Psychometric network models from time-series and panel data

Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial correlations—between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured...

Full description

Saved in:
Bibliographic Details
Published in:Psychometrika Vol. 85; no. 1; pp. 206 - 231
Main Author: Epskamp, Sacha
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2020
Springer Nature B.V
Subjects:
ISSN:0033-3123, 1860-0980, 1860-0980
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial correlations—between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics , which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity.
AbstractList Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial correlations—between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics, which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity.
Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial correlations—between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics , which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity.
Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)-an undirected network model of partial correlations-between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics, which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity.Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)-an undirected network model of partial correlations-between observed variables of cross-sectional data or single-subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics, which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rests on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity.
Author Epskamp, Sacha
Author_xml – sequence: 1
  givenname: Sacha
  orcidid: 0000-0003-4884-8118
  surname: Epskamp
  fullname: Epskamp, Sacha
  email: sacha.epskamp@gmail.com
  organization: Department of Psychology: Psychological Methods Groups, University of Amsterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32162233$$D View this record in MEDLINE/PubMed
BookMark eNp9UctKxTAUDKLo9fEDLqTgxk01jzZNEAQRXyDoQtchpqcabZNrkqv496Ze3wshEEJm5sycWUWLzjtAaJPgXYJxsxcJYYyXmOISSy6bki2gCRF8fAq8iCYYM1YyQtkKWo3xAWMsiRDLaIVRwillbIL2r-KrufcDpGBN4SC9-PBYDL6FPhZd8EOR7ABlhGAhFtq1xVQ76ItWJ72OljrdR9j4uNfQzcnx9dFZeXF5en50eFGaqqlSKU2rBemkJK0E6CQTvKol5VxyoW8liFoDFfnwmoqu0YaBFlUFNcWEUN2wNXQw153ObgdoDbgUdK-mwQ46vCqvrfr94-y9uvPPqsnLoLXIAjsfAsE_zSAmNdhooO9zFD-LirKGN4xyUmXo9h_og58Fl-NllKxJzSs5Otr66ejLyudeM4DOASb4GAN0XxCC1ViempencnnqvTw1ksQfkrFJJ-vHVLb_n8rm1JjnuDsI37b_Yb0Bo7qtGQ
CitedBy_id crossref_primary_10_1186_s12888_022_03892_5
crossref_primary_10_3758_s13428_021_01637_y
crossref_primary_10_1007_s10802_022_00933_1
crossref_primary_10_1007_s10902_024_00775_2
crossref_primary_10_1186_s12888_024_05934_6
crossref_primary_10_48047_8x9sgw66
crossref_primary_10_1177_21677026231190294
crossref_primary_10_1007_s12144_024_06715_w
crossref_primary_10_1371_journal_pone_0276439
crossref_primary_10_1016_j_copsyc_2021_08_020
crossref_primary_10_1080_00273171_2024_2335401
crossref_primary_10_1002_jclp_23787
crossref_primary_10_1177_0163278720976762
crossref_primary_10_1016_j_jpsychores_2024_111833
crossref_primary_10_1007_s11336_021_09764_3
crossref_primary_10_1186_s13034_025_00945_x
crossref_primary_10_1111_jcpp_70015
crossref_primary_10_1177_21676968221090039
crossref_primary_10_1080_00224499_2024_2307441
crossref_primary_10_3389_fpsyg_2021_680124
crossref_primary_10_1017_S0954579421000225
crossref_primary_10_1007_s10578_023_01650_6
crossref_primary_10_1027_1015_5759_a000897
crossref_primary_10_1111_jcpp_13320
crossref_primary_10_1111_add_16658
crossref_primary_10_1017_S0033291722002604
crossref_primary_10_1017_S0954579421000900
crossref_primary_10_3390_medicina60050687
crossref_primary_10_1016_j_jsp_2024_101390
crossref_primary_10_1016_j_jad_2024_12_005
crossref_primary_10_1177_21677026221114076
crossref_primary_10_1038_s41541_022_00533_6
crossref_primary_10_3389_fpsyg_2021_773289
crossref_primary_10_1038_s43856_025_01105_0
crossref_primary_10_1017_S0033291723003574
crossref_primary_10_1016_j_jad_2025_03_016
crossref_primary_10_1002_jclp_23432
crossref_primary_10_1007_s10802_021_00856_3
crossref_primary_10_1007_s10899_023_10191_5
crossref_primary_10_1007_s11336_022_09861_x
crossref_primary_10_1016_j_schres_2024_06_055
crossref_primary_10_1080_00273171_2025_2551373
crossref_primary_10_1038_s41598_022_11650_6
crossref_primary_10_1214_21_BJPS504
crossref_primary_10_1016_j_chb_2023_108112
crossref_primary_10_1007_s10802_023_01106_4
crossref_primary_10_1016_j_intell_2024_101833
crossref_primary_10_1080_10615806_2025_2512922
crossref_primary_10_1177_21677026231208172
crossref_primary_10_3389_fpsyt_2022_959103
crossref_primary_10_1111_jcpp_13911
crossref_primary_10_3390_healthcare12111071
crossref_primary_10_3390_jintelligence8040035
crossref_primary_10_1038_s41537_020_00129_w
crossref_primary_10_1007_s10802_023_01132_2
crossref_primary_10_1007_s10803_021_05094_6
crossref_primary_10_1371_journal_pone_0276983
crossref_primary_10_3390_ijerph18105149
crossref_primary_10_1016_j_janxdis_2024_102896
crossref_primary_10_1016_j_rmed_2022_106865
crossref_primary_10_1155_da_9166230
crossref_primary_10_3389_fpsyt_2024_1213863
crossref_primary_10_1038_s41598_023_42186_y
crossref_primary_10_3390_bs13060468
crossref_primary_10_1038_s41598_025_94782_9
crossref_primary_10_1080_08870446_2022_2057497
crossref_primary_10_1177_10870547241253999
crossref_primary_10_1007_s10608_023_10400_w
crossref_primary_10_1007_s12529_022_10088_4
crossref_primary_10_1111_add_16231
crossref_primary_10_1038_s41380_025_02896_3
crossref_primary_10_1080_10615806_2025_2554809
crossref_primary_10_2196_72543
crossref_primary_10_1007_s11920_022_01390_9
crossref_primary_10_1038_s43586_021_00055_w
crossref_primary_10_1002_erv_2832
crossref_primary_10_1007_s10802_024_01235_4
crossref_primary_10_1098_rsos_211555
crossref_primary_10_1080_00273171_2024_2372635
crossref_primary_10_1007_s12144_022_03196_7
crossref_primary_10_1111_aphw_12599
crossref_primary_10_1016_j_psicoe_2025_500173
crossref_primary_10_1186_s12889_024_19369_x
crossref_primary_10_1177_09717218241265004
crossref_primary_10_1007_s11469_023_01212_w
crossref_primary_10_2147_CLEP_S464104
crossref_primary_10_1016_j_jad_2025_119595
crossref_primary_10_1007_s10964_023_01802_w
crossref_primary_10_1093_schbul_sbaf158
crossref_primary_10_1038_s41380_020_00963_5
crossref_primary_10_1080_00273171_2022_2128020
crossref_primary_10_1146_annurev_clinpsy_081219_092850
crossref_primary_10_1016_j_brat_2022_104221
crossref_primary_10_1016_j_jcbs_2025_100877
crossref_primary_10_1007_s10608_021_10219_3
crossref_primary_10_1007_s11897_024_00693_7
crossref_primary_10_1016_j_psychres_2022_115001
crossref_primary_10_2196_76210
crossref_primary_10_1007_s11764_025_01773_w
crossref_primary_10_1155_da_7589775
crossref_primary_10_1038_s44184_023_00022_1
crossref_primary_10_1016_S2215_0366_21_00047_X
crossref_primary_10_1007_s12671_025_02515_w
crossref_primary_10_1007_s11336_024_09985_2
crossref_primary_10_1007_s12144_023_05055_5
crossref_primary_10_1111_aphw_12488
crossref_primary_10_1016_j_addbeh_2022_107333
crossref_primary_10_1080_13607863_2025_2458075
crossref_primary_10_1016_j_intell_2021_101567
crossref_primary_10_1016_j_jad_2021_10_030
crossref_primary_10_1080_10503307_2023_2254918
crossref_primary_10_1016_j_puhe_2024_12_020
crossref_primary_10_1111_jopy_12572
crossref_primary_10_1146_annurev_clinpsy_071720_014821
crossref_primary_10_1016_j_paid_2025_113257
crossref_primary_10_1080_08964289_2025_2469911
crossref_primary_10_1177_01461672211043385
crossref_primary_10_3389_fpsyg_2025_1414563
crossref_primary_10_4081_ripppo_2023_659
crossref_primary_10_1016_j_lindif_2022_102233
crossref_primary_10_1080_19312458_2023_2167197
crossref_primary_10_1080_00273171_2024_2354232
crossref_primary_10_1007_s12144_024_05856_2
crossref_primary_10_1017_S0954579424001597
crossref_primary_10_1038_s44220_023_00063_7
crossref_primary_10_2337_dc21_2297
crossref_primary_10_1016_j_bodyim_2025_101952
crossref_primary_10_1016_j_copsyc_2021_03_004
crossref_primary_10_1177_00332941231213649
crossref_primary_10_2147_PRBM_S419991
crossref_primary_10_1016_j_apmr_2024_02_733
crossref_primary_10_1007_s10608_024_10487_9
crossref_primary_10_1007_s11482_025_10465_7
crossref_primary_10_1111_jcpp_14175
crossref_primary_10_1007_s10803_022_05723_8
crossref_primary_10_5498_wjp_v15_i3_102790
crossref_primary_10_1016_j_jad_2023_02_046
crossref_primary_10_1080_10400419_2024_2433359
crossref_primary_10_1016_j_learninstruc_2022_101653
crossref_primary_10_1111_jcpp_13556
crossref_primary_10_1017_S0033291725100639
crossref_primary_10_3389_fpubh_2023_1017871
crossref_primary_10_1017_S003329172200232X
crossref_primary_10_1111_jcpp_13794
crossref_primary_10_1186_s12877_023_04442_8
crossref_primary_10_1111_add_70028
crossref_primary_10_1017_S0033291725000030
crossref_primary_10_1038_s41598_022_14901_8
crossref_primary_10_1192_bjp_2024_19
crossref_primary_10_3389_fpsyg_2021_580351
crossref_primary_10_1016_j_jad_2025_119776
crossref_primary_10_1016_j_jpsychores_2022_111139
crossref_primary_10_1177_10998004231157767
crossref_primary_10_1080_20008066_2024_2391656
crossref_primary_10_5498_wjp_v15_i5_104145
crossref_primary_10_2196_77364
crossref_primary_10_1002_eat_23801
crossref_primary_10_1111_bdi_13316
crossref_primary_10_1136_bmjopen_2023_079298
crossref_primary_10_1016_j_jad_2024_05_131
crossref_primary_10_1080_02699931_2021_1915752
crossref_primary_10_1016_j_chb_2024_108287
crossref_primary_10_1016_j_jaacop_2023_11_001
crossref_primary_10_3758_s13428_022_01839_y
crossref_primary_10_1016_j_ypmed_2023_107780
crossref_primary_10_1017_S0033291722000848
crossref_primary_10_1080_16506073_2024_2336036
crossref_primary_10_1002_jclp_22957
crossref_primary_10_1016_j_psychres_2024_115872
crossref_primary_10_1080_08870446_2024_2395854
crossref_primary_10_1016_j_brat_2021_104011
crossref_primary_10_2147_PRBM_S529101
crossref_primary_10_1080_00273171_2025_2522733
crossref_primary_10_1016_j_cedpsych_2023_102166
crossref_primary_10_1016_j_newideapsych_2022_101006
crossref_primary_10_1192_j_eurpsy_2025_2454
crossref_primary_10_1186_s13034_024_00728_w
crossref_primary_10_1177_10790632231170823
crossref_primary_10_1080_00224499_2024_2352540
Cites_doi 10.1073/pnas.1711978115
10.1093/schbul/sbw049
10.1136/bmj.310.6973.170
10.1371/journal.pone.0174035
10.1177/1745691617705892
10.1214/11-AOS949
10.1207/s15327752jpa4901_13
10.5334/jopd.29
10.3389/fpsyg.2014.00883
10.1007/BF02294210
10.1016/j.neuroimage.2012.06.026
10.1207/S15328007SEM0903_3
10.1080/00273171.2017.1379379
10.1007/BF02294246
10.1017/S0140525X09991567
10.1080/00273171.2018.1454823
10.1007/s00127-016-1319-z
10.18637/jss.v048.i04
10.3389/fpsyg.2015.01038
10.1080/10705511.2017.1406803
10.1016/j.intell.2018.12.004
10.1214/12-AOS979
10.1037/a0038889
10.1016/j.cpr.2010.01.006
10.1159/000453583
10.1037/rev0000108
10.1080/00273171.2018.1489771
10.1016/j.neuroimage.2009.12.117
10.1037/met0000167
10.1002/wps.20375
10.1186/1471-2288-10-28
10.1207/s15366359mea0204_1
10.1037/0022-3514.54.6.1063
10.1159/000441458
10.1007/s11336-017-9557-x
10.1080/00273171.2016.1277681
10.17605/OSF.IO/JNPRZ
10.3389/fpsyg.2017.00798
10.1037/0022-3514.43.1.111
10.1080/10705511.2016.1154793
10.1177/0013164409344522
10.3758/s13428-017-0862-1
10.1177/2167702617744325
10.1111/j.2517-6161.1995.tb02031.x
10.1017/S003329171900045X
10.1111/bmsp.12173
10.4324/9780203844922-4
10.1371/journal.pone.0060188
10.31234/osf.io/hs7wm
10.31234/osf.io/5t8zw
10.1093/oso/9780198522195.001.0001
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7TK
7WY
7WZ
7X7
7XB
87Z
88B
88E
88G
8AO
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
BEZIV
CCPQU
CJNVE
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
K60
K6~
K9.
L.-
M0C
M0P
M0S
M1P
M2M
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEDU
PQEST
PQQKQ
PQUKI
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s11336-020-09697-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Neurosciences Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Education Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Social Science Premium Collection - Education Collection
ProQuest Central
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest - Education Database‎
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Education
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
ABI/INFORM Complete
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
Education Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Business (Alumni)
ProQuest Education Journals (Alumni Edition)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Education
CrossRef
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Law
EISSN 1860-0980
EndPage 231
ExternalDocumentID PMC7186258
32162233
10_1007_s11336_020_09697_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NWO Veni grant
  grantid: 016-195-261
– fundername: ;
  grantid: 016-195-261
GroupedDBID --Z
-4V
-55
-5G
-BR
-EM
-W8
-Y2
-~C
-~X
.86
.GO
.VR
0-V
06D
09C
0R~
0VY
123
186
199
1N0
1SB
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABGDZ
ABGFU
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUC
ACDLN
ACGFS
ACHQT
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMHG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IRVIT
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
LPU
M0C
M0P
M1P
M2M
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NEJ
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P19
P2P
P9L
PF-
PQBIZ
PQBZA
PQEDU
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RCA
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBS
SBU
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UAP
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WHG
WIP
WK6
WK8
XOL
YLTOR
YYQ
Z45
Z81
Z83
Z8U
Z92
ZCG
ZGI
ZMTXR
ZOVNA
ZXP
~EX
AAPKM
AAXMD
AAYXX
ABFSG
ABUFD
ABXHF
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFFHD
AFHIU
AFOHR
AGQPQ
AGTDA
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IPYYG
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
K9.
L.-
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-9cda81f991d9eef9386459266968ab9e85ae28e286528f7ac3ea844e520112a73
IEDL.DBID RSV
ISICitedReferencesCount 245
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529137800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0033-3123
1860-0980
IngestDate Tue Nov 04 02:02:49 EST 2025
Wed Oct 01 14:27:47 EDT 2025
Tue Oct 07 05:12:42 EDT 2025
Wed Feb 19 02:05:42 EST 2025
Tue Nov 18 22:26:56 EST 2025
Sat Nov 29 03:24:46 EST 2025
Fri Feb 21 02:36:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords dynamics
Gaussian graphical model
time-series data
network psychometrics
structural equation modeling
panel data
Language English
License http://creativecommons.org/licenses/by/4.0
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-9cda81f991d9eef9386459266968ab9e85ae28e286528f7ac3ea844e520112a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4884-8118
OpenAccessLink https://link.springer.com/10.1007/s11336-020-09697-3
PMID 32162233
PQID 2395156497
PQPubID 47416
PageCount 26
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7186258
proquest_miscellaneous_2376732614
proquest_journals_2395156497
pubmed_primary_32162233
crossref_primary_10_1007_s11336_020_09697_3
crossref_citationtrail_10_1007_s11336_020_09697_3
springer_journals_10_1007_s11336_020_09697_3
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Psychometrika
PublicationTitleAbbrev Psychometrika
PublicationTitleAlternate Psychometrika
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Watson, Clark, Tellegen (CR53) 1988; 54
Cramer, Waldorp, van der Maas, Borsboom (CR12) 2010; 33
Gates, Molenaar, Hillary, Ram, Rovine (CR27) 2010; 50
Schuurman, Houtveen, Hamaker (CR51) 2015; 6
Molenaar (CR44) 2004; 2
Diener, Emmons, Larsen, Griffin (CR14) 1985; 49
CR36
Gates, Molenaar (CR26) 2012; 63
Hamaker, Kuiper, Grasman (CR32) 2015; 20
CR33
Epskamp, Waldorp, Mõttus, Borsboom (CR21) 2018; 53
CR30
Holm (CR34) 1979; 6
Molenaar (CR43) 2017; 52
Epskamp, Rhemtulla, Borsboom (CR19) 2017; 82
Epskamp, Fried (CR17) 2018; 23
Guyon, Falissard, Kop (CR29) 2017; 8
Isvoranu, Borsboom, van Os, Guloksuz (CR35) 2016; 42
Kan, van der Maas, Levine (CR38) 2019; 73
Wild, Eichler, Friederich, Hartmann, Zipfel, Herzog (CR55) 2010; 10
Hamaker, Dolan, Molenaar (CR31) 2002; 9
Adolf, Schuurman, Borkenau, Borsboom, Dolan (CR1) 2014; 5
CR49
CR47
CR46
Yuan (CR57) 2012; 40
Epskamp, Cramer, Waldrop, Schmittmann, Borsboom (CR16) 2012; 48
Rosenberg (CR48) 1965; 61
Fried, van Borkulo, Cramer, Boschloo, Schoevers, Borsboom (CR25) 2017; 52
Jacobucci, Grimm, McArdle (CR37) 2016; 23
Lauritzen (CR40) 1996
Golino, Epskamp (CR28) 2017; 12
Chandrasekaran, Parrilo, Willsky (CR10) 2012; 40
Carver, Scheier, Segerstrom (CR9) 2010; 30
Muthén (CR45) 1984; 49
Bland, Altman (CR4) 1995; 310
Fried, Cramer (CR24) 2017; 12
Epskamp, Van Borkulo, Van Der Veen, Servaas, Isvoranu, Riese, Cramer (CR20) 2018; 6
Marsman, Borsboom, Kruis, Epskamp, van Bork, Waldorp, Marsman (CR41) 2018; 53
CR13
CR56
CR11
Fisher, Medaglia, Jeronimus (CR22) 2018; 115
Wichers, Groot, Psychosystems, Lenin (CR54) 2016; 85
CR50
Bringmann, Eronen (CR7) 2018; 125
Epskamp, Borsboom, Fried (CR15) 2017
Kossakowski, Groot, Haslbeck, Borsboom, Wichers (CR39) 2017; 5
Zevon, Tellegen (CR58) 1982; 43
Benjamini, Hochberg (CR3) 1995; 57
Borsboom (CR5) 2017; 16
Asparouhov, Hamaker, Muthén (CR2) 2018; 25
CR23
Tuccitto, Giacobbi, Leite (CR52) 2010; 70
Bringmann, Vissers, Wichers, Geschwind, Kuppens, Peeters, Tuerlinckx (CR8) 2013; 8
Bos, Snippe, de Vos, Hartmann, Simons, van der Krieke, Wichers (CR6) 2017; 3
Epskamp, Fried, van Borkulo, Robinaugh, Marsman, Dalege, Cramer (CR18) 2018
Molenaar (CR42) 1985; 50
S0033312300005962_CR17
S0033312300005962_CR16
S0033312300005962_CR19
S0033312300005962_CR2
S0033312300005962_CR3
S0033312300005962_CR1
S0033312300005962_CR6
S0033312300005962_CR20
S0033312300005962_CR7
S0033312300005962_CR21
S0033312300005962_CR4
S0033312300005962_CR5
S0033312300005962_CR24
S0033312300005962_CR25
S0033312300005962_CR22
S0033312300005962_CR8
S0033312300005962_CR23
S0033312300005962_CR9
S0033312300005962_CR28
Epskamp (S0033312300005962_CR18) 2018
S0033312300005962_CR29
S0033312300005962_CR26
S0033312300005962_CR27
Holm (S0033312300005962_CR34) 1979; 6
Epskamp (S0033312300005962_CR15) 2017
S0033312300005962_CR31
S0033312300005962_CR32
Chandrasekaran (S0033312300005962_CR10) 2012; 40
S0033312300005962_CR30
S0033312300005962_CR35
S0033312300005962_CR36
S0033312300005962_CR33
S0033312300005962_CR39
Rosenberg (S0033312300005962_CR48) 1965; 61
S0033312300005962_CR37
S0033312300005962_CR38
Molenaar (S0033312300005962_CR44) 2004; 2
S0033312300005962_CR42
S0033312300005962_CR43
S0033312300005962_CR40
S0033312300005962_CR41
S0033312300005962_CR46
S0033312300005962_CR47
S0033312300005962_CR45
S0033312300005962_CR49
S0033312300005962_CR50
S0033312300005962_CR53
S0033312300005962_CR54
S0033312300005962_CR51
S0033312300005962_CR52
S0033312300005962_CR57
S0033312300005962_CR13
S0033312300005962_CR58
S0033312300005962_CR14
S0033312300005962_CR11
S0033312300005962_CR55
S0033312300005962_CR56
S0033312300005962_CR12
References_xml – volume: 115
  start-page: E6106
  issue: 27
  year: 2018
  end-page: E6115
  ident: CR22
  article-title: Lack of group-to-individual generalizability is a threat to human subjects research
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1711978115
– volume: 42
  start-page: 870
  issue: 4
  year: 2016
  end-page: 873
  ident: CR35
  article-title: A network approach to environmental impact in psychotic disorders: Brief theoretical framework
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/sbw049
– volume: 310
  start-page: 170
  issue: 6973
  year: 1995
  ident: CR4
  article-title: Multiple significance tests: The Bonferroni method
  publication-title: BMJ
  doi: 10.1136/bmj.310.6973.170
– ident: CR49
– volume: 12
  start-page: e0174035
  issue: 6
  year: 2017
  ident: CR28
  article-title: Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0174035
– volume: 12
  start-page: 999
  issue: 6
  year: 2017
  end-page: 1020
  ident: CR24
  article-title: Moving forward: Challenges and directions for psychopathological network theory and methodology
  publication-title: Perspectives on Psychological Science
  doi: 10.1177/1745691617705892
– volume: 40
  start-page: 1935
  issue: 4
  year: 2012
  end-page: 1967
  ident: CR10
  article-title: Latent variable graphical model selection via convex optimization (with discussion)
  publication-title: The Annals of Statistics
  doi: 10.1214/11-AOS949
– volume: 49
  start-page: 71
  issue: 1
  year: 1985
  end-page: 75
  ident: CR14
  article-title: The satisfaction with life scale
  publication-title: Journal of Personality Assessment
  doi: 10.1207/s15327752jpa4901_13
– volume: 5
  start-page: 1
  issue: 1
  year: 2017
  ident: CR39
  article-title: Data from ‘critical slowing down as a personalized early warning signal for depression’
  publication-title: Journal of Open Psychology Data
  doi: 10.5334/jopd.29
– volume: 5
  start-page: 883
  year: 2014
  ident: CR1
  article-title: Measurement invariance within and between individuals: A distinct problem in testing the equivalence of intra-and inter-individual model structures
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2014.00883
– volume: 49
  start-page: 115
  issue: 1
  year: 1984
  end-page: 132
  ident: CR45
  article-title: A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators
  publication-title: Psychometrika
  doi: 10.1007/BF02294210
– ident: CR46
– volume: 8
  start-page: e60188
  issue: 4
  year: 2013
  ident: CR8
  article-title: A network approach to psychopathology: New insights into clinical longitudinal data
  publication-title: PLoS ONE
– volume: 63
  start-page: 310
  issue: 1
  year: 2012
  end-page: 319
  ident: CR26
  article-title: Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.026
– volume: 9
  start-page: 347
  issue: 3
  year: 2002
  end-page: 368
  ident: CR31
  article-title: On the nature of sem estimates of arma parameters
  publication-title: Structural Equation Modeling
  doi: 10.1207/S15328007SEM0903_3
– volume: 53
  start-page: 15
  issue: 1
  year: 2018
  end-page: 35
  ident: CR41
  article-title: An introduction to network psychometrics: Relating ising network models to item response theory models
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2017.1379379
– volume: 50
  start-page: 181
  issue: 2
  year: 1985
  end-page: 202
  ident: CR42
  article-title: A dynamic factor model for the analysis of multivariate time series
  publication-title: Psychometrika
  doi: 10.1007/BF02294246
– ident: CR50
– ident: CR11
– volume: 33
  start-page: 137
  issue: 2–3
  year: 2010
  end-page: 150
  ident: CR12
  article-title: Comorbidity: A network perspective
  publication-title: Behavioral and Brain Sciences
  doi: 10.1017/S0140525X09991567
– volume: 53
  start-page: 453
  issue: 4
  year: 2018
  end-page: 480
  ident: CR21
  article-title: The Gaussian graphical model in cross-sectional and time-series data
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2018.1454823
– volume: 52
  start-page: 1
  issue: 1
  year: 2017
  end-page: 10
  ident: CR25
  article-title: Mental disorders as networks of problems: A review of recent insights
  publication-title: Social Psychiatry and Psychiatric Epidemiology
  doi: 10.1007/s00127-016-1319-z
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  ident: CR3
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal statistical society: series B (Methodological)
– ident: CR36
– volume: 6
  start-page: 65
  issue: 2
  year: 1979
  end-page: 70
  ident: CR34
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– volume: 48
  start-page: 1
  issue: 4
  year: 2012
  end-page: 18
  ident: CR16
  article-title: qgraph. Network visualizations of relationships in psychometric data
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v048.i04
– volume: 6
  start-page: 1038
  year: 2015
  ident: CR51
  article-title: Incorporating measurement error in n = 1 psychological autoregressive modeling
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2015.01038
– volume: 25
  start-page: 359
  issue: 3
  year: 2018
  end-page: 388
  ident: CR2
  article-title: Dynamic structural equation models
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705511.2017.1406803
– volume: 73
  start-page: 52
  year: 2019
  end-page: 62
  ident: CR38
  article-title: Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?
  publication-title: Intelligence
  doi: 10.1016/j.intell.2018.12.004
– ident: CR47
– volume: 40
  start-page: 1968
  year: 2012
  end-page: 1972
  ident: CR57
  article-title: Discussion: Latent variable graphical model selection via convex optimization
  publication-title: The Annals of Statistics
  doi: 10.1214/12-AOS979
– year: 1996
  ident: CR40
  publication-title: Graphical models
– volume: 20
  start-page: 102
  issue: 1
  year: 2015
  ident: CR32
  article-title: A critique of the cross-lagged panel model
  publication-title: Psychological Methods
  doi: 10.1037/a0038889
– volume: 30
  start-page: 879
  issue: 7
  year: 2010
  end-page: 889
  ident: CR9
  publication-title: Optimism. Clinical Psychology Review
  doi: 10.1016/j.cpr.2010.01.006
– volume: 61
  start-page: 52
  year: 1965
  ident: CR48
  article-title: Rosenberg self-esteem scale (rse)
  publication-title: Acceptance and Commitment Therapy. Measures Package
– ident: CR30
– ident: CR33
– volume: 3
  start-page: 175
  year: 2017
  end-page: 177
  ident: CR6
  article-title: Can we jump from cross-sectional to dynamic interpretations of networks implications for the network perspective in psychiatry
  publication-title: Psychotherapy and Psychosomatics
  doi: 10.1159/000453583
– volume: 125
  start-page: 606
  issue: 4
  year: 2018
  end-page: 615
  ident: CR7
  article-title: Don’t blame the model: Reconsidering the network approach to psychopathology
  publication-title: Psychological Review
  doi: 10.1037/rev0000108
– ident: CR56
– year: 2018
  ident: CR18
  article-title: Investigating the utility of fixed-margin sampling in network psychometrics
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2018.1489771
– volume: 50
  start-page: 1118
  issue: 3
  year: 2010
  end-page: 1125
  ident: CR27
  article-title: Automatic search for fMRI connectivity mapping: An alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.117
– volume: 23
  start-page: 617
  issue: 4
  year: 2018
  end-page: 634
  ident: CR17
  article-title: A tutorial on regularized partial correlation networks
  publication-title: Psychological Methods
  doi: 10.1037/met0000167
– ident: CR23
– volume: 16
  start-page: 5
  issue: 1
  year: 2017
  end-page: 13
  ident: CR5
  article-title: A network theory of mental disorders
  publication-title: World Psychiatry
  doi: 10.1002/wps.20375
– volume: 10
  start-page: 28
  issue: 1
  year: 2010
  ident: CR55
  article-title: A graphical vector autoregressive modelling approach to the analysis of electronic diary data
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/1471-2288-10-28
– volume: 2
  start-page: 201
  issue: 4
  year: 2004
  end-page: 218
  ident: CR44
  article-title: A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever
  publication-title: Measurement: Interdisciplinary Research & Perspective
  doi: 10.1207/s15366359mea0204_1
– volume: 54
  start-page: 1063
  issue: 6
  year: 1988
  ident: CR53
  article-title: Development and validation of brief measures of positive and negative affect: The panas scales
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/0022-3514.54.6.1063
– volume: 85
  start-page: 114
  issue: 2
  year: 2016
  end-page: 116
  ident: CR54
  article-title: Critical slowing down as a personalized early warning signal for depression
  publication-title: Psychotherapy and Psychosomatics
  doi: 10.1159/000441458
– volume: 82
  start-page: 904
  issue: 4
  year: 2017
  end-page: 927
  ident: CR19
  article-title: Generalized network pschometrics: Combining network and latent variable models
  publication-title: Psychometrika
  doi: 10.1007/s11336-017-9557-x
– ident: CR13
– volume: 52
  start-page: 242
  issue: 2
  year: 2017
  end-page: 258
  ident: CR43
  article-title: Equivalent dynamic models
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2016.1277681
– volume: 6
  start-page: 416
  issue: 4
  year: 2018
  end-page: 427
  ident: CR20
  article-title: Personalized network modeling in psychopathology: The importance of contemporaneous and temporal connections
  publication-title: Clinical Psychological Science
  doi: 10.17605/OSF.IO/JNPRZ
– volume: 8
  start-page: 798
  year: 2017
  ident: CR29
  article-title: Modeling psychological attributes in psychology—An epistemological discussion: Network analysis vs. latent variables
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2017.00798
– volume: 43
  start-page: 111
  issue: 1
  year: 1982
  ident: CR58
  article-title: The structure of mood change: An idiographic/nomothetic analysis
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/0022-3514.43.1.111
– volume: 23
  start-page: 555
  issue: 4
  year: 2016
  end-page: 566
  ident: CR37
  article-title: Regularized structural equation modeling
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705511.2016.1154793
– volume: 70
  start-page: 125
  issue: 1
  year: 2010
  end-page: 141
  ident: CR52
  article-title: The internal structure of positive and negative affect: A confirmatory factor analysis of the panas
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/0013164409344522
– year: 2017
  ident: CR15
  article-title: Estimating psychological networks and their accuracy: A tutorial paper
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-017-0862-1
– ident: S0033312300005962_CR49
– ident: S0033312300005962_CR20
  doi: 10.1177/2167702617744325
– ident: S0033312300005962_CR25
  doi: 10.1007/s00127-016-1319-z
– ident: S0033312300005962_CR21
  doi: 10.1080/00273171.2018.1454823
– ident: S0033312300005962_CR54
  doi: 10.1159/000441458
– ident: S0033312300005962_CR24
  doi: 10.1177/1745691617705892
– ident: S0033312300005962_CR28
  doi: 10.1371/journal.pone.0174035
– ident: S0033312300005962_CR22
  doi: 10.1073/pnas.1711978115
– ident: S0033312300005962_CR1
  doi: 10.3389/fpsyg.2014.00883
– ident: S0033312300005962_CR3
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: S0033312300005962_CR6
  doi: 10.1159/000453583
– ident: S0033312300005962_CR37
  doi: 10.1080/10705511.2016.1154793
– ident: S0033312300005962_CR36
  doi: 10.1017/S003329171900045X
– ident: S0033312300005962_CR41
  doi: 10.1080/00273171.2017.1379379
– ident: S0033312300005962_CR51
  doi: 10.3389/fpsyg.2015.01038
– ident: S0033312300005962_CR56
  doi: 10.1111/bmsp.12173
– ident: S0033312300005962_CR14
  doi: 10.1207/s15327752jpa4901_13
– year: 2017
  ident: S0033312300005962_CR15
  article-title: Estimating psychological networks and their accuracy: A tutorial paper.
  publication-title: Behavior Research Methods
– ident: S0033312300005962_CR46
– ident: S0033312300005962_CR53
  doi: 10.1037/0022-3514.54.6.1063
– ident: S0033312300005962_CR12
  doi: 10.1017/S0140525X09991567
– ident: S0033312300005962_CR39
  doi: 10.5334/jopd.29
– ident: S0033312300005962_CR26
  doi: 10.1016/j.neuroimage.2012.06.026
– ident: S0033312300005962_CR16
  doi: 10.18637/jss.v048.i04
– ident: S0033312300005962_CR31
  doi: 10.1207/S15328007SEM0903_3
– ident: S0033312300005962_CR27
  doi: 10.1016/j.neuroimage.2009.12.117
– ident: S0033312300005962_CR38
  doi: 10.1016/j.intell.2018.12.004
– ident: S0033312300005962_CR57
  doi: 10.1214/12-AOS979
– ident: S0033312300005962_CR47
– ident: S0033312300005962_CR50
  doi: 10.4324/9780203844922-4
– ident: S0033312300005962_CR8
  doi: 10.1371/journal.pone.0060188
– ident: S0033312300005962_CR35
  doi: 10.1093/schbul/sbw049
– ident: S0033312300005962_CR23
  doi: 10.31234/osf.io/hs7wm
– ident: S0033312300005962_CR7
  doi: 10.1037/rev0000108
– volume: 2
  start-page: 201
  year: 2004
  ident: S0033312300005962_CR44
  article-title: A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever.
  publication-title: Measurement: Interdisciplinary Research and Perspective
– ident: S0033312300005962_CR9
  doi: 10.1016/j.cpr.2010.01.006
– ident: S0033312300005962_CR30
– year: 2018
  ident: S0033312300005962_CR18
  article-title: Investigating the utility of fixed-margin sampling in network psychometrics.
  publication-title: Multivariate Behavioral Research
– ident: S0033312300005962_CR11
– ident: S0033312300005962_CR13
  doi: 10.31234/osf.io/5t8zw
– volume: 6
  start-page: 65
  year: 1979
  ident: S0033312300005962_CR34
  article-title: A simple sequentially rejective multiple test procedure.
  publication-title: Scandinavian Journal of Statistics
– ident: S0033312300005962_CR42
  doi: 10.1007/BF02294246
– ident: S0033312300005962_CR2
  doi: 10.1080/10705511.2017.1406803
– ident: S0033312300005962_CR55
  doi: 10.1186/1471-2288-10-28
– ident: S0033312300005962_CR32
  doi: 10.1037/a0038889
– ident: S0033312300005962_CR29
  doi: 10.3389/fpsyg.2017.00798
– ident: S0033312300005962_CR45
  doi: 10.1007/BF02294210
– ident: S0033312300005962_CR5
  doi: 10.1002/wps.20375
– ident: S0033312300005962_CR4
  doi: 10.1136/bmj.310.6973.170
– ident: S0033312300005962_CR52
  doi: 10.1177/0013164409344522
– ident: S0033312300005962_CR33
– ident: S0033312300005962_CR19
  doi: 10.1007/s11336-017-9557-x
– volume: 40
  start-page: 1935
  year: 2012
  ident: S0033312300005962_CR10
  article-title: Latent variable graphical model selection via convex optimization (with discussion)
  publication-title: The Annals of Statistics
– ident: S0033312300005962_CR43
  doi: 10.1080/00273171.2016.1277681
– ident: S0033312300005962_CR58
  doi: 10.1037/0022-3514.43.1.111
– volume: 61
  start-page: 52
  year: 1965
  ident: S0033312300005962_CR48
  article-title: Rosenberg self-esteem scale (rse)
  publication-title: Acceptance and Commitment Therapy. Measures Package
– ident: S0033312300005962_CR40
  doi: 10.1093/oso/9780198522195.001.0001
– ident: S0033312300005962_CR17
  doi: 10.1037/met0000167
SSID ssj0009188
Score 2.631205
Snippet Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)—an undirected network model of partial...
Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGMs)-an undirected network model of partial...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 206
SubjectTerms Assessment
Behavioral Science and Psychology
Computer Simulation - statistics & numerical data
Cross-Sectional Studies
Depression - drug therapy
Depression - psychology
Ecological Momentary Assessment - standards
Error of Measurement
Humanities
Humans
Interrupted Time Series Analysis - methods
Law
Longitudinal studies
Male
Metabolic Networks and Pathways
Middle Aged
Models, Statistical
Networks
Normal Distribution
Psychology
Psychometrics
Psychometrics - methods
Quantitative psychology
Random variables
Regression analysis
Sample variance
Software packages
Statistical Theory and Methods
Statistics for Social Sciences
Structural equation modeling
Testing and Evaluation
Theory and Methods
Time
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpQcuLfRFWlq5Um-t1Y3txLZ6QLQCcVohBBK3yHFsFYlmgSyV-u87k3izWlC59BjZceJ5-bM9D4BPUgulo2-4rbXkqog1N8ZpXkbttWl04WLsi03o2cxcXNiTdODWJbfKpU3sDXUz93RG_lVIxAJFqazev77hVDWKbldTCY0nsEmZytQENr8fzk5OV2l3czPYYklRZEKmsJkheA63Z-SAO-UI4y2q2vrS9ABvPnSbvHd32i9JR8__dzLb8CyBUXYwSM8ObIT2BWyNNvHPS_g2PPyiuluetYPPOOvL53SMQlMYFafnJMehY65tGFqXcMXI8fQVnB8dnv045qneAvdKqwW3vnEmj4gYGxtCtNJQphlcwW1pXG2DKVwQJlAsqzBROy-DM0qFgkCEcFq-hkk7b8MuMEQlUxqjtmVUXsi6cbmbOkQnwtYhtxnkS1JXPiUjp5oYV9UqjTKxp0L2VD17KpnB5_Gd6yEVx6O995akr5JadtWK7hl8HJtRoeiWBMkzv6M-utQIanOVwZuB4ePnpMhLxFM4uF4ThbEDJeteb2kvf_ZJuxED4FbTZPBlKTSr3_r3LN4-Pot3sCV6ASafuD2YLG7vwnt46n8vLrvbD0kZ_gImyg-R
  priority: 102
  providerName: ProQuest
Title Psychometric network models from time-series and panel data
URI https://link.springer.com/article/10.1007/s11336-020-09697-3
https://www.ncbi.nlm.nih.gov/pubmed/32162233
https://www.proquest.com/docview/2395156497
https://www.proquest.com/docview/2376732614
https://pubmed.ncbi.nlm.nih.gov/PMC7186258
Volume 85
WOSCitedRecordID wos000529137800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: 7WY
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: M0C
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Education Database
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: M0P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/education
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: 7X7
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Psychology Database
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: M2M
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: BENPR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xLYdeeJRXoKyCxA0sbWwnttVTqVpxoKtVeS2nyHFsUamkqNmC-PfMOI_VUkCCiyUrEycez3g-y_MAeC4Ulyq4mplKCSbzUDGtrWJFUE7pWuU2hFhsQs3nerk0iz4orB283YcrybhTr4Pd8DhFDrMzhrDboGpMYBvNnSZ1PH37YZ1qN9Pd_isocoyLPlTm92NsmqNrGPO6q-Qv96XRDB3f_r8J3IFbPexMDzo5uQs3fLMLkzf2-y7sjHvgj3uw33W-UJ0tlzadj3gay-W0KYWipFSMnpHc-ja1TZ3ibuLPU3I0vQ_vj4_eHb5mfX0F5qSSK2ZcbXUWECHWxvtghKbMMmixTaFtZbzOrefaU-wq10FZJ7zVUvqcQAO3SjyAreai8Y8gRRQyozEqUwTpuKhqm9mZxeXhpvKZSSAb2Fy6Pvk41cA4L9dpk4k7JXKnjNwpRQIvxne-dqk3_kq9N6xe2athW3KBADIvpFEJPBsfowLRrQiy5-KKaFShEMRmMoGH3WKPnxM8KxA_4eBqQwxGAkrOvfmkOfsck3SjzcejpU7g5SAM69_68ywe_xv5E9jhUZ7IJ24PtlaXV_4p3HTfVmft5RQm6uMnapcqtnoK26-O5otT7J3MDmO7oJafTKMK_QSXMgyb
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlDeBAkaCE1jd2Elsq6oqBFStWlYcirS34Di2WKnNlmYL6p_iNzKT12qp6K0HjpEdx_Y8_E08D4DXUolEBVdyUyjJkzQUXGureBaUU7pUqQ2hKTahxmM9mZgvK_C7j4Uht8peJzaKupw5-ke-KSRigTRLjNo5_cGpahTdrvYlNFq2OPAXv9Bkq7f3PyJ93wix--nowx7vqgpwl6hkzo0rrY4D4qLSeB-M1JRPBc8pk2lbGK9T64X2FLEpdFDWSW91kviUjkphlcRxb8BN1OOKXMjURC2S_Ma61fySYtaE7IJ02lA9NAbJ3XfE0WgwKNjLB-EldHvZSfOvm9rmANxd_9-27i7c6aA2e9_Kxj1Y8dV9WBs0_sUD2GofTqiqmGNV6xHPmuJANaPAGzafnnhOUuprZquSoe70x4zcah_C12uZ_CNYrWaVfwIMMdeIxihMFhInZFHa2I4sYi9hCh-bCOKetLnrUq1TxY_jfJEkmtghR3bIG3bIZQRvh3dO20QjV_be6Emdd0qnzhd0juDV0Izqgu6AcHtm59RHZQohe5xE8LhlsOFzUsQZokUcXC2x3tCBUpEvt1TT701KckQ4aEjrCN71TLqY1r9X8fTqVbyE23tHnw_zw_3xwTNYE43wkPffBqzOz879c7jlfs6n9dmLRgwZfLtu5v0DpLRpug
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvlDehBYwEJ7C6sZPYVlUhRFlRFa16AFFOwXFssVKbLc0W1L_Gr2Mmr9VS0VsPHKM4jmN_M_M5ngfAC6lEooIruSmU5EkaCq61VTwLyildqtSG0BSbUJOJPjw0Byvwu4-FIbfKXic2irqcOfpHviUkcoE0S4zaCp1bxMHu-M3JD04VpOiktS-n0UJk35__wu1bvbO3i2v9Uojx-0_vPvCuwgB3iUrm3LjS6jggRyqN98FITblV0GaZTNvCeJ1aL7Sn6E2hg7JOequTxKdkNoVVEvu9BtcV4p4kSn35ukj4G-vWCkiKXxOyC9hpw_ZwY0iuvyOOGwiDQr5sFC8w3YsOm3-d2jbGcLz-P0_jbbjVUXD2tpWZO7Diq7uwNliC83uw3V4cU7Uxx6rWU541RYNqRgE5bD499pyk19fMViVDneqPGLnb3ofPVzL4B7BazSr_CBhysRH1UZgsJE7IorSxHVnkZMIUPjYRxP0y565LwU6VQI7yRfJogkaO0MgbaOQyglfDMydtApJLW2_2y553yqjOF2sewfPhNqoROhvC6ZmdURuVKaTycRLBwxZsw-ukiDNkkdi5WoLh0IBSlC_fqabfm1TlyHxwg60jeN0DdjGsf3_F48u_4hncRMzmH_cm-xuwJho5IqfATVidn575J3DD_ZxP69OnjUQy-HbV2P0DAUxyug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Psychometric+network+models+from+time-series+and+panel+data&rft.jtitle=Psychometrika&rft.au=Epskamp%2C+Sacha&rft.date=2020-03-01&rft.pub=Springer+US&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=85&rft.issue=1&rft.spage=206&rft.epage=231&rft_id=info:doi/10.1007%2Fs11336-020-09697-3&rft_id=info%3Apmid%2F32162233&rft.externalDocID=PMC7186258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon