Automatic and intelligent content visualization system based on deep learning and genetic algorithm

Increasing demand in distance education, e-learning, web-based learning, and other digital sectors (e.g., entertainment) has led to excessive amounts of e-content. Learning objects (LOs) are among the most important components of electronic content (e-content) and are preserved in learning object re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 34; číslo 3; s. 2473 - 2493
Hlavný autor: İnce, Murat
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.02.2022
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Increasing demand in distance education, e-learning, web-based learning, and other digital sectors (e.g., entertainment) has led to excessive amounts of e-content. Learning objects (LOs) are among the most important components of electronic content (e-content) and are preserved in learning object repositories (LORs). LORs produce different types of electronic content. In producing e-content, several visualization techniques are employed to attract users and ensure a better understanding of the provided information. Many of these visualization systems match images with corresponding text using methods such as semantic web, ontologies, natural language processing, statistical techniques, neural networks, and deep neural networks. Unlike these methods, in this study, an automatic and intelligent content visualization system is developed using deep learning and popular artificial intelligence techniques. The proposed system includes subsystems that segment images to panoptic image instances and use these image instances to generate new images using a genetic algorithm, an evolution-based technique that is one of the best-known artificial intelligence methods. This large-scale proposed system was used to test different amounts of LOs for various science fields. The results show that the developed system can be efficiently used to create visually enhanced content for digital use.
AbstractList Increasing demand in distance education, e-learning, web-based learning, and other digital sectors (e.g., entertainment) has led to excessive amounts of e-content. Learning objects (LOs) are among the most important components of electronic content (e-content) and are preserved in learning object repositories (LORs). LORs produce different types of electronic content. In producing e-content, several visualization techniques are employed to attract users and ensure a better understanding of the provided information. Many of these visualization systems match images with corresponding text using methods such as semantic web, ontologies, natural language processing, statistical techniques, neural networks, and deep neural networks. Unlike these methods, in this study, an automatic and intelligent content visualization system is developed using deep learning and popular artificial intelligence techniques. The proposed system includes subsystems that segment images to panoptic image instances and use these image instances to generate new images using a genetic algorithm, an evolution-based technique that is one of the best-known artificial intelligence methods. This large-scale proposed system was used to test different amounts of LOs for various science fields. The results show that the developed system can be efficiently used to create visually enhanced content for digital use.
Increasing demand in distance education, e-learning, web-based learning, and other digital sectors (e.g., entertainment) has led to excessive amounts of e-content. Learning objects (LOs) are among the most important components of electronic content (e-content) and are preserved in learning object repositories (LORs). LORs produce different types of electronic content. In producing e-content, several visualization techniques are employed to attract users and ensure a better understanding of the provided information. Many of these visualization systems match images with corresponding text using methods such as semantic web, ontologies, natural language processing, statistical techniques, neural networks, and deep neural networks. Unlike these methods, in this study, an automatic and intelligent content visualization system is developed using deep learning and popular artificial intelligence techniques. The proposed system includes subsystems that segment images to panoptic image instances and use these image instances to generate new images using a genetic algorithm, an evolution-based technique that is one of the best-known artificial intelligence methods. This large-scale proposed system was used to test different amounts of LOs for various science fields. The results show that the developed system can be efficiently used to create visually enhanced content for digital use.Increasing demand in distance education, e-learning, web-based learning, and other digital sectors (e.g., entertainment) has led to excessive amounts of e-content. Learning objects (LOs) are among the most important components of electronic content (e-content) and are preserved in learning object repositories (LORs). LORs produce different types of electronic content. In producing e-content, several visualization techniques are employed to attract users and ensure a better understanding of the provided information. Many of these visualization systems match images with corresponding text using methods such as semantic web, ontologies, natural language processing, statistical techniques, neural networks, and deep neural networks. Unlike these methods, in this study, an automatic and intelligent content visualization system is developed using deep learning and popular artificial intelligence techniques. The proposed system includes subsystems that segment images to panoptic image instances and use these image instances to generate new images using a genetic algorithm, an evolution-based technique that is one of the best-known artificial intelligence methods. This large-scale proposed system was used to test different amounts of LOs for various science fields. The results show that the developed system can be efficiently used to create visually enhanced content for digital use.
Author İnce, Murat
Author_xml – sequence: 1
  givenname: Murat
  orcidid: 0000-0001-5566-5008
  surname: İnce
  fullname: İnce, Murat
  email: muratince@isparta.edu.tr
  organization: Vocational School of Technical Sciences, Isparta University of Applied Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35068702$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URG8Lf4AFisSGTcr47W6QqopHpUpsYG05jpO6SuyLnVRqfz3Te0uBLrqyRvOd45k5R-Qg5RQIeUvhhALojxVAMtoCYy0oY3RLX5ANFZy3HKQ5IBs4FdhWgh-So1qvAUAoI1-RQy5RoIFtiD9blzy7JfrGpb6JaQnTFMeQlsZnLPC9iXV1U7xDKKem3tYlzE3naugbrPsQts0UXEkxjTsPFIed3zTmEper-TV5ObiphjcP7zH5-eXzj_Nv7eX3rxfnZ5etF1osrQPNdK8k5Xrgp5KpTkoudCepUOBg0LRTxjuvVRBMKaNUL3TPh8AGHTqn-TH5tPfdrt0ceo_DFzfZbYmzK7c2u2j_76R4Zcd8Y41WgPdDgw8PBiX_WkNd7Byrx4O4FPJaLVOMCW20kIi-f4Je57UkXO-ekoJSwQCpd_9O9DjKn_sjwPaAL7nWEoZHhIK9D9nuQ7YYst2FbCmKzBORj8suHdwqTs9L-V5a8Z80hvJ37GdUvwGYn7xI
CitedBy_id crossref_primary_10_1142_S021812662550152X
crossref_primary_10_1155_2022_6901184
crossref_primary_10_1007_s00521_022_07532_7
crossref_primary_10_4018_IJDWM_333518
crossref_primary_10_1002_eng2_12785
crossref_primary_10_1515_comp_2024_0021
crossref_primary_10_1109_ACCESS_2022_3205115
crossref_primary_10_1007_s00521_022_07911_0
crossref_primary_10_1140_epjp_s13360_025_06520_9
crossref_primary_10_1109_ACCESS_2024_3508796
Cites_doi 10.1038/s41563-020-0678-8
10.1109/CIVEMSA.2018.8439958
10.1109/CVPR.2017.577
10.1109/ACCESS.2017.2710315
10.1007/978-3-030-01267-0_7
10.1038/nature14539
10.3115/980491.980597
10.1109/TAAI.2013.26
10.1007/s00530-014-0371-3
10.1109/CVPR.2019.00719
10.1109/TVCG.2012.264
10.1109/CVPR.2015.7299087
10.1007/s10845-010-0393-4
10.1145/1126004.1126008
10.1109/TPWRS.2013.2238259
10.3991/ijet.v11i04.5574
10.1177/016264340602100201
10.1007/BFb0034824
10.1109/IV.2016.57
10.1002/widm.1187
10.1145/383259.383316
10.1109/72.279181
10.1023/A:1022602019183
10.1016/j.energy.2019.07.134
10.1109/MC.2003.1244540
10.1145/2932710
10.1111/cgf.13852
10.1109/TPAMI.2016.2587640
10.1007/s00521-017-3023-7
10.3115/992424.992482
10.1108/EL-03-2015-0046
10.1145/3173574.3173996
10.1177/0165551519849514
10.1016/S0959-4752(02)00017-8
10.1007/s12193-019-00301-2
10.1109/TVCG.2018.2834341
10.1007/978-94-017-2388-6_5
10.1109/TLT.2013.6
10.3115/1073083.1073135
10.1016/j.learninstruc.2018.01.006
10.4324/9781315471136-6
10.11648/j.ajmse.20190403.12
10.1109/CVPR.2019.00633
10.1016/j.neucom.2017.10.051
10.1145/381641.381653
10.1109/CSNT.2014.183
10.1109/CVPR.2019.00656
10.1109/CEC.2006.1688424
10.1145/2964284.2964299
10.1504/IJCEELL.2006.008917
10.1016/j.sbspro.2014.05.141
10.1016/j.ijer.2018.05.007
10.1007/s10590-009-9050-0
10.1002/widm.1332
10.1613/jair.4900
10.1109/TPAMI.2017.2721945
10.1109/CVPR.2019.00963
10.1109/COMPSAC.2018.00179
10.1021/acs.jchemed.9b00690
10.1016/j.compind.2003.09.002
10.3390/app10010391
10.1145/3020165.3020182
10.1016/j.chb.2005.01.009
10.1109/LRA.2020.2969919
10.7148/2014-0340
10.1080/02680939.2015.1035758
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright Springer Nature B.V. Feb 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
– notice: Copyright Springer Nature B.V. Feb 2022
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00521-022-06887-1
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 2493
ExternalDocumentID PMC8760887
35068702
10_1007_s00521_022_06887_1
Genre Journal Article
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
-4Z
-59
-5G
-BR
-EM
ADINQ
GQ6
NPM
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-a0727d65137f39526b55347b51460a0f71b68cac76e4266866d47d3fe2f7eba73
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742823200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 02:01:01 EST 2025
Fri Sep 05 10:06:54 EDT 2025
Wed Nov 05 00:44:29 EST 2025
Wed Feb 19 02:26:49 EST 2025
Tue Nov 18 22:36:37 EST 2025
Sat Nov 29 08:04:12 EST 2025
Thu Apr 10 07:42:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
e-content visualization
Genetic algorithm
Panoptic segmentation
Language English
License The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-a0727d65137f39526b55347b51460a0f71b68cac76e4266866d47d3fe2f7eba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5566-5008
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8760887
PMID 35068702
PQID 2625411420
PQPubID 2043988
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8760887
proquest_miscellaneous_2622478745
proquest_journals_2625411420
pubmed_primary_35068702
crossref_primary_10_1007_s00521_022_06887_1
crossref_citationtrail_10_1007_s00521_022_06887_1
springer_journals_10_1007_s00521_022_06887_1
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationTitleAlternate Neural Comput Appl
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References M Ince (6887_CR9) 2017; 12
R McGreal (6887_CR10) 2001; 2
K Scheiter (6887_CR16) 2006; 22
6887_CR31
6887_CR75
6887_CR30
A Fatemah (6887_CR50) 2020; 97
6887_CR73
6887_CR79
6887_CR34
6887_CR78
B Williamson (6887_CR19) 2016; 31
6887_CR33
S Zhang (6887_CR48) 2004; 54
6887_CR77
T Strzalkowski (6887_CR65) 1999
6887_CR39
6887_CR38
6887_CR37
D De Geus (6887_CR60) 2020; 5
W Cai (6887_CR55) 2020; 10
EY İnce (6887_CR67) 2017; 7
B Akay (6887_CR87) 2012; 23
Z Chang (6887_CR85) 2019; 187
J Sinclair (6887_CR11) 2013; 6
Y Bengio (6887_CR74) 1994; 5
M McClelland (6887_CR12) 2003; 36
D Karaboğa (6887_CR88) 2004; 12
SP Schmidgall (6887_CR22) 2019; 60
R Willrich (6887_CR52) 2019; 46
6887_CR82
6887_CR81
6887_CR80
L Sun (6887_CR3) 2020; 19
M Tam (6887_CR1) 2000; 3
PA Gaona-García (6887_CR25) 2017; 35
6887_CR41
6887_CR84
C Romero (6887_CR7) 2017; 7
M Hamdi (6887_CR8) 2016; 11
6887_CR46
A Ramisa (6887_CR42) 2017; 40
6887_CR45
6887_CR89
Z Sui (6887_CR32) 2019; 4
6887_CR44
DB Fogel (6887_CR69) 2006
M Driscoll (6887_CR5) 2002; 1
O Vinyals (6887_CR72) 2016; 39
6887_CR4
T Yigit (6887_CR14) 2014; 141
Y Jiang (6887_CR40) 2016; 22
J Buckley (6887_CR21) 2018; 90
D Joshi (6887_CR35) 2006; 2
N Gershon (6887_CR26) 2001; 44
T Twyman (6887_CR17) 2006; 21
6887_CR53
J Cushing (6887_CR66) 2009; 25
6887_CR51
Y Yang (6887_CR20) 2017; 1
6887_CR57
AG Karkar (6887_CR47) 2017; 5
6887_CR56
R Ferreira-Mello (6887_CR6) 2019; 9
DE Goldberg (6887_CR70) 1988; 3
6887_CR54
6887_CR15
S Afzal (6887_CR49) 2012; 18
6887_CR59
6887_CR58
L Yao (6887_CR76) 2019; 38
M Braun (6887_CR24) 2019; 13
W Schnotz (6887_CR23) 2003; 13
K Hassani (6887_CR43) 2016; 49
C Wang (6887_CR83) 2013; 28
R Mihalcea (6887_CR36) 2008; 22
R Bernardi (6887_CR18) 2016; 55
RSM De Barros (6887_CR90) 2018; 275
6887_CR64
6887_CR63
A Bozkurt (6887_CR2) 2020; 5
6887_CR62
6887_CR61
6887_CR68
C Brooks (6887_CR13) 2006; 16
M İnce (6887_CR86) 2019; 31
JG Zheng (6887_CR27) 2017
6887_CR29
Y LeCun (6887_CR71) 2015; 521
S Liu (6887_CR28) 2018; 25
References_xml – volume: 19
  start-page: 1
  year: 2020
  ident: 6887_CR3
  publication-title: Nat Mater
  doi: 10.1038/s41563-020-0678-8
– volume: 1
  start-page: 40
  issue: 1
  year: 2017
  ident: 6887_CR20
  publication-title: Vis Inf
– ident: 6887_CR39
  doi: 10.1109/CIVEMSA.2018.8439958
– volume: 12
  start-page: 53
  issue: 1
  year: 2004
  ident: 6887_CR88
  publication-title: Turkish J Electr Eng Comput Sci
– ident: 6887_CR73
  doi: 10.1109/CVPR.2017.577
– volume: 5
  start-page: 12777
  year: 2017
  ident: 6887_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2710315
– ident: 6887_CR56
  doi: 10.1007/978-3-030-01267-0_7
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 6887_CR71
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 6887_CR44
  doi: 10.3115/980491.980597
– ident: 6887_CR46
  doi: 10.1109/TAAI.2013.26
– volume: 22
  start-page: 5
  issue: 1
  year: 2016
  ident: 6887_CR40
  publication-title: Multimed Syst
  doi: 10.1007/s00530-014-0371-3
– ident: 6887_CR38
– ident: 6887_CR63
– ident: 6887_CR57
  doi: 10.1109/CVPR.2019.00719
– ident: 6887_CR15
– volume: 18
  start-page: 2556
  issue: 12
  year: 2012
  ident: 6887_CR49
  publication-title: IEEE Trans Vis Comput Gr
  doi: 10.1109/TVCG.2012.264
– ident: 6887_CR79
  doi: 10.1109/CVPR.2015.7299087
– ident: 6887_CR82
– volume: 23
  start-page: 1001
  issue: 4
  year: 2012
  ident: 6887_CR87
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-010-0393-4
– volume: 2
  start-page: 68
  issue: 1
  year: 2006
  ident: 6887_CR35
  publication-title: ACM Trans Multimed Comput Commun Appl
  doi: 10.1145/1126004.1126008
– volume: 28
  start-page: 3638
  issue: 4
  year: 2013
  ident: 6887_CR83
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2238259
– volume: 11
  start-page: 131
  issue: 4
  year: 2016
  ident: 6887_CR8
  publication-title: Int J Emerg Technol Learn
  doi: 10.3991/ijet.v11i04.5574
– volume: 21
  start-page: 5
  issue: 2
  year: 2006
  ident: 6887_CR17
  publication-title: J Spec Educ Technol
  doi: 10.1177/016264340602100201
– ident: 6887_CR64
  doi: 10.1007/BFb0034824
– ident: 6887_CR30
  doi: 10.1109/IV.2016.57
– ident: 6887_CR29
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: 6887_CR2
  publication-title: Asian J Distance Educ
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 6887_CR7
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1187
– ident: 6887_CR45
  doi: 10.1145/383259.383316
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 6887_CR74
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.279181
– volume: 3
  start-page: 95
  year: 1988
  ident: 6887_CR70
  publication-title: Mach Learn
  doi: 10.1023/A:1022602019183
– volume: 187
  start-page: 115804
  year: 2019
  ident: 6887_CR85
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.134
– volume: 36
  start-page: 107
  issue: 11
  year: 2003
  ident: 6887_CR12
  publication-title: Comput
  doi: 10.1109/MC.2003.1244540
– volume: 7
  start-page: 68
  issue: 2
  year: 2017
  ident: 6887_CR67
  publication-title: Int J Inf Electron Eng
– volume: 49
  start-page: 1
  issue: 1
  year: 2016
  ident: 6887_CR43
  publication-title: ACM Comput Surv
  doi: 10.1145/2932710
– volume: 38
  start-page: 461
  issue: 7
  year: 2019
  ident: 6887_CR76
  publication-title: Comput Gr Forum
  doi: 10.1111/cgf.13852
– volume: 39
  start-page: 652
  issue: 4
  year: 2016
  ident: 6887_CR72
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2587640
– volume: 3
  start-page: 50
  issue: 2
  year: 2000
  ident: 6887_CR1
  publication-title: Educ Tech Soc
– volume: 31
  start-page: 671
  issue: 1
  year: 2019
  ident: 6887_CR86
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3023-7
– volume: 2
  start-page: 26
  issue: 10
  year: 2001
  ident: 6887_CR10
  publication-title: E Learn
– ident: 6887_CR34
  doi: 10.3115/992424.992482
– volume: 35
  start-page: 69
  issue: 1
  year: 2017
  ident: 6887_CR25
  publication-title: Electron Libr
  doi: 10.1108/EL-03-2015-0046
– ident: 6887_CR33
  doi: 10.1145/3173574.3173996
– volume: 46
  start-page: 528
  issue: 4
  year: 2019
  ident: 6887_CR52
  publication-title: J Inf Sci
  doi: 10.1177/0165551519849514
– ident: 6887_CR62
– volume: 13
  start-page: 141
  issue: 2
  year: 2003
  ident: 6887_CR23
  publication-title: Learn Instr
  doi: 10.1016/S0959-4752(02)00017-8
– volume: 13
  start-page: 71
  issue: 2
  year: 2019
  ident: 6887_CR24
  publication-title: J Multimodal User Interfaces
  doi: 10.1007/s12193-019-00301-2
– volume: 25
  start-page: 2482
  issue: 7
  year: 2018
  ident: 6887_CR28
  publication-title: IEEE Trans Vis Comput Gr
  doi: 10.1109/TVCG.2018.2834341
– start-page: 113
  volume-title: Natural language information retrieval
  year: 1999
  ident: 6887_CR65
  doi: 10.1007/978-94-017-2388-6_5
– volume: 6
  start-page: 177
  issue: 2
  year: 2013
  ident: 6887_CR11
  publication-title: IEEE Trans Learn Technol
  doi: 10.1109/TLT.2013.6
– ident: 6887_CR77
  doi: 10.3115/1073083.1073135
– volume: 60
  start-page: 138
  year: 2019
  ident: 6887_CR22
  publication-title: Learn Instr
  doi: 10.1016/j.learninstruc.2018.01.006
– volume: 12
  start-page: 884
  year: 2017
  ident: 6887_CR9
  publication-title: Int J Inf Educ Technol
– start-page: 67
  volume-title: Global business intelligence
  year: 2017
  ident: 6887_CR27
  doi: 10.4324/9781315471136-6
– volume: 4
  start-page: 49
  issue: 3
  year: 2019
  ident: 6887_CR32
  publication-title: Am J Manag Sci Eng
  doi: 10.11648/j.ajmse.20190403.12
– ident: 6887_CR78
– volume: 25
  start-page: 167
  issue: 1
  year: 2009
  ident: 6887_CR66
  publication-title: J Comput Sci Coll
– ident: 6887_CR59
  doi: 10.1109/CVPR.2019.00633
– volume: 275
  start-page: 1954
  year: 2018
  ident: 6887_CR90
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.051
– volume: 44
  start-page: 31
  issue: 8
  year: 2001
  ident: 6887_CR26
  publication-title: Commun ACM
  doi: 10.1145/381641.381653
– ident: 6887_CR41
  doi: 10.1109/CSNT.2014.183
– ident: 6887_CR84
– ident: 6887_CR54
  doi: 10.1109/CVPR.2019.00656
– ident: 6887_CR61
– ident: 6887_CR89
  doi: 10.1109/CEC.2006.1688424
– ident: 6887_CR80
  doi: 10.1145/2964284.2964299
– volume: 16
  start-page: 50
  issue: 1–2
  year: 2006
  ident: 6887_CR13
  publication-title: Int J Contin Eng Educ Life Long Learn
  doi: 10.1504/IJCEELL.2006.008917
– volume: 141
  start-page: 813
  year: 2014
  ident: 6887_CR14
  publication-title: Proced Soc Behav Sci
  doi: 10.1016/j.sbspro.2014.05.141
– volume: 90
  start-page: 64
  year: 2018
  ident: 6887_CR21
  publication-title: Int J Educ Res
  doi: 10.1016/j.ijer.2018.05.007
– volume: 22
  start-page: 153
  issue: 3
  year: 2008
  ident: 6887_CR36
  publication-title: Mach Transl
  doi: 10.1007/s10590-009-9050-0
– volume: 9
  start-page: 1
  issue: 6
  year: 2019
  ident: 6887_CR6
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1332
– volume: 55
  start-page: 409
  year: 2016
  ident: 6887_CR18
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.4900
– ident: 6887_CR58
– volume: 1
  start-page: 1
  issue: 4
  year: 2002
  ident: 6887_CR5
  publication-title: E Learn
– volume: 40
  start-page: 1072
  issue: 5
  year: 2017
  ident: 6887_CR42
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2721945
– ident: 6887_CR53
  doi: 10.1109/CVPR.2019.00963
– ident: 6887_CR51
  doi: 10.1109/COMPSAC.2018.00179
– ident: 6887_CR75
– volume: 97
  start-page: 992
  issue: 4
  year: 2020
  ident: 6887_CR50
  publication-title: J Chem Educ
  doi: 10.1021/acs.jchemed.9b00690
– volume: 54
  start-page: 1
  issue: 1
  year: 2004
  ident: 6887_CR48
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2003.09.002
– volume: 10
  start-page: 391
  issue: 1
  year: 2020
  ident: 6887_CR55
  publication-title: Appl Sci
  doi: 10.3390/app10010391
– ident: 6887_CR31
  doi: 10.1145/3020165.3020182
– ident: 6887_CR4
– ident: 6887_CR37
– volume: 22
  start-page: 9
  issue: 1
  year: 2006
  ident: 6887_CR16
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2005.01.009
– volume: 5
  start-page: 1742
  issue: 2
  year: 2020
  ident: 6887_CR60
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.2969919
– ident: 6887_CR81
– ident: 6887_CR68
  doi: 10.7148/2014-0340
– volume-title: Evolutionary computation: toward a new philosophy of machine intelligence
  year: 2006
  ident: 6887_CR69
– volume: 31
  start-page: 123
  issue: 2
  year: 2016
  ident: 6887_CR19
  publication-title: J Educ Pol
  doi: 10.1080/02680939.2015.1035758
SSID ssj0004685
Score 2.410752
Snippet Increasing demand in distance education, e-learning, web-based learning, and other digital sectors (e.g., entertainment) has led to excessive amounts of...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2473
SubjectTerms Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Distance learning
Evolutionary algorithms
Genetic algorithms
Image Processing and Computer Vision
Machine learning
Natural language processing
Neural networks
Original
Original Article
Probability and Statistics in Computer Science
Semantic web
Subsystems
Visualization
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOnApUNqS8pArcYOoTuzEyalCCMQBIQ6AEJfIr8BKNLuwgd9fj-MEFlQunKLEj9iasT22Z74PYFco6SY9mcS6VFnMVZHERe12rbKwRcEkp8wDaV-dirOz4vq6PA8HbtPgVtnPiX6iNmONZ-S_U2eocwz8pH8mDzGyRuHtaqDQmIdFRElA6obz7OZVXKSn5HQ7GPTu4SwEzfjQOTwPdV_dVgxpV0SczC5M76zN906Tb25O_YJ0vPLZrqzCl2CKkoNOd9ZgzjZfYaWneSBh1K8DHqONPbIrkY0howHEsyXo6I7P59EUgzO7kE7SoUMTXCANce_G2gkJ9BS3vg5X2Pr67m9dw9q7v9_g8vjo4vAkDtwMseaCt7GkzvAxeZYwUbMyS3OVZYwL5eyvnEpai0TlhZZa5BZtgCLPDReG1TathVVSsO-w0IwbuwGE1pRKpqQtJeW10mVSGptrrWtqBFMqgqQXTKUDcDnyZ9xXA-SyF2blhFl5YVZJBHtDmUkH2_Fh7q1eUFUYwtPqRUoR_BqS3eDDGxXZ2PGTz5MiuhHPIvjRqcfwO5a52gVNIxAzijNkQGDv2ZRmdOcBvt0KhZN_BPu9ir006_-9-PlxLzZhOfXqjq44W7DQPj7ZbVjSz-1o-rjjB84_tNEfZg
  priority: 102
  providerName: ProQuest
Title Automatic and intelligent content visualization system based on deep learning and genetic algorithm
URI https://link.springer.com/article/10.1007/s00521-022-06887-1
https://www.ncbi.nlm.nih.gov/pubmed/35068702
https://www.proquest.com/docview/2625411420
https://www.proquest.com/docview/2622478745
https://pubmed.ncbi.nlm.nih.gov/PMC8760887
Volume 34
WOSCitedRecordID wos000742823200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5By4EL5U1KWRmJG0RyYid2jgW14oBWqwLViktkO04bqc1Wu2l_PzPOA5YCEpwiK2MntseeGXvmG4A3yhrc9EwSu8JmsbQ6iXWNVqvRXmthJBcBSPv0k5rP9XJZLIagsM3o7T5eSYadegp2oxNMNH3ReKJEKSpGm2cXxZ2mhA0nn09_ioYMiTjRbiGfHimGUJnft7Etjm7pmLddJX-5Lw1i6Hjv_zrwEB4Maic77PnkEdzx7WPYG1M6sGGFPwE6MlsFFFdm2oo1E2Bnx8ipnZ43zYYCMfvwTdYjQTMShhXDcuX9FRtSUZyFNrCyD-1dnK3WTXd--RS-Hh99-fAxHvIwxE4q2cWGo5JT5VkiVC2KLM1tlgmpLOpaOTe8VonNtTNO5Z7kvc7zSqpK1D6tlbdGiWew065a_wIYrzk3whpfGC5r64qkqHzunKt5pYS1ESTjdJRuACmnXBkX5QSvHEaxxFEswyiWSQRvpzpXPUTHX6kPxlkuh-W6KVO0AiVFFfMIXk-vcaHR7Ylp_eo60KSEZCSzCJ73TDF9TmTYuuJpBGqLXSYCAvHeftM25wHMG6URbfQRvBuZ5sdv_bkX-_9G_hLup4HvyA3nAHa69bV_BffcTdds1jO4q5Z6Brvvj-aLEywtsm-zsKS-A_aZGPY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSXljdpCxgJThDhxE6cHBBCQNWqy6qHgiouwXacdqWSXbppEX-qv5EZ51GWit564BQldpw4-Twztme-AXiujEahp6PQ5iYJpcmiMKtw1qozl2VCSy48kfaXkRqPs_39fHcJzvpYGHKr7GWiF9Tl1NIa-esYDXVJgZ_87exHSFmjaHe1T6HRwmLH_fqJU7b5m-0P-H9fxPHmx733W2GXVSC0Uskm1BxVdpkmkVCVyJM4NUkipDJoOaRc80pFJs2stip1pL2yNC2lKkXl4ko5o5XAdq_BdYlvQqNoN_n6RxymTwGKMybyJpKiC9LxoXq0_opXcepHaV5UGC0qwgvW7UUnzb92ar0C3Fz93z7dbVjpTG32rh0bd2DJ1XdhtU9jwTqpdg9omXDqmWuZrks2GUhKG0aO_HQ8ncwp-LQNWWUt-zUjA6BkeF46N2Nd-o0D3wbe7Hx7Rwf4IZrD7_fh85V09QEs19PaPQLGK861MNrlmsvK2DzKS5daayteKmFMAFEPhMJ2xOyUH-SoGCilPXgKBE_hwVNEAbwc7pm1tCSX1t7ogVF0ImpenKMigGdDMQoX2jHStZue-DoxsTfJJICHLRyHx4kEW1c8DkAtAHWoQMTliyX15NATmKMGJuUWwKse0uev9e9erF3ei6dwc2vv06gYbY931uFW7IcauR1twHJzfOIeww172kzmx0_8oGXw7aqh_hv19nn8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hUiEu9MEr0IIrcYOoTuzEyRG1XYGoVpVaqt4iP9tIJbvaTfv78TgPuhQqIY6R7Ulsz2Rm7JlvAD4IJf1PTyaxLlUWc1UkceG81yoLWxRMcsoCkPb5sZhOi4uL8uROFn-Idh-uJLucBkRpatr9uXH7Y-IbnmZ6N9g7Ulg0RcTe_3nMMZAe_fXT8zuZkaEop_dhML6Hsz5t5s80VlXTPXvzftjkb3enQSVNNv5_MpvwrDdHyeeOf7bgkW22YWMo9UB6yX8OeJQ2C-iuRDaG1COQZ0v6l5HbeokJml1aJ-kQogkqSUP8s7F2TvoSFZeBhh9sA73ry9mibq9-vIDvk6Ozgy9xX58h1lzwNpbUGz8mzxImHCuzNFdZxrhQ3gbLqaROJCovtNQit2gHFHluuDDM2dQJq6RgL2GtmTX2NRDqKJVMSVtKyp3SZVIam2utHTWCKRVBMmxNpXvwcqyhcV2NsMthFSu_ilVYxSqJ4OM4Zt5BdzzYe2fY8aoX42WVeu-QY7YxjWBvbPYCiLcqsrGzm9AnRYQjnkXwqmOQ8XUs89QFTSMQK6wzdkBw79WWpr4KIN9eS6ECiODTwEC_Puvvs3jzb93fw5OTw0l1_HX67S08TQMLYqTODqy1ixu7C-v6tq2Xi3dBqn4CM0UhPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+and+intelligent+content+visualization+system+based+on+deep+learning+and+genetic+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=%C4%B0nce%2C+Murat&rft.date=2022-02-01&rft.issn=0941-0643&rft.volume=34&rft.issue=3&rft.spage=2473&rft_id=info:doi/10.1007%2Fs00521-022-06887-1&rft_id=info%3Apmid%2F35068702&rft.externalDocID=35068702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon