans and hence learns from labelled data, whereas unsupervised learning learns from unlabeled data. Self-supervised learning (SSL) is a type of un-supervised learning that helps in the performance of downstream computer vision tasks such as object detection, image comprehension, image segmentation, and so on. It can develop generic artificial intelligence systems at a low cost using unstructured and unlabeled data. The authors of this review article have presented detailed literature on self-supervised learning as well as its applications in different domains. The primary goal of this review article is to demonstrate how images learn from their visual features using self-supervised approaches. The authors have also discussed various terms used in self-supervised learning as well as different types of learning, such as contrastive learning, transfer learning, and so on. This review article describes in detail the pipeline of self-supervised learning, including its two main phases: pretext and downstream tasks. The authors have shed light on various challenges encountered while working on self-supervised learning at the end of the article.
Machine learning has made significant advances in the field of image processing. The foundation of this success is supervised learning, which necessitates annotated labels generated by humans and hence learns from labelled data, whereas unsupervised learning learns from unlabeled data. Self-supervised learning (SSL) is a type of un-supervised learning that helps in the performance of downstream computer vision tasks such as object detection, image comprehension, image segmentation, and so on. It can develop generic artificial intelligence systems at a low cost using unstructured and unlabeled data. The authors of this review article have presented detailed literature on self-supervised learning as well as its applications in different domains. The primary goal of this review article is to demonstrate how images learn from their visual features using self-supervised approaches. The authors have also discussed various terms used in self-supervised learning as well as different types of learning, such as contrastive learning, transfer learning, and so on. This review article describes in detail the pipeline of self-supervised learning, including its two main phases: pretext and downstream tasks. The authors have shed light on various challenges encountered while working on self-supervised learning at the end of the article.Machine learning has made significant advances in the field of image processing. The foundation of this success is supervised learning, which necessitates annotated labels generated by humans and hence learns from labelled data, whereas unsupervised learning learns from unlabeled data. Self-supervised learning (SSL) is a type of un-supervised learning that helps in the performance of downstream computer vision tasks such as object detection, image comprehension, image segmentation, and so on. It can develop generic artificial intelligence systems at a low cost using unstructured and unlabeled data. The authors of this review article have presented detailed literature on self-supervised learning as well as its applications in different domains. The primary goal of this review article is to demonstrate how images learn from their visual features using self-supervised approaches. The authors have also discussed various terms used in self-supervised learning as well as different types of learning, such as contrastive learning, transfer learning, and so on. This review article describes in detail the pipeline of self-supervised learning, including its two main phases: pretext and downstream tasks. The authors have shed light on various challenges encountered while working on self-supervised learning at the end of the article.
Author Kumar, Krishan
Mittal, Ajay
Kumar, Munish
Nabi, Syed Tufael
Rani, Veenu
Author_xml – sequence: 1
  givenname: Veenu
  surname: Rani
  fullname: Rani, Veenu
  organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University
– sequence: 2
  givenname: Syed Tufael
  surname: Nabi
  fullname: Nabi, Syed Tufael
  organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University
– sequence: 3
  givenname: Munish
  orcidid: 0000-0003-0115-1620
  surname: Kumar
  fullname: Kumar, Munish
  email: munishcse@gmail.com
  organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University
– sequence: 4
  givenname: Ajay
  surname: Mittal
  fullname: Mittal, Ajay
  organization: University Institute of Engineering and Technology, Panjab University
– sequence: 5
  givenname: Krishan
  surname: Kumar
  fullname: Kumar, Krishan
  organization: University Institute of Engineering and Technology, Panjab University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36713767$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtLXDEUhUNR6qX-gT7IQF8Eic3tZCd9EAZRKwwItX0OMZdp5EzOmJwz0n_fM47W6oNPO7DX-lg7aw9t5S4HhD5TckIJga-VUsUpJoxjopUSmH1Au1QpiSkosTW-KReYE0l20F6td4Q0Qmv2Ee1wCZSDhF10fBPaiOuwDGWVavCTWbAlpzz_NplObgbnUnb95EdYpfDwCW1H29Zw8DT30a-L859n3_Hs-vLqbDrDToDosRVAPFGCOK2BAROsAYg6RtcQ6hpJgrBS-SitV-C8vQUuoxNM66i5957vo9MNdzncLoJ3IffFtmZZ0sKWP6azybze5PTbzLuV0aoBzdgIOHoClO5-CLU3i1RdaFubQzdUwwAoUUBBjtIvb6R33VDyeJ7hrJESNBdr4OH_if5Fef7HUaA2Ale6WkuIxqXe9qlbB0ytocSsKzObysxYmXmszKzZ7I31mf6uiW9MdRTneSgvsd9x_QXeHKc8
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_109874
crossref_primary_10_1016_j_istruc_2025_108598
crossref_primary_10_1109_JSTARS_2025_3600287
crossref_primary_10_1016_j_rser_2025_115895
crossref_primary_10_4103_joco_joco_172_24
crossref_primary_10_1038_s41467_024_49104_4
crossref_primary_10_1080_01431161_2024_2443620
crossref_primary_10_1016_j_pscia_2025_100080
crossref_primary_10_1007_s00138_025_01694_9
crossref_primary_10_1016_j_compbiomed_2024_107980
crossref_primary_10_1002_admt_202301316
crossref_primary_10_1093_bib_bbaf283
crossref_primary_10_1016_j_neucom_2023_126629
crossref_primary_10_1016_j_ascom_2024_100851
crossref_primary_10_1016_j_engappai_2025_110870
crossref_primary_10_3390_cancers17101604
crossref_primary_10_1002_aidi_202500024
crossref_primary_10_2196_71592
crossref_primary_10_3390_app15116001
crossref_primary_10_1007_s10334_025_01274_y
crossref_primary_10_1016_j_ins_2024_120378
crossref_primary_10_1016_j_heliyon_2024_e37964
crossref_primary_10_1016_j_eswa_2024_125410
crossref_primary_10_3390_w17111718
crossref_primary_10_1007_s11042_024_20132_y
crossref_primary_10_1016_j_asoc_2025_113378
crossref_primary_10_1016_j_neucom_2025_129607
crossref_primary_10_3390_s23218701
crossref_primary_10_1016_j_neucom_2025_131409
crossref_primary_10_3390_a17060267
crossref_primary_10_1109_JBHI_2024_3471907
crossref_primary_10_1016_j_tws_2025_113756
crossref_primary_10_1007_s10639_024_13111_1
crossref_primary_10_1007_s12083_025_02093_7
crossref_primary_10_3390_s25030602
crossref_primary_10_3390_rs16193624
crossref_primary_10_1109_TGRS_2024_3436841
crossref_primary_10_1007_s10618_025_01102_w
crossref_primary_10_1002_advs_202505456
crossref_primary_10_1109_ACCESS_2025_3584401
crossref_primary_10_2196_55530
crossref_primary_10_1002_widm_70039
crossref_primary_10_1016_j_bspc_2024_106048
crossref_primary_10_1002_jeo2_12025
crossref_primary_10_1080_14787210_2025_2484284
crossref_primary_10_1007_s13735_025_00371_x
crossref_primary_10_1016_j_measurement_2023_113294
crossref_primary_10_1016_j_talanta_2025_128483
crossref_primary_10_1016_j_jag_2023_103569
crossref_primary_10_3367_UFNr_2025_02_039872
crossref_primary_10_1016_j_biotechadv_2025_108698
crossref_primary_10_3389_fbioe_2024_1411680
crossref_primary_10_1016_j_engappai_2024_108503
crossref_primary_10_1038_s41598_025_01014_1
crossref_primary_10_1109_ACCESS_2024_3365349
crossref_primary_10_3390_electronics13183695
crossref_primary_10_1038_s41467_025_57541_y
crossref_primary_10_1038_s41598_025_99000_0
crossref_primary_10_1016_j_optlastec_2024_111992
crossref_primary_10_1016_j_compmedimag_2024_102434
crossref_primary_10_1007_s44373_025_00042_w
crossref_primary_10_2196_55094
crossref_primary_10_1016_j_smaim_2025_06_003
crossref_primary_10_3389_fbioe_2023_1285945
crossref_primary_10_1007_s11245_024_10046_7
crossref_primary_10_1016_j_ecoinf_2024_102989
crossref_primary_10_1109_JSTARS_2025_3591848
crossref_primary_10_1016_j_microc_2025_114814
crossref_primary_10_1016_j_cmpb_2024_108337
crossref_primary_10_1016_j_neucom_2024_129169
crossref_primary_10_3390_cancers16193285
crossref_primary_10_3390_technologies12070099
crossref_primary_10_1109_MWC_002_2400197
crossref_primary_10_1145_3736574
crossref_primary_10_3367_UFNe_2025_02_039872
crossref_primary_10_3389_frai_2024_1430984
crossref_primary_10_3390_cli13080159
crossref_primary_10_1007_s12530_024_09581_w
crossref_primary_10_1038_s41598_025_08504_2
crossref_primary_10_1016_j_aei_2024_103079
crossref_primary_10_1016_j_aei_2025_103876
crossref_primary_10_1007_s00704_025_05698_3
crossref_primary_10_34133_hds_0282
crossref_primary_10_1016_j_engappai_2025_110042
crossref_primary_10_1016_j_anclin_2025_04_003
crossref_primary_10_1177_09596518251350353
crossref_primary_10_1007_s11004_025_10191_8
crossref_primary_10_1016_j_neunet_2024_107004
crossref_primary_10_1016_j_ins_2024_121516
crossref_primary_10_1038_s41598_024_78515_y
crossref_primary_10_1038_s41598_025_87376_y
crossref_primary_10_32604_cmc_2024_054644
crossref_primary_10_1016_j_compbiomed_2025_110510
crossref_primary_10_1016_j_eswa_2024_125843
crossref_primary_10_3390_app142310776
crossref_primary_10_1016_j_eswa_2024_125967
crossref_primary_10_1093_ehjdh_ztaf049
crossref_primary_10_3390_bdcc9080204
crossref_primary_10_3390_aerospace10080681
crossref_primary_10_1007_s11229_025_04923_w
crossref_primary_10_1007_s12221_025_00942_z
crossref_primary_10_1016_j_culher_2024_11_020
crossref_primary_10_3390_info15080491
crossref_primary_10_47992_IJCSBE_2581_6942_0370
crossref_primary_10_1088_1741_2552_ade402
crossref_primary_10_3390_bioengineering12050542
crossref_primary_10_1016_j_inffus_2024_102814
crossref_primary_10_1109_TNNLS_2024_3440498
Cites_doi 10.1117/1.JMI.9.6.064503
10.1145/3517246
10.1007/978-3-319-46466-4_5
10.1016/j.knosys.2021.107090
10.3390/e24040551
10.1109/CVPR46437.2021.01209
10.1109/CVPR.2016.91
10.1007/978-3-319-67558-9_34
10.1007/978-3-030-22475-2_1
10.1109/tpami.2022.3164911
10.1007/978-981-33-6984-9_41
10.3390/electronics9111930
10.24963/ijcai.2022/757
10.1162/tacl_a_00389
10.1007/978-3-030-92659-5_31
10.1109/CVPR.2016.278
10.1109/CVPR42600.2020.00975
10.1109/tip.2021.3120052
10.1145/3065386
10.3390/s22041599
10.1016/j.media.2019.101539
10.1109/access.2020.2973390
10.1109/CVPR52688.2022.01410
10.1007/s10994-019-05855-6
10.1109/TPAMI.2022.3199617
10.1186/s40537-016-0043-6
10.1109/iccv.2015.167
10.3390/informatics8030059
10.1109/cvpr42600.2020.00078
10.1109/ICSEngT.2019.8906400
10.1109/cvprw50498.2020.00485
10.1007/978-3-319-46493-0_35
10.1016/j.patter.2021.100410
10.1609/aaai.v34i05.6428
10.3390/technologies9010002
10.1109/TKDE.2009.191
10.18653/v1/2020.acl-main.740
10.1109/tpami.2020.2992393
10.1145/3397271.3401147
10.3390/e22111190
10.1109/cvpr.2019.01061
10.1109/CASE48305.2020.9217018
10.1007/978-3-319-46487-9_40
10.1109/access.2022.3165040
10.1093/nsr/nwx106
10.1109/cvpr.2014.81
10.1109/ACCESS.2020.3021469
10.1109/cvpr.2019.00512
10.1109/tcsvt.2022.3141051
10.1145/3550299
ContentType Journal Article
Copyright The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023.
Copyright_xml – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023.
DBID AAYXX
CITATION
NPM
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
7X8
5PM
DOI 10.1007/s11831-023-09884-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Collection (ProQuest)
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 2775
ExternalDocumentID PMC9857922
36713767
10_1007_s11831_023_09884_2
Genre Journal Article
Review
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
JZLTJ
PHGZM
PQGLB
NPM
3V.
7XB
8AL
8FK
JQ2
L.-
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-a470d0840c99727242577f9ffc501c560e4a68df6ad87cdab736fc4299f93ddd3
IEDL.DBID K7-
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920400800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-3060
1886-1784
IngestDate Tue Nov 04 02:06:35 EST 2025
Sun Nov 09 09:41:23 EST 2025
Mon Oct 06 18:40:23 EDT 2025
Thu Apr 03 06:57:34 EDT 2025
Tue Nov 18 22:38:47 EST 2025
Sat Nov 29 08:02:42 EST 2025
Thu Apr 10 08:01:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Self-supervised
Un-supervised learning
Supervised learning
Contrastive learning
Machine learning
Language English
License The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-a470d0840c99727242577f9ffc501c560e4a68df6ad87cdab736fc4299f93ddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0115-1620
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9857922
PMID 36713767
PQID 3256679342
PQPubID 1486352
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9857922
proquest_miscellaneous_2771087176
proquest_journals_3256679342
pubmed_primary_36713767
crossref_citationtrail_10_1007_s11831_023_09884_2
crossref_primary_10_1007_s11831_023_09884_2
springer_journals_10_1007_s11831_023_09884_2
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationTitleAlternate Arch Comput Methods Eng
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References 9884_CR30
9884_CR32
9884_CR35
9884_CR37
K Weiss (9884_CR15) 2016; 3
9884_CR36
9884_CR39
Y Sun (9884_CR38) 2020; 34
K He (9884_CR33) 2020; 2020
J Ding (9884_CR56) 2022
K Ohri (9884_CR2) 2021; 224
S Albelwi (9884_CR1) 2022; 24
A Chowdhury (9884_CR40) 2021; 8
9884_CR20
9884_CR22
9884_CR21
9884_CR23
9884_CR25
9884_CR28
W You (9884_CR31) 2022; 10
S Treneska (9884_CR19) 2022; 22
JEV Engelen (9884_CR9) 2019; 109
ZH Zhou (9884_CR10) 2017; 5
R Li (9884_CR24) 2022; 31
K Yun (9884_CR52) 2020; 8
9884_CR53
9884_CR11
9884_CR55
9884_CR13
9884_CR57
9884_CR12
9884_CR58
9884_CR17
9884_CR18
XB Nguyen (9884_CR46) 2020; 8
9884_CR3
SJ Pan (9884_CR16) 2010; 22
J Redmon (9884_CR29) 2016; 2016
A Jaiswal (9884_CR5) 2020; 9
9884_CR7
9884_CR8
9884_CR51
9884_CR50
9884_CR41
9884_CR44
A Kwasigroch (9884_CR43) 2020; 9
L Jing (9884_CR27) 2021; 43
9884_CR48
9884_CR47
Y Luo (9884_CR14) 2020; 22
9884_CR49
Y Jain (9884_CR54) 2022; 6
D Spathis (9884_CR45) 2022; 3
D Pathak (9884_CR6) 2016; 2016
L Tao (9884_CR4) 2022
A Krizhevsky (9884_CR26) 2017; 60
M Zhou (9884_CR34) 2021; 9
L Chen (9884_CR42) 2019; 58
References_xml – ident: 9884_CR44
  doi: 10.1117/1.JMI.9.6.064503
– volume: 6
  start-page: 1
  issue: 1
  year: 2022
  ident: 9884_CR54
  publication-title: Proc ACM Interact Mob Wearable Ubiquitous Technol
  doi: 10.1145/3517246
– ident: 9884_CR22
  doi: 10.1007/978-3-319-46466-4_5
– volume: 224
  start-page: 7090
  year: 2021
  ident: 9884_CR2
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107090
– volume: 24
  start-page: 551
  issue: 4
  year: 2022
  ident: 9884_CR1
  publication-title: Entropy
  doi: 10.3390/e24040551
– ident: 9884_CR36
– ident: 9884_CR23
– ident: 9884_CR57
  doi: 10.1109/CVPR46437.2021.01209
– volume: 2016
  start-page: 779
  year: 2016
  ident: 9884_CR29
  publication-title: IEEE Conf Comput Vis Pattern Recogn
  doi: 10.1109/CVPR.2016.91
– ident: 9884_CR41
  doi: 10.1007/978-3-319-67558-9_34
– ident: 9884_CR8
  doi: 10.1007/978-3-030-22475-2_1
– year: 2022
  ident: 9884_CR56
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2022.3164911
– ident: 9884_CR25
  doi: 10.1007/978-981-33-6984-9_41
– volume: 9
  start-page: 1930
  issue: 11
  year: 2020
  ident: 9884_CR43
  publication-title: Electronics
  doi: 10.3390/electronics9111930
– ident: 9884_CR32
  doi: 10.24963/ijcai.2022/757
– ident: 9884_CR49
– volume: 9
  start-page: 641
  year: 2021
  ident: 9884_CR34
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl_a_00389
– ident: 9884_CR53
  doi: 10.1007/978-3-030-92659-5_31
– volume: 2016
  start-page: 2536
  year: 2016
  ident: 9884_CR6
  publication-title: IEEE Conf Comput Vis Pattern Recogn
  doi: 10.1109/CVPR.2016.278
– volume: 2020
  start-page: 9726
  year: 2020
  ident: 9884_CR33
  publication-title: IEEE/CVF Conf Comput Vis Pattern Recogn
  doi: 10.1109/CVPR42600.2020.00975
– ident: 9884_CR58
– volume: 31
  start-page: 513
  year: 2022
  ident: 9884_CR24
  publication-title: IEEE Trans Image Process
  doi: 10.1109/tip.2021.3120052
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 9884_CR26
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: 9884_CR3
– volume: 22
  start-page: 1599
  issue: 4
  year: 2022
  ident: 9884_CR19
  publication-title: Sensors
  doi: 10.3390/s22041599
– volume: 58
  start-page: 101539
  year: 2019
  ident: 9884_CR42
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101539
– volume: 8
  start-page: 32502
  year: 2020
  ident: 9884_CR52
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2973390
– ident: 9884_CR55
  doi: 10.1109/CVPR52688.2022.01410
– volume: 109
  start-page: 373
  issue: 2
  year: 2019
  ident: 9884_CR9
  publication-title: Mach Learn
  doi: 10.1007/s10994-019-05855-6
– ident: 9884_CR48
  doi: 10.1109/TPAMI.2022.3199617
– volume: 3
  start-page: 9
  year: 2016
  ident: 9884_CR15
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– ident: 9884_CR18
  doi: 10.1109/iccv.2015.167
– volume: 8
  start-page: 59
  issue: 3
  year: 2021
  ident: 9884_CR40
  publication-title: Informatics
  doi: 10.3390/informatics8030059
– ident: 9884_CR35
  doi: 10.1109/cvpr42600.2020.00078
– ident: 9884_CR12
  doi: 10.1109/ICSEngT.2019.8906400
– ident: 9884_CR50
  doi: 10.1109/cvprw50498.2020.00485
– ident: 9884_CR7
  doi: 10.1007/978-3-319-46493-0_35
– volume: 3
  start-page: 1410
  issue: 2
  year: 2022
  ident: 9884_CR45
  publication-title: Patterns
  doi: 10.1016/j.patter.2021.100410
– volume: 34
  start-page: 8968
  issue: 05
  year: 2020
  ident: 9884_CR38
  publication-title: Proc AAAI Conf Artifi Intell
  doi: 10.1609/aaai.v34i05.6428
– volume: 9
  start-page: 2
  issue: 1
  year: 2020
  ident: 9884_CR5
  publication-title: Technologies
  doi: 10.3390/technologies9010002
– ident: 9884_CR47
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 9884_CR16
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: 9884_CR37
  doi: 10.18653/v1/2020.acl-main.740
– volume: 43
  start-page: 4037
  issue: 11
  year: 2021
  ident: 9884_CR27
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/tpami.2020.2992393
– ident: 9884_CR13
  doi: 10.1145/3397271.3401147
– volume: 22
  start-page: 1190
  issue: 11
  year: 2020
  ident: 9884_CR14
  publication-title: Entropy (Basel, Switzerland)
  doi: 10.3390/e22111190
– ident: 9884_CR20
  doi: 10.1109/cvpr.2019.01061
– ident: 9884_CR39
– ident: 9884_CR21
  doi: 10.1109/CASE48305.2020.9217018
– ident: 9884_CR17
  doi: 10.1007/978-3-319-46487-9_40
– volume: 10
  start-page: 36385
  year: 2022
  ident: 9884_CR31
  publication-title: IEEE Access
  doi: 10.1109/access.2022.3165040
– volume: 5
  start-page: 44
  issue: 1
  year: 2017
  ident: 9884_CR10
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwx106
– ident: 9884_CR28
  doi: 10.1109/cvpr.2014.81
– volume: 8
  start-page: 162973
  year: 2020
  ident: 9884_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021469
– ident: 9884_CR11
– ident: 9884_CR51
  doi: 10.1109/cvpr.2019.00512
– year: 2022
  ident: 9884_CR4
  publication-title: IEEE Trans Circ Syst Video Technol
  doi: 10.1109/tcsvt.2022.3141051
– ident: 9884_CR30
  doi: 10.1145/3550299
SSID ssj0054992
Score 2.6622224
SecondaryResourceType review_article
Snippet Machine learning has made significant advances in the field of image processing. The foundation of this success is supervised learning, which necessitates...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2761
SubjectTerms Algorithms
Artificial intelligence
Computer vision
Datasets
Engineering
Image processing
Image segmentation
Labeling
Literature reviews
Machine learning
Mathematical and Computational Engineering
Natural language processing
Object recognition
Review
Review Article
Self-supervised learning
Software
Supervision
Unstructured data
Unsupervised learning
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0h4AAH9qVQUJC4gaU0cbxwQwjECSE2cYtcO4ZKVVqRlu9n7DotpYAEZ0_ieDxrxvMMcKw0tVrQjBijCkKTNiVt3sqIg7ox2rloG_vLJvjNjXh-lrehKayqT7vXJUlvqSfNbih9mPomKYmlEJSg4V1AdyecOt7dP9X21yU8vsbZSt0_fxaHVpnv3zHtjmZizNmjkl_qpd4NXa3-bwFrsBLCzuh8JCfrMFeUG7AaQtAoKHi1Acuf8Ak3AS1J15Jq2HcGpULCgMb6chadR_dDrTulHkSj8sIWPF5dPlxck3C7AtGU0wFRlMcmxvxOu95Z7lMPbqW1OotbGgOhgiomjGXKCK6NavOUWe3cl5WpMSbdhvmyVxa7EBnFkCyJmRaaSsOkiakSrgdXZFYmtgGtmsm5DtDj7gaMbj4BTXa8yZE3uedNnjTgZPxMfwS88St1s967PChhlacYzjG0PxSHj8bDqD6uJqLKojes8oRjiIVJI2cN2Blt9Xi6lGEGzxlvAJ8SgjGBg-aeHik7rx6iW4qMywTnPa1FYfJZP69i72_k-7CUeGlyxy-bMD94GxYHsKjfB53q7dArxQdCgAQz
  priority: 102
  providerName: Springer Nature
Title Self-supervised Learning: A Succinct Review
URI https://link.springer.com/article/10.1007/s11831-023-09884-2
https://www.ncbi.nlm.nih.gov/pubmed/36713767
https://www.proquest.com/docview/3256679342
https://www.proquest.com/docview/2771087176
https://pubmed.ncbi.nlm.nih.gov/PMC9857922
Volume 30
WOSCitedRecordID wos000920400800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: 7WY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: M0C
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw9IltHLgwvgnbqiBxA4vEcfzBZRrTJiREVa18FC6Ra8dQaUrL0vL78XOcVt3ELlzexY4c-337-b0H8Eob5oxkJbFW14TRKSNTkZcES91YgyraZaHZhBgO5WSiRvHCrY3PKnuZGAS1nRu8I39beN3MPTExerz4TbBrFEZXYwuNHdjLKc2Rzj8K0ktidH1CtDMv8PafZzFppkud87TsHWlakExJyQjdVkw3rM2bjyavRU6DQjrf_9-tPID70RRNTzraeQh36uYR7EezNI1M3z4GL08uHWlXCxQrrR-KNVl_vktP0vHKmFljlmkXZHgCX87PPp9-ILHHAjFMsCXRTGQ2816ewQxaERwQ4ZRzpsxy482hmmkurePaSmGsnoqCO4NKzKnCWls8hd1m3tTPIbWa-2k040YapixXNmNaYiauLJ2iLoG8P-DKxALk2AfjstqUTkakVB4pVUBKRRN4vf5m0ZXfuHX2YX_gVWTFttqcdgIv18OeiTAyopt6vmorKryh5V1HwRN41qF5vVzBvR8vuEhAbBHAegIW6N4eaWa_QqFuJUuhqF_3TU8qm9_69y5e3L6LA7hHA9nio8tD2F1ereojuGv-LGft1QB2xLfvCCdyAHvvz4aji0FgCg8_ZacIxdjDUfnDw4vx179O3xDe
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyruBAkGCE1g4juMHUlVVhapVywqJIvVmsnZMV6qyS7ML4k_1N9bjJLtaKnrrgbOd2I6_-TyT8cwAvC4t91bxgjhXVoSzISdDmRUEU904i0e0p7HYhBwM1PGx_rIC530sDF6r7DkxErUbW_xH_j4PZ7MIYOJsa_KTYNUo9K72JTRaWBxUf34Hk63Z3P8Y9vcNY7ufjnb2SFdVgFgu-ZSUXFJHg11jMWZURpVbeu29LWhmgwJQ8VIo50XplLSuHMpceIu07XXunMvDe2_ATc6DOOBVQbrTMz-aWtG7muXobRC0C9JpQ_WC7ATDneWEaqU4YcsH4SXt9vIlzb88tfEA3F373z7dPbjbqdrpdisb92Glqh_AWqd2px2pNQ8h8OWpJ81sgrTZhKYu5-yPD-l2-nVm7ai207R1ojyCb9cy5cewWo_rah1SV4rQjVFhleXaCe0oLxVGGqvCa-YTyPoNNbZLsI51Pk7NIjU0gsAEEJgIAsMSeDt_ZtKmF7my90a_waajmsYsdjeBV_PmQBLo-SnrajxrDJNBkQymsRQJPGlhNR8uFzLDlD4JyCXAzTtgAvLllnp0EhORa1VIzcK473poLqb171U8vXoVL-H23tHnQ3O4Pzh4BndYFBm8YLoBq9OzWfUcbtlf01Fz9iIKXwrfrxuyF3HFZoA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLcQoGl74HNjx8foJN4gotem-eANAachphMSY-ItyiXNOAmVE-3t75-TtnccDCTEc9ymcWzHruOfAfa0oc4ImhFrdU5oMqBkwLsZ8VA31vgj2sWh2QTv98XNjbx8VMUfbru3Kcm6psGjNBXV4ci6w2nhG0oihsFJSmIpBCVohBeobxrk4_Wr360t9sFPyHd2U___n8VN2cz_3zF7ND3zN59fm3ySOw1HUm_5_YtZgaXGHY2Oa_lZhbm8WIPlxjWNGsUv1-DTI9zCdUALc-dIOR55Q1MiYYPS-ucoOo6uxsYMC1NFddrhM1z3zn6d_CBN1wViKKcV0ZTHNsa4z_iaWh5CEu6kcyaLuwYdpJxqJqxj2gpurB7wlDnjjzUnU2tt-gXmi_si_wqR1QzJkpgZYai0TNqYauFrc0XmZOI60G0ZrkwDSe47Y9ypKZiy541C3qjAG5V0YH_yzKgG5HiVervdR9UoZ6lSdPMY2iWKw98nw6hWPleii_x-XKqEo-uFwSRnHdiot30yXcowsueMd4DPCMSEwEN2z44Uw9sA3S1FxmWC8x60YjH9rJdXsfk28l34cHnaUz_P-xdb8DEJguVvaG7DfPUwzndg0fythuXDt6Ar_wAW6w_7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+Learning%3A+A+Succinct+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Rani%2C+Veenu&rft.au=Nabi%2C+Syed+Tufael&rft.au=Kumar%2C+Munish&rft.au=Mittal%2C+Ajay&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=30&rft.issue=4&rft.spage=2761&rft.epage=2775&rft_id=info:doi/10.1007%2Fs11831-023-09884-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon