Psychometric network models from time-series and panel data
Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial correlations—between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured...
Saved in:
| Published in: | Psychometrika Vol. 85; no. 1; pp. 206 - 231 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.03.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0033-3123, 1860-0980, 1860-0980 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial correlations—between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the
ts-lvgvar
when estimated from time-series data and the
panel-lvgvar
when estimated from panel data. These methods have been implemented in the software package
psychonetrics
, which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity. |
|---|---|
| AbstractList | Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial correlations—between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics, which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity. Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial correlations—between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics , which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity. Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)-an undirected network model of partial correlations-between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics, which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity.Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)-an undirected network model of partial correlations-between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics, which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity. |
| Author | Epskamp, Sacha |
| Author_xml | – sequence: 1 givenname: Sacha orcidid: 0000-0003-4884-8118 surname: Epskamp fullname: Epskamp, Sacha email: sacha.epskamp@gmail.com organization: Department of Psychology: Psychological Methods Groups, University of Amsterdam |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32162233$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UctKxTAUDKLo9fEDLqTgxk01jzZNEAQRXyDoQtchpqcabZNrkqv496Ze3wshEEJm5sycWUWLzjtAaJPgXYJxsxcJYYyXmOISSy6bki2gCRF8fAq8iCYYM1YyQtkKWo3xAWMsiRDLaIVRwillbIL2r-KrufcDpGBN4SC9-PBYDL6FPhZd8EOR7ABlhGAhFtq1xVQ76ItWJ72OljrdR9j4uNfQzcnx9dFZeXF5en50eFGaqqlSKU2rBemkJK0E6CQTvKol5VxyoW8liFoDFfnwmoqu0YaBFlUFNcWEUN2wNXQw153ObgdoDbgUdK-mwQ46vCqvrfr94-y9uvPPqsnLoLXIAjsfAsE_zSAmNdhooO9zFD-LirKGN4xyUmXo9h_og58Fl-NllKxJzSs5Otr66ejLyudeM4DOASb4GAN0XxCC1ViempencnnqvTw1ksQfkrFJJ-vHVLb_n8rm1JjnuDsI37b_Yb0Bo7qtGQ |
| CitedBy_id | crossref_primary_10_1186_s12888_022_03892_5 crossref_primary_10_3758_s13428_021_01637_y crossref_primary_10_1007_s10802_022_00933_1 crossref_primary_10_1007_s10902_024_00775_2 crossref_primary_10_1186_s12888_024_05934_6 crossref_primary_10_48047_8x9sgw66 crossref_primary_10_1177_21677026231190294 crossref_primary_10_1007_s12144_024_06715_w crossref_primary_10_1371_journal_pone_0276439 crossref_primary_10_1016_j_copsyc_2021_08_020 crossref_primary_10_1080_00273171_2024_2335401 crossref_primary_10_1002_jclp_23787 crossref_primary_10_1177_0163278720976762 crossref_primary_10_1016_j_jpsychores_2024_111833 crossref_primary_10_1007_s11336_021_09764_3 crossref_primary_10_1186_s13034_025_00945_x crossref_primary_10_1111_jcpp_70015 crossref_primary_10_1177_21676968221090039 crossref_primary_10_1080_00224499_2024_2307441 crossref_primary_10_3389_fpsyg_2021_680124 crossref_primary_10_1017_S0954579421000225 crossref_primary_10_1007_s10578_023_01650_6 crossref_primary_10_1027_1015_5759_a000897 crossref_primary_10_1111_jcpp_13320 crossref_primary_10_1111_add_16658 crossref_primary_10_1017_S0033291722002604 crossref_primary_10_1017_S0954579421000900 crossref_primary_10_3390_medicina60050687 crossref_primary_10_1016_j_jsp_2024_101390 crossref_primary_10_1016_j_jad_2024_12_005 crossref_primary_10_1177_21677026221114076 crossref_primary_10_1038_s41541_022_00533_6 crossref_primary_10_3389_fpsyg_2021_773289 crossref_primary_10_1038_s43856_025_01105_0 crossref_primary_10_1017_S0033291723003574 crossref_primary_10_1016_j_jad_2025_03_016 crossref_primary_10_1002_jclp_23432 crossref_primary_10_1007_s10802_021_00856_3 crossref_primary_10_1007_s10899_023_10191_5 crossref_primary_10_1007_s11336_022_09861_x crossref_primary_10_1016_j_schres_2024_06_055 crossref_primary_10_1080_00273171_2025_2551373 crossref_primary_10_1038_s41598_022_11650_6 crossref_primary_10_1214_21_BJPS504 crossref_primary_10_1016_j_chb_2023_108112 crossref_primary_10_1007_s10802_023_01106_4 crossref_primary_10_1016_j_intell_2024_101833 crossref_primary_10_1080_10615806_2025_2512922 crossref_primary_10_1177_21677026231208172 crossref_primary_10_3389_fpsyt_2022_959103 crossref_primary_10_1111_jcpp_13911 crossref_primary_10_3390_healthcare12111071 crossref_primary_10_3390_jintelligence8040035 crossref_primary_10_1038_s41537_020_00129_w crossref_primary_10_1007_s10802_023_01132_2 crossref_primary_10_1007_s10803_021_05094_6 crossref_primary_10_1371_journal_pone_0276983 crossref_primary_10_3390_ijerph18105149 crossref_primary_10_1016_j_janxdis_2024_102896 crossref_primary_10_1016_j_rmed_2022_106865 crossref_primary_10_1155_da_9166230 crossref_primary_10_3389_fpsyt_2024_1213863 crossref_primary_10_1038_s41598_023_42186_y crossref_primary_10_3390_bs13060468 crossref_primary_10_1038_s41598_025_94782_9 crossref_primary_10_1080_08870446_2022_2057497 crossref_primary_10_1177_10870547241253999 crossref_primary_10_1007_s10608_023_10400_w crossref_primary_10_1007_s12529_022_10088_4 crossref_primary_10_1111_add_16231 crossref_primary_10_1038_s41380_025_02896_3 crossref_primary_10_1080_10615806_2025_2554809 crossref_primary_10_2196_72543 crossref_primary_10_1007_s11920_022_01390_9 crossref_primary_10_1038_s43586_021_00055_w crossref_primary_10_1002_erv_2832 crossref_primary_10_1007_s10802_024_01235_4 crossref_primary_10_1098_rsos_211555 crossref_primary_10_1080_00273171_2024_2372635 crossref_primary_10_1007_s12144_022_03196_7 crossref_primary_10_1111_aphw_12599 crossref_primary_10_1016_j_psicoe_2025_500173 crossref_primary_10_1186_s12889_024_19369_x crossref_primary_10_1177_09717218241265004 crossref_primary_10_1007_s11469_023_01212_w crossref_primary_10_2147_CLEP_S464104 crossref_primary_10_1016_j_jad_2025_119595 crossref_primary_10_1007_s10964_023_01802_w crossref_primary_10_1093_schbul_sbaf158 crossref_primary_10_1038_s41380_020_00963_5 crossref_primary_10_1080_00273171_2022_2128020 crossref_primary_10_1146_annurev_clinpsy_081219_092850 crossref_primary_10_1016_j_brat_2022_104221 crossref_primary_10_1016_j_jcbs_2025_100877 crossref_primary_10_1007_s10608_021_10219_3 crossref_primary_10_1007_s11897_024_00693_7 crossref_primary_10_1016_j_psychres_2022_115001 crossref_primary_10_2196_76210 crossref_primary_10_1007_s11764_025_01773_w crossref_primary_10_1155_da_7589775 crossref_primary_10_1038_s44184_023_00022_1 crossref_primary_10_1016_S2215_0366_21_00047_X crossref_primary_10_1007_s12671_025_02515_w crossref_primary_10_1007_s11336_024_09985_2 crossref_primary_10_1007_s12144_023_05055_5 crossref_primary_10_1111_aphw_12488 crossref_primary_10_1016_j_addbeh_2022_107333 crossref_primary_10_1080_13607863_2025_2458075 crossref_primary_10_1016_j_intell_2021_101567 crossref_primary_10_1016_j_jad_2021_10_030 crossref_primary_10_1080_10503307_2023_2254918 crossref_primary_10_1016_j_puhe_2024_12_020 crossref_primary_10_1111_jopy_12572 crossref_primary_10_1146_annurev_clinpsy_071720_014821 crossref_primary_10_1016_j_paid_2025_113257 crossref_primary_10_1080_08964289_2025_2469911 crossref_primary_10_1177_01461672211043385 crossref_primary_10_3389_fpsyg_2025_1414563 crossref_primary_10_4081_ripppo_2023_659 crossref_primary_10_1016_j_lindif_2022_102233 crossref_primary_10_1080_19312458_2023_2167197 crossref_primary_10_1080_00273171_2024_2354232 crossref_primary_10_1007_s12144_024_05856_2 crossref_primary_10_1017_S0954579424001597 crossref_primary_10_1038_s44220_023_00063_7 crossref_primary_10_2337_dc21_2297 crossref_primary_10_1016_j_bodyim_2025_101952 crossref_primary_10_1016_j_copsyc_2021_03_004 crossref_primary_10_1177_00332941231213649 crossref_primary_10_2147_PRBM_S419991 crossref_primary_10_1016_j_apmr_2024_02_733 crossref_primary_10_1007_s10608_024_10487_9 crossref_primary_10_1007_s11482_025_10465_7 crossref_primary_10_1111_jcpp_14175 crossref_primary_10_1007_s10803_022_05723_8 crossref_primary_10_5498_wjp_v15_i3_102790 crossref_primary_10_1016_j_jad_2023_02_046 crossref_primary_10_1080_10400419_2024_2433359 crossref_primary_10_1016_j_learninstruc_2022_101653 crossref_primary_10_1111_jcpp_13556 crossref_primary_10_1017_S0033291725100639 crossref_primary_10_3389_fpubh_2023_1017871 crossref_primary_10_1017_S003329172200232X crossref_primary_10_1111_jcpp_13794 crossref_primary_10_1186_s12877_023_04442_8 crossref_primary_10_1111_add_70028 crossref_primary_10_1017_S0033291725000030 crossref_primary_10_1038_s41598_022_14901_8 crossref_primary_10_1192_bjp_2024_19 crossref_primary_10_3389_fpsyg_2021_580351 crossref_primary_10_1016_j_jad_2025_119776 crossref_primary_10_1016_j_jpsychores_2022_111139 crossref_primary_10_1177_10998004231157767 crossref_primary_10_1080_20008066_2024_2391656 crossref_primary_10_5498_wjp_v15_i5_104145 crossref_primary_10_2196_77364 crossref_primary_10_1002_eat_23801 crossref_primary_10_1111_bdi_13316 crossref_primary_10_1136_bmjopen_2023_079298 crossref_primary_10_1016_j_jad_2024_05_131 crossref_primary_10_1080_02699931_2021_1915752 crossref_primary_10_1016_j_chb_2024_108287 crossref_primary_10_1016_j_jaacop_2023_11_001 crossref_primary_10_3758_s13428_022_01839_y crossref_primary_10_1016_j_ypmed_2023_107780 crossref_primary_10_1017_S0033291722000848 crossref_primary_10_1080_16506073_2024_2336036 crossref_primary_10_1002_jclp_22957 crossref_primary_10_1016_j_psychres_2024_115872 crossref_primary_10_1080_08870446_2024_2395854 crossref_primary_10_1016_j_brat_2021_104011 crossref_primary_10_2147_PRBM_S529101 crossref_primary_10_1080_00273171_2025_2522733 crossref_primary_10_1016_j_cedpsych_2023_102166 crossref_primary_10_1016_j_newideapsych_2022_101006 crossref_primary_10_1192_j_eurpsy_2025_2454 crossref_primary_10_1186_s13034_024_00728_w crossref_primary_10_1177_10790632231170823 crossref_primary_10_1080_00224499_2024_2352540 |
| Cites_doi | 10.1073/pnas.1711978115 10.1093/schbul/sbw049 10.1136/bmj.310.6973.170 10.1371/journal.pone.0174035 10.1177/1745691617705892 10.1214/11-AOS949 10.1207/s15327752jpa4901_13 10.5334/jopd.29 10.3389/fpsyg.2014.00883 10.1007/BF02294210 10.1016/j.neuroimage.2012.06.026 10.1207/S15328007SEM0903_3 10.1080/00273171.2017.1379379 10.1007/BF02294246 10.1017/S0140525X09991567 10.1080/00273171.2018.1454823 10.1007/s00127-016-1319-z 10.18637/jss.v048.i04 10.3389/fpsyg.2015.01038 10.1080/10705511.2017.1406803 10.1016/j.intell.2018.12.004 10.1214/12-AOS979 10.1037/a0038889 10.1016/j.cpr.2010.01.006 10.1159/000453583 10.1037/rev0000108 10.1080/00273171.2018.1489771 10.1016/j.neuroimage.2009.12.117 10.1037/met0000167 10.1002/wps.20375 10.1186/1471-2288-10-28 10.1207/s15366359mea0204_1 10.1037/0022-3514.54.6.1063 10.1159/000441458 10.1007/s11336-017-9557-x 10.1080/00273171.2016.1277681 10.17605/OSF.IO/JNPRZ 10.3389/fpsyg.2017.00798 10.1037/0022-3514.43.1.111 10.1080/10705511.2016.1154793 10.1177/0013164409344522 10.3758/s13428-017-0862-1 10.1177/2167702617744325 10.1111/j.2517-6161.1995.tb02031.x 10.1017/S003329171900045X 10.1111/bmsp.12173 10.4324/9780203844922-4 10.1371/journal.pone.0060188 10.31234/osf.io/hs7wm 10.31234/osf.io/5t8zw 10.1093/oso/9780198522195.001.0001 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 7TK 7WY 7WZ 7X7 7XB 87Z 88B 88E 88G 8AO 8FI 8FJ 8FK 8FL ABUWG AFKRA ALSLI AZQEC BENPR BEZIV CCPQU CJNVE DWQXO FRNLG FYUFA F~G GHDGH GNUQQ K60 K6~ K9. L.- M0C M0P M0S M1P M2M PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEDU PQEST PQQKQ PQUKI PSYQQ Q9U 7X8 5PM |
| DOI | 10.1007/s11336-020-09697-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Neurosciences Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Education Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Social Science Premium Collection - Education Collection ProQuest Central Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest - Education Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Education ProQuest Business Collection (Alumni Edition) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials ABI/INFORM Complete Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection Social Science Premium Collection ABI/INFORM Global Education Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Education Journals ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest One Business (Alumni) ProQuest Education Journals (Alumni Edition) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Education CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Law |
| EISSN | 1860-0980 |
| EndPage | 231 |
| ExternalDocumentID | PMC7186258 32162233 10_1007_s11336_020_09697_3 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NWO Veni grant grantid: 016-195-261 – fundername: ; grantid: 016-195-261 |
| GroupedDBID | --Z -4V -55 -5G -BR -EM -W8 -Y2 -~C -~X .86 .GO .VR 0-V 06D 09C 0R~ 0VY 123 186 199 1N0 1SB 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABGDZ ABGFU ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUC ACDLN ACGFS ACHQT ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMHG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IRVIT ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM LPU M0C M0P M1P M2M M4Y MA- MVM N2Q N9A NB0 NDZJH NEJ NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P19 P2P P9L PF- PQBIZ PQBZA PQEDU PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RCA RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBS SBU SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UAP UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WHG WIP WK6 WK8 XOL YLTOR YYQ Z45 Z81 Z83 Z8U Z92 ZCG ZGI ZMTXR ZOVNA ZXP ~EX AAPKM AAXMD AAYXX ABFSG ABUFD ABXHF ACSTC ADHKG ADXHL AETEA AEZWR AFFHD AFHIU AFOHR AGQPQ AGTDA AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION IPYYG PHGZM PHGZT PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK K9. L.- PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c474t-9cda81f991d9eef9386459266968ab9e85ae28e286528f7ac3ea844e520112a73 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 245 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529137800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0033-3123 1860-0980 |
| IngestDate | Tue Nov 04 02:02:49 EST 2025 Wed Oct 01 14:27:47 EDT 2025 Tue Oct 07 05:12:42 EDT 2025 Wed Feb 19 02:05:42 EST 2025 Tue Nov 18 22:26:56 EST 2025 Sat Nov 29 03:24:46 EST 2025 Fri Feb 21 02:36:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | dynamics Gaussian graphical model time-series data network psychometrics structural equation modeling panel data |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-9cda81f991d9eef9386459266968ab9e85ae28e286528f7ac3ea844e520112a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4884-8118 |
| OpenAccessLink | https://link.springer.com/10.1007/s11336-020-09697-3 |
| PMID | 32162233 |
| PQID | 2395156497 |
| PQPubID | 47416 |
| PageCount | 26 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7186258 proquest_miscellaneous_2376732614 proquest_journals_2395156497 pubmed_primary_32162233 crossref_primary_10_1007_s11336_020_09697_3 crossref_citationtrail_10_1007_s11336_020_09697_3 springer_journals_10_1007_s11336_020_09697_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
| PublicationTitle | Psychometrika |
| PublicationTitleAbbrev | Psychometrika |
| PublicationTitleAlternate | Psychometrika |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Watson, Clark, Tellegen (CR53) 1988; 54 Cramer, Waldorp, van der Maas, Borsboom (CR12) 2010; 33 Gates, Molenaar, Hillary, Ram, Rovine (CR27) 2010; 50 Schuurman, Houtveen, Hamaker (CR51) 2015; 6 Molenaar (CR44) 2004; 2 Diener, Emmons, Larsen, Griffin (CR14) 1985; 49 CR36 Gates, Molenaar (CR26) 2012; 63 Hamaker, Kuiper, Grasman (CR32) 2015; 20 CR33 Epskamp, Waldorp, Mõttus, Borsboom (CR21) 2018; 53 CR30 Holm (CR34) 1979; 6 Molenaar (CR43) 2017; 52 Epskamp, Rhemtulla, Borsboom (CR19) 2017; 82 Epskamp, Fried (CR17) 2018; 23 Guyon, Falissard, Kop (CR29) 2017; 8 Isvoranu, Borsboom, van Os, Guloksuz (CR35) 2016; 42 Kan, van der Maas, Levine (CR38) 2019; 73 Wild, Eichler, Friederich, Hartmann, Zipfel, Herzog (CR55) 2010; 10 Hamaker, Dolan, Molenaar (CR31) 2002; 9 Adolf, Schuurman, Borkenau, Borsboom, Dolan (CR1) 2014; 5 CR49 CR47 CR46 Yuan (CR57) 2012; 40 Epskamp, Cramer, Waldrop, Schmittmann, Borsboom (CR16) 2012; 48 Rosenberg (CR48) 1965; 61 Fried, van Borkulo, Cramer, Boschloo, Schoevers, Borsboom (CR25) 2017; 52 Jacobucci, Grimm, McArdle (CR37) 2016; 23 Lauritzen (CR40) 1996 Golino, Epskamp (CR28) 2017; 12 Chandrasekaran, Parrilo, Willsky (CR10) 2012; 40 Carver, Scheier, Segerstrom (CR9) 2010; 30 Muthén (CR45) 1984; 49 Bland, Altman (CR4) 1995; 310 Fried, Cramer (CR24) 2017; 12 Epskamp, Van Borkulo, Van Der Veen, Servaas, Isvoranu, Riese, Cramer (CR20) 2018; 6 Marsman, Borsboom, Kruis, Epskamp, van Bork, Waldorp, Marsman (CR41) 2018; 53 CR13 CR56 CR11 Fisher, Medaglia, Jeronimus (CR22) 2018; 115 Wichers, Groot, Psychosystems, Lenin (CR54) 2016; 85 CR50 Bringmann, Eronen (CR7) 2018; 125 Epskamp, Borsboom, Fried (CR15) 2017 Kossakowski, Groot, Haslbeck, Borsboom, Wichers (CR39) 2017; 5 Zevon, Tellegen (CR58) 1982; 43 Benjamini, Hochberg (CR3) 1995; 57 Borsboom (CR5) 2017; 16 Asparouhov, Hamaker, Muthén (CR2) 2018; 25 CR23 Tuccitto, Giacobbi, Leite (CR52) 2010; 70 Bringmann, Vissers, Wichers, Geschwind, Kuppens, Peeters, Tuerlinckx (CR8) 2013; 8 Bos, Snippe, de Vos, Hartmann, Simons, van der Krieke, Wichers (CR6) 2017; 3 Epskamp, Fried, van Borkulo, Robinaugh, Marsman, Dalege, Cramer (CR18) 2018 Molenaar (CR42) 1985; 50 S0033312300005962_CR17 S0033312300005962_CR16 S0033312300005962_CR19 S0033312300005962_CR2 S0033312300005962_CR3 S0033312300005962_CR1 S0033312300005962_CR6 S0033312300005962_CR20 S0033312300005962_CR7 S0033312300005962_CR21 S0033312300005962_CR4 S0033312300005962_CR5 S0033312300005962_CR24 S0033312300005962_CR25 S0033312300005962_CR22 S0033312300005962_CR8 S0033312300005962_CR23 S0033312300005962_CR9 S0033312300005962_CR28 Epskamp (S0033312300005962_CR18) 2018 S0033312300005962_CR29 S0033312300005962_CR26 S0033312300005962_CR27 Holm (S0033312300005962_CR34) 1979; 6 Epskamp (S0033312300005962_CR15) 2017 S0033312300005962_CR31 S0033312300005962_CR32 Chandrasekaran (S0033312300005962_CR10) 2012; 40 S0033312300005962_CR30 S0033312300005962_CR35 S0033312300005962_CR36 S0033312300005962_CR33 S0033312300005962_CR39 Rosenberg (S0033312300005962_CR48) 1965; 61 S0033312300005962_CR37 S0033312300005962_CR38 Molenaar (S0033312300005962_CR44) 2004; 2 S0033312300005962_CR42 S0033312300005962_CR43 S0033312300005962_CR40 S0033312300005962_CR41 S0033312300005962_CR46 S0033312300005962_CR47 S0033312300005962_CR45 S0033312300005962_CR49 S0033312300005962_CR50 S0033312300005962_CR53 S0033312300005962_CR54 S0033312300005962_CR51 S0033312300005962_CR52 S0033312300005962_CR57 S0033312300005962_CR13 S0033312300005962_CR58 S0033312300005962_CR14 S0033312300005962_CR11 S0033312300005962_CR55 S0033312300005962_CR56 S0033312300005962_CR12 |
| References_xml | – volume: 115 start-page: E6106 issue: 27 year: 2018 end-page: E6115 ident: CR22 article-title: Lack of group-to-individual generalizability is a threat to human subjects research publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1711978115 – volume: 42 start-page: 870 issue: 4 year: 2016 end-page: 873 ident: CR35 article-title: A network approach to environmental impact in psychotic disorders: Brief theoretical framework publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/sbw049 – volume: 310 start-page: 170 issue: 6973 year: 1995 ident: CR4 article-title: Multiple significance tests: The Bonferroni method publication-title: BMJ doi: 10.1136/bmj.310.6973.170 – ident: CR49 – volume: 12 start-page: e0174035 issue: 6 year: 2017 ident: CR28 article-title: Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research publication-title: PLoS ONE doi: 10.1371/journal.pone.0174035 – volume: 12 start-page: 999 issue: 6 year: 2017 end-page: 1020 ident: CR24 article-title: Moving forward: Challenges and directions for psychopathological network theory and methodology publication-title: Perspectives on Psychological Science doi: 10.1177/1745691617705892 – volume: 40 start-page: 1935 issue: 4 year: 2012 end-page: 1967 ident: CR10 article-title: Latent variable graphical model selection via convex optimization (with discussion) publication-title: The Annals of Statistics doi: 10.1214/11-AOS949 – volume: 49 start-page: 71 issue: 1 year: 1985 end-page: 75 ident: CR14 article-title: The satisfaction with life scale publication-title: Journal of Personality Assessment doi: 10.1207/s15327752jpa4901_13 – volume: 5 start-page: 1 issue: 1 year: 2017 ident: CR39 article-title: Data from ‘critical slowing down as a personalized early warning signal for depression’ publication-title: Journal of Open Psychology Data doi: 10.5334/jopd.29 – volume: 5 start-page: 883 year: 2014 ident: CR1 article-title: Measurement invariance within and between individuals: A distinct problem in testing the equivalence of intra-and inter-individual model structures publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2014.00883 – volume: 49 start-page: 115 issue: 1 year: 1984 end-page: 132 ident: CR45 article-title: A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators publication-title: Psychometrika doi: 10.1007/BF02294210 – ident: CR46 – volume: 8 start-page: e60188 issue: 4 year: 2013 ident: CR8 article-title: A network approach to psychopathology: New insights into clinical longitudinal data publication-title: PLoS ONE – volume: 63 start-page: 310 issue: 1 year: 2012 end-page: 319 ident: CR26 article-title: Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.026 – volume: 9 start-page: 347 issue: 3 year: 2002 end-page: 368 ident: CR31 article-title: On the nature of sem estimates of arma parameters publication-title: Structural Equation Modeling doi: 10.1207/S15328007SEM0903_3 – volume: 53 start-page: 15 issue: 1 year: 2018 end-page: 35 ident: CR41 article-title: An introduction to network psychometrics: Relating ising network models to item response theory models publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2017.1379379 – volume: 50 start-page: 181 issue: 2 year: 1985 end-page: 202 ident: CR42 article-title: A dynamic factor model for the analysis of multivariate time series publication-title: Psychometrika doi: 10.1007/BF02294246 – ident: CR50 – ident: CR11 – volume: 33 start-page: 137 issue: 2–3 year: 2010 end-page: 150 ident: CR12 article-title: Comorbidity: A network perspective publication-title: Behavioral and Brain Sciences doi: 10.1017/S0140525X09991567 – volume: 53 start-page: 453 issue: 4 year: 2018 end-page: 480 ident: CR21 article-title: The Gaussian graphical model in cross-sectional and time-series data publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2018.1454823 – volume: 52 start-page: 1 issue: 1 year: 2017 end-page: 10 ident: CR25 article-title: Mental disorders as networks of problems: A review of recent insights publication-title: Social Psychiatry and Psychiatric Epidemiology doi: 10.1007/s00127-016-1319-z – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 ident: CR3 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal statistical society: series B (Methodological) – ident: CR36 – volume: 6 start-page: 65 issue: 2 year: 1979 end-page: 70 ident: CR34 article-title: A simple sequentially rejective multiple test procedure publication-title: Scandinavian Journal of Statistics – volume: 48 start-page: 1 issue: 4 year: 2012 end-page: 18 ident: CR16 article-title: qgraph. Network visualizations of relationships in psychometric data publication-title: Journal of Statistical Software doi: 10.18637/jss.v048.i04 – volume: 6 start-page: 1038 year: 2015 ident: CR51 article-title: Incorporating measurement error in n = 1 psychological autoregressive modeling publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2015.01038 – volume: 25 start-page: 359 issue: 3 year: 2018 end-page: 388 ident: CR2 article-title: Dynamic structural equation models publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705511.2017.1406803 – volume: 73 start-page: 52 year: 2019 end-page: 62 ident: CR38 article-title: Extending psychometric network analysis: Empirical evidence against g in favor of mutualism? publication-title: Intelligence doi: 10.1016/j.intell.2018.12.004 – ident: CR47 – volume: 40 start-page: 1968 year: 2012 end-page: 1972 ident: CR57 article-title: Discussion: Latent variable graphical model selection via convex optimization publication-title: The Annals of Statistics doi: 10.1214/12-AOS979 – year: 1996 ident: CR40 publication-title: Graphical models – volume: 20 start-page: 102 issue: 1 year: 2015 ident: CR32 article-title: A critique of the cross-lagged panel model publication-title: Psychological Methods doi: 10.1037/a0038889 – volume: 30 start-page: 879 issue: 7 year: 2010 end-page: 889 ident: CR9 publication-title: Optimism. Clinical Psychology Review doi: 10.1016/j.cpr.2010.01.006 – volume: 61 start-page: 52 year: 1965 ident: CR48 article-title: Rosenberg self-esteem scale (rse) publication-title: Acceptance and Commitment Therapy. Measures Package – ident: CR30 – ident: CR33 – volume: 3 start-page: 175 year: 2017 end-page: 177 ident: CR6 article-title: Can we jump from cross-sectional to dynamic interpretations of networks implications for the network perspective in psychiatry publication-title: Psychotherapy and Psychosomatics doi: 10.1159/000453583 – volume: 125 start-page: 606 issue: 4 year: 2018 end-page: 615 ident: CR7 article-title: Don’t blame the model: Reconsidering the network approach to psychopathology publication-title: Psychological Review doi: 10.1037/rev0000108 – ident: CR56 – year: 2018 ident: CR18 article-title: Investigating the utility of fixed-margin sampling in network psychometrics publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2018.1489771 – volume: 50 start-page: 1118 issue: 3 year: 2010 end-page: 1125 ident: CR27 article-title: Automatic search for fMRI connectivity mapping: An alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.117 – volume: 23 start-page: 617 issue: 4 year: 2018 end-page: 634 ident: CR17 article-title: A tutorial on regularized partial correlation networks publication-title: Psychological Methods doi: 10.1037/met0000167 – ident: CR23 – volume: 16 start-page: 5 issue: 1 year: 2017 end-page: 13 ident: CR5 article-title: A network theory of mental disorders publication-title: World Psychiatry doi: 10.1002/wps.20375 – volume: 10 start-page: 28 issue: 1 year: 2010 ident: CR55 article-title: A graphical vector autoregressive modelling approach to the analysis of electronic diary data publication-title: BMC Medical Research Methodology doi: 10.1186/1471-2288-10-28 – volume: 2 start-page: 201 issue: 4 year: 2004 end-page: 218 ident: CR44 article-title: A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever publication-title: Measurement: Interdisciplinary Research & Perspective doi: 10.1207/s15366359mea0204_1 – volume: 54 start-page: 1063 issue: 6 year: 1988 ident: CR53 article-title: Development and validation of brief measures of positive and negative affect: The panas scales publication-title: Journal of Personality and Social Psychology doi: 10.1037/0022-3514.54.6.1063 – volume: 85 start-page: 114 issue: 2 year: 2016 end-page: 116 ident: CR54 article-title: Critical slowing down as a personalized early warning signal for depression publication-title: Psychotherapy and Psychosomatics doi: 10.1159/000441458 – volume: 82 start-page: 904 issue: 4 year: 2017 end-page: 927 ident: CR19 article-title: Generalized network pschometrics: Combining network and latent variable models publication-title: Psychometrika doi: 10.1007/s11336-017-9557-x – ident: CR13 – volume: 52 start-page: 242 issue: 2 year: 2017 end-page: 258 ident: CR43 article-title: Equivalent dynamic models publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2016.1277681 – volume: 6 start-page: 416 issue: 4 year: 2018 end-page: 427 ident: CR20 article-title: Personalized network modeling in psychopathology: The importance of contemporaneous and temporal connections publication-title: Clinical Psychological Science doi: 10.17605/OSF.IO/JNPRZ – volume: 8 start-page: 798 year: 2017 ident: CR29 article-title: Modeling psychological attributes in psychology—An epistemological discussion: Network analysis vs. latent variables publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2017.00798 – volume: 43 start-page: 111 issue: 1 year: 1982 ident: CR58 article-title: The structure of mood change: An idiographic/nomothetic analysis publication-title: Journal of Personality and Social Psychology doi: 10.1037/0022-3514.43.1.111 – volume: 23 start-page: 555 issue: 4 year: 2016 end-page: 566 ident: CR37 article-title: Regularized structural equation modeling publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705511.2016.1154793 – volume: 70 start-page: 125 issue: 1 year: 2010 end-page: 141 ident: CR52 article-title: The internal structure of positive and negative affect: A confirmatory factor analysis of the panas publication-title: Educational and Psychological Measurement doi: 10.1177/0013164409344522 – year: 2017 ident: CR15 article-title: Estimating psychological networks and their accuracy: A tutorial paper publication-title: Behavior Research Methods doi: 10.3758/s13428-017-0862-1 – ident: S0033312300005962_CR49 – ident: S0033312300005962_CR20 doi: 10.1177/2167702617744325 – ident: S0033312300005962_CR25 doi: 10.1007/s00127-016-1319-z – ident: S0033312300005962_CR21 doi: 10.1080/00273171.2018.1454823 – ident: S0033312300005962_CR54 doi: 10.1159/000441458 – ident: S0033312300005962_CR24 doi: 10.1177/1745691617705892 – ident: S0033312300005962_CR28 doi: 10.1371/journal.pone.0174035 – ident: S0033312300005962_CR22 doi: 10.1073/pnas.1711978115 – ident: S0033312300005962_CR1 doi: 10.3389/fpsyg.2014.00883 – ident: S0033312300005962_CR3 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: S0033312300005962_CR6 doi: 10.1159/000453583 – ident: S0033312300005962_CR37 doi: 10.1080/10705511.2016.1154793 – ident: S0033312300005962_CR36 doi: 10.1017/S003329171900045X – ident: S0033312300005962_CR41 doi: 10.1080/00273171.2017.1379379 – ident: S0033312300005962_CR51 doi: 10.3389/fpsyg.2015.01038 – ident: S0033312300005962_CR56 doi: 10.1111/bmsp.12173 – ident: S0033312300005962_CR14 doi: 10.1207/s15327752jpa4901_13 – year: 2017 ident: S0033312300005962_CR15 article-title: Estimating psychological networks and their accuracy: A tutorial paper. publication-title: Behavior Research Methods – ident: S0033312300005962_CR46 – ident: S0033312300005962_CR53 doi: 10.1037/0022-3514.54.6.1063 – ident: S0033312300005962_CR12 doi: 10.1017/S0140525X09991567 – ident: S0033312300005962_CR39 doi: 10.5334/jopd.29 – ident: S0033312300005962_CR26 doi: 10.1016/j.neuroimage.2012.06.026 – ident: S0033312300005962_CR16 doi: 10.18637/jss.v048.i04 – ident: S0033312300005962_CR31 doi: 10.1207/S15328007SEM0903_3 – ident: S0033312300005962_CR27 doi: 10.1016/j.neuroimage.2009.12.117 – ident: S0033312300005962_CR38 doi: 10.1016/j.intell.2018.12.004 – ident: S0033312300005962_CR57 doi: 10.1214/12-AOS979 – ident: S0033312300005962_CR47 – ident: S0033312300005962_CR50 doi: 10.4324/9780203844922-4 – ident: S0033312300005962_CR8 doi: 10.1371/journal.pone.0060188 – ident: S0033312300005962_CR35 doi: 10.1093/schbul/sbw049 – ident: S0033312300005962_CR23 doi: 10.31234/osf.io/hs7wm – ident: S0033312300005962_CR7 doi: 10.1037/rev0000108 – volume: 2 start-page: 201 year: 2004 ident: S0033312300005962_CR44 article-title: A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. publication-title: Measurement: Interdisciplinary Research and Perspective – ident: S0033312300005962_CR9 doi: 10.1016/j.cpr.2010.01.006 – ident: S0033312300005962_CR30 – year: 2018 ident: S0033312300005962_CR18 article-title: Investigating the utility of fixed-margin sampling in network psychometrics. publication-title: Multivariate Behavioral Research – ident: S0033312300005962_CR11 – ident: S0033312300005962_CR13 doi: 10.31234/osf.io/5t8zw – volume: 6 start-page: 65 year: 1979 ident: S0033312300005962_CR34 article-title: A simple sequentially rejective multiple test procedure. publication-title: Scandinavian Journal of Statistics – ident: S0033312300005962_CR42 doi: 10.1007/BF02294246 – ident: S0033312300005962_CR2 doi: 10.1080/10705511.2017.1406803 – ident: S0033312300005962_CR55 doi: 10.1186/1471-2288-10-28 – ident: S0033312300005962_CR32 doi: 10.1037/a0038889 – ident: S0033312300005962_CR29 doi: 10.3389/fpsyg.2017.00798 – ident: S0033312300005962_CR45 doi: 10.1007/BF02294210 – ident: S0033312300005962_CR5 doi: 10.1002/wps.20375 – ident: S0033312300005962_CR4 doi: 10.1136/bmj.310.6973.170 – ident: S0033312300005962_CR52 doi: 10.1177/0013164409344522 – ident: S0033312300005962_CR33 – ident: S0033312300005962_CR19 doi: 10.1007/s11336-017-9557-x – volume: 40 start-page: 1935 year: 2012 ident: S0033312300005962_CR10 article-title: Latent variable graphical model selection via convex optimization (with discussion) publication-title: The Annals of Statistics – ident: S0033312300005962_CR43 doi: 10.1080/00273171.2016.1277681 – ident: S0033312300005962_CR58 doi: 10.1037/0022-3514.43.1.111 – volume: 61 start-page: 52 year: 1965 ident: S0033312300005962_CR48 article-title: Rosenberg self-esteem scale (rse) publication-title: Acceptance and Commitment Therapy. Measures Package – ident: S0033312300005962_CR40 doi: 10.1093/oso/9780198522195.001.0001 – ident: S0033312300005962_CR17 doi: 10.1037/met0000167 |
| SSID | ssj0009188 |
| Score | 2.631205 |
| Snippet | Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial... Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)-an undirected network model of partial... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 206 |
| SubjectTerms | Assessment Behavioral Science and Psychology Computer Simulation - statistics & numerical data Cross-Sectional Studies Depression - drug therapy Depression - psychology Ecological Momentary Assessment - standards Error of Measurement Humanities Humans Interrupted Time Series Analysis - methods Law Longitudinal studies Male Metabolic Networks and Pathways Middle Aged Models, Statistical Networks Normal Distribution Psychology Psychometrics Psychometrics - methods Quantitative psychology Random variables Regression analysis Sample variance Software packages Statistical Theory and Methods Statistics for Social Sciences Structural equation modeling Testing and Evaluation Theory and Methods Time Time series |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpQcuLfRFWlq5Um-t1Y3txLZ6QLQCcVohBBK3yHFsFYlmgSyV-u87k3izWlC59BjZceJ5-bM9D4BPUgulo2-4rbXkqog1N8ZpXkbttWl04WLsi03o2cxcXNiTdODWJbfKpU3sDXUz93RG_lVIxAJFqazev77hVDWKbldTCY0nsEmZytQENr8fzk5OV2l3czPYYklRZEKmsJkheA63Z-SAO-UI4y2q2vrS9ABvPnSbvHd32i9JR8__dzLb8CyBUXYwSM8ObIT2BWyNNvHPS_g2PPyiuluetYPPOOvL53SMQlMYFafnJMehY65tGFqXcMXI8fQVnB8dnv045qneAvdKqwW3vnEmj4gYGxtCtNJQphlcwW1pXG2DKVwQJlAsqzBROy-DM0qFgkCEcFq-hkk7b8MuMEQlUxqjtmVUXsi6cbmbOkQnwtYhtxnkS1JXPiUjp5oYV9UqjTKxp0L2VD17KpnB5_Gd6yEVx6O995akr5JadtWK7hl8HJtRoeiWBMkzv6M-utQIanOVwZuB4ePnpMhLxFM4uF4ThbEDJeteb2kvf_ZJuxED4FbTZPBlKTSr3_r3LN4-Pot3sCV6ASafuD2YLG7vwnt46n8vLrvbD0kZ_gImyg-R priority: 102 providerName: ProQuest |
| Title | Psychometric network models from time-series and panel data |
| URI | https://link.springer.com/article/10.1007/s11336-020-09697-3 https://www.ncbi.nlm.nih.gov/pubmed/32162233 https://www.proquest.com/docview/2395156497 https://www.proquest.com/docview/2376732614 https://pubmed.ncbi.nlm.nih.gov/PMC7186258 |
| Volume | 85 |
| WOSCitedRecordID | wos000529137800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1860-0980 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: 7WY dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1860-0980 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: M0C dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Education Database customDbUrl: eissn: 1860-0980 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: M0P dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/education providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1860-0980 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: 7X7 dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Psychology Database customDbUrl: eissn: 1860-0980 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: M2M dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1860-0980 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: BENPR dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1860-0980 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xLYdeeJRXoKyCxA0sbWwnttVTqVpxoKtVeS2nyHFsUamkqNmC-PfMOI_VUkCCiyUrEycez3g-y_MAeC4Ulyq4mplKCSbzUDGtrWJFUE7pWuU2hFhsQs3nerk0iz4orB283YcrybhTr4Pd8DhFDrMzhrDboGpMYBvNnSZ1PH37YZ1qN9Pd_isocoyLPlTm92NsmqNrGPO6q-Qv96XRDB3f_r8J3IFbPexMDzo5uQs3fLMLkzf2-y7sjHvgj3uw33W-UJ0tlzadj3gay-W0KYWipFSMnpHc-ja1TZ3ibuLPU3I0vQ_vj4_eHb5mfX0F5qSSK2ZcbXUWECHWxvtghKbMMmixTaFtZbzOrefaU-wq10FZJ7zVUvqcQAO3SjyAreai8Y8gRRQyozEqUwTpuKhqm9mZxeXhpvKZSSAb2Fy6Pvk41cA4L9dpk4k7JXKnjNwpRQIvxne-dqk3_kq9N6xe2athW3KBADIvpFEJPBsfowLRrQiy5-KKaFShEMRmMoGH3WKPnxM8KxA_4eBqQwxGAkrOvfmkOfsck3SjzcejpU7g5SAM69_68ywe_xv5E9jhUZ7IJ24PtlaXV_4p3HTfVmft5RQm6uMnapcqtnoK26-O5otT7J3MDmO7oJafTKMK_QSXMgyb |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlDeBAkaCE1jd2Elsq6oqBFStWlYcirS34Di2WKnNlmYL6p_iNzKT12qp6K0HjpEdx_Y8_E08D4DXUolEBVdyUyjJkzQUXGureBaUU7pUqQ2hKTahxmM9mZgvK_C7j4Uht8peJzaKupw5-ke-KSRigTRLjNo5_cGpahTdrvYlNFq2OPAXv9Bkq7f3PyJ93wix--nowx7vqgpwl6hkzo0rrY4D4qLSeB-M1JRPBc8pk2lbGK9T64X2FLEpdFDWSW91kviUjkphlcRxb8BN1OOKXMjURC2S_Ma61fySYtaE7IJ02lA9NAbJ3XfE0WgwKNjLB-EldHvZSfOvm9rmANxd_9-27i7c6aA2e9_Kxj1Y8dV9WBs0_sUD2GofTqiqmGNV6xHPmuJANaPAGzafnnhOUuprZquSoe70x4zcah_C12uZ_CNYrWaVfwIMMdeIxihMFhInZFHa2I4sYi9hCh-bCOKetLnrUq1TxY_jfJEkmtghR3bIG3bIZQRvh3dO20QjV_be6Emdd0qnzhd0juDV0Izqgu6AcHtm59RHZQohe5xE8LhlsOFzUsQZokUcXC2x3tCBUpEvt1TT701KckQ4aEjrCN71TLqY1r9X8fTqVbyE23tHnw_zw_3xwTNYE43wkPffBqzOz879c7jlfs6n9dmLRgwZfLtu5v0DpLRpug |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvlDehBYwEJ7C6sZPYVlUhRFlRFa16AFFOwXFssVKbLc0W1L_Gr2Mmr9VS0VsPHKM4jmN_M_M5ngfAC6lEooIruSmU5EkaCq61VTwLyildqtSG0BSbUJOJPjw0Byvwu4-FIbfKXic2irqcOfpHviUkcoE0S4zaCp1bxMHu-M3JD04VpOiktS-n0UJk35__wu1bvbO3i2v9Uojx-0_vPvCuwgB3iUrm3LjS6jggRyqN98FITblV0GaZTNvCeJ1aL7Sn6E2hg7JOequTxKdkNoVVEvu9BtcV4p4kSn35ukj4G-vWCkiKXxOyC9hpw_ZwY0iuvyOOGwiDQr5sFC8w3YsOm3-d2jbGcLz-P0_jbbjVUXD2tpWZO7Diq7uwNliC83uw3V4cU7Uxx6rWU541RYNqRgE5bD499pyk19fMViVDneqPGLnb3ofPVzL4B7BazSr_CBhysRH1UZgsJE7IorSxHVnkZMIUPjYRxP0y565LwU6VQI7yRfJogkaO0MgbaOQyglfDMydtApJLW2_2y553yqjOF2sewfPhNqoROhvC6ZmdURuVKaTycRLBwxZsw-ukiDNkkdi5WoLh0IBSlC_fqabfm1TlyHxwg60jeN0DdjGsf3_F48u_4hncRMzmH_cm-xuwJho5IqfATVidn575J3DD_ZxP69OnjUQy-HbV2P0DAUxyug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Psychometric+network+models+from+time-series+and+panel+data&rft.jtitle=Psychometrika&rft.au=Epskamp%2C+Sacha&rft.date=2020-03-01&rft.pub=Springer+US&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=85&rft.issue=1&rft.spage=206&rft.epage=231&rft_id=info:doi/10.1007%2Fs11336-020-09697-3&rft_id=info%3Apmid%2F32162233&rft.externalDocID=PMC7186258 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon |