Distinct biological ages of organs and systems identified from a multi-omics study
Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA). Our study shows evidence that there might be multiple “clocks” within the whole-body system: systemic aging drivers/clocks overlaid with organ/tissue-specific counterparts. We utilize multi-omics da...
Uloženo v:
| Vydáno v: | Cell reports (Cambridge) Ročník 38; číslo 10; s. 110459 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
08.03.2022
Elsevier |
| Témata: | |
| ISSN: | 2211-1247, 2211-1247 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA). Our study shows evidence that there might be multiple “clocks” within the whole-body system: systemic aging drivers/clocks overlaid with organ/tissue-specific counterparts. We utilize multi-omics data, including clinical tests, immune repertoire, targeted metabolomic molecules, gut microbiomes, physical fitness examinations, and facial skin examinations, to estimate the BA of different organs (e.g., liver, kidney) and systems (immune and metabolic system). The aging rates of organs/systems are diverse. People’s aging patterns are different. We also demonstrate several applications of organs/systems BA in two independent datasets. Mortality predictions are compared among organs' BA in the dataset of the United States National Health and Nutrition Examination Survey. Polygenic risk score of BAs constructed in the Chinese Longitudinal Healthy Longevity Survey cohort can predict the possibility of becoming centenarian.
[Display omitted]
•Constructing biological ages of organs/systems using multi-omics features•Organs and systems are aging at different rates•Specific biological age could predict disease of corresponding organs•Biological ages of organs and systems have diverse genetic architectures
Nie et al. estimate biological ages of organs and systems using 402 multi-omics features from 4,066 individuals and demonstrate several applications. They find that organs and systems are aging at different rates, and biological ages could be utilized for population stratification, mortality prediction, and phenotypes of genetic association studies. |
|---|---|
| AbstractList | Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA). Our study shows evidence that there might be multiple "clocks" within the whole-body system: systemic aging drivers/clocks overlaid with organ/tissue-specific counterparts. We utilize multi-omics data, including clinical tests, immune repertoire, targeted metabolomic molecules, gut microbiomes, physical fitness examinations, and facial skin examinations, to estimate the BA of different organs (e.g., liver, kidney) and systems (immune and metabolic system). The aging rates of organs/systems are diverse. People's aging patterns are different. We also demonstrate several applications of organs/systems BA in two independent datasets. Mortality predictions are compared among organs' BA in the dataset of the United States National Health and Nutrition Examination Survey. Polygenic risk score of BAs constructed in the Chinese Longitudinal Healthy Longevity Survey cohort can predict the possibility of becoming centenarian. Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA). Our study shows evidence that there might be multiple "clocks" within the whole-body system: systemic aging drivers/clocks overlaid with organ/tissue-specific counterparts. We utilize multi-omics data, including clinical tests, immune repertoire, targeted metabolomic molecules, gut microbiomes, physical fitness examinations, and facial skin examinations, to estimate the BA of different organs (e.g., liver, kidney) and systems (immune and metabolic system). The aging rates of organs/systems are diverse. People's aging patterns are different. We also demonstrate several applications of organs/systems BA in two independent datasets. Mortality predictions are compared among organs' BA in the dataset of the United States National Health and Nutrition Examination Survey. Polygenic risk score of BAs constructed in the Chinese Longitudinal Healthy Longevity Survey cohort can predict the possibility of becoming centenarian.Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA). Our study shows evidence that there might be multiple "clocks" within the whole-body system: systemic aging drivers/clocks overlaid with organ/tissue-specific counterparts. We utilize multi-omics data, including clinical tests, immune repertoire, targeted metabolomic molecules, gut microbiomes, physical fitness examinations, and facial skin examinations, to estimate the BA of different organs (e.g., liver, kidney) and systems (immune and metabolic system). The aging rates of organs/systems are diverse. People's aging patterns are different. We also demonstrate several applications of organs/systems BA in two independent datasets. Mortality predictions are compared among organs' BA in the dataset of the United States National Health and Nutrition Examination Survey. Polygenic risk score of BAs constructed in the Chinese Longitudinal Healthy Longevity Survey cohort can predict the possibility of becoming centenarian. Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA). Our study shows evidence that there might be multiple “clocks” within the whole-body system: systemic aging drivers/clocks overlaid with organ/tissue-specific counterparts. We utilize multi-omics data, including clinical tests, immune repertoire, targeted metabolomic molecules, gut microbiomes, physical fitness examinations, and facial skin examinations, to estimate the BA of different organs (e.g., liver, kidney) and systems (immune and metabolic system). The aging rates of organs/systems are diverse. People’s aging patterns are different. We also demonstrate several applications of organs/systems BA in two independent datasets. Mortality predictions are compared among organs' BA in the dataset of the United States National Health and Nutrition Examination Survey. Polygenic risk score of BAs constructed in the Chinese Longitudinal Healthy Longevity Survey cohort can predict the possibility of becoming centenarian. [Display omitted] •Constructing biological ages of organs/systems using multi-omics features•Organs and systems are aging at different rates•Specific biological age could predict disease of corresponding organs•Biological ages of organs and systems have diverse genetic architectures Nie et al. estimate biological ages of organs and systems using 402 multi-omics features from 4,066 individuals and demonstrate several applications. They find that organs and systems are aging at different rates, and biological ages could be utilized for population stratification, mortality prediction, and phenotypes of genetic association studies. |
| ArticleNumber | 110459 |
| Author | Zong, Yang Wang, Zhen Xu, Xun Zhen, Hefu Jin, Xin Wu, Yiran Nie, Chao Li, Tao Gong, Jianping Li, Yan Yan, Yizhen Wan, Ziyun Yang, Huanming Han, Jing-Dong J. Wang, Jian Zhang, Xiuqing Franceschi, Claudio Jian, Min Huang, Zhibo Shi, Yanfang Wang, Rong Zhang, Detao Li, Zhiming Ding, Jiahong Li, Rui Sun, Yuzhe Kennedy, Brian K. Cai, Kaiye |
| Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0003-3536-0324 surname: Nie fullname: Nie, Chao organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 2 givenname: Yan surname: Li fullname: Li, Yan organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 3 givenname: Rui surname: Li fullname: Li, Rui organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 4 givenname: Yizhen surname: Yan fullname: Yan, Yizhen organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 5 givenname: Detao surname: Zhang fullname: Zhang, Detao organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 6 givenname: Tao surname: Li fullname: Li, Tao organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 7 givenname: Zhiming surname: Li fullname: Li, Zhiming organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 8 givenname: Yuzhe surname: Sun fullname: Sun, Yuzhe organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 9 givenname: Hefu surname: Zhen fullname: Zhen, Hefu organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 10 givenname: Jiahong surname: Ding fullname: Ding, Jiahong organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 11 givenname: Ziyun surname: Wan fullname: Wan, Ziyun organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 12 givenname: Jianping surname: Gong fullname: Gong, Jianping organization: Medical Examination Center, The Affiliated Hospital of Hebei University, Baoding 071000, China – sequence: 13 givenname: Yanfang surname: Shi fullname: Shi, Yanfang organization: Department of Neurosurgery, The Affiliated Hospital of Hebei University, Baoding 071000, China – sequence: 14 givenname: Zhibo surname: Huang fullname: Huang, Zhibo organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 15 givenname: Yiran surname: Wu fullname: Wu, Yiran organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 16 givenname: Kaiye surname: Cai fullname: Cai, Kaiye organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 17 givenname: Yang surname: Zong fullname: Zong, Yang organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 18 givenname: Zhen surname: Wang fullname: Wang, Zhen organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 19 givenname: Rong surname: Wang fullname: Wang, Rong organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 20 givenname: Min surname: Jian fullname: Jian, Min organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 21 givenname: Xin surname: Jin fullname: Jin, Xin organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 22 givenname: Jian surname: Wang fullname: Wang, Jian organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 23 givenname: Huanming surname: Yang fullname: Yang, Huanming organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 24 givenname: Jing-Dong J. surname: Han fullname: Han, Jing-Dong J. organization: Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China – sequence: 25 givenname: Xiuqing surname: Zhang fullname: Zhang, Xiuqing email: zhangxq@genomics.cn organization: BGI-Shenzhen, Shenzhen 518083, China – sequence: 26 givenname: Claudio surname: Franceschi fullname: Franceschi, Claudio email: claudio.franceschi@unibo.it organization: Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia – sequence: 27 givenname: Brian K. orcidid: 0000-0002-5754-1874 surname: Kennedy fullname: Kennedy, Brian K. email: bkennedy@nus.edu.sg organization: Healthy Longevity Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore – sequence: 28 givenname: Xun surname: Xu fullname: Xu, Xun email: xuxun@genomics.cn organization: BGI-Shenzhen, Shenzhen 518083, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35263580$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUuLFDEUhYOMOA_nH4hk6abaJJWqVFwIMjo6MCCIrsOtPJrbVFXaJC30vzdtzYi40GwSwjnnXr5zSc6WuHhCXnC24Yz3r3cb66fk9xvBhNhwzmSnn5ALIThvuJDq7I_3ObnOecfq6RnnWj4j520n-rYb2AX58h5zwcUWOmKc4hYtTBS2PtMYaExbWDKFxdF8zMXPmaLzS8GA3tGQ4kyBzoepYBNntJnmcnDH5-RpgCn764f7iny7_fD15lNz__nj3c27-8ZKJUujgcvBq0GFjgdotWRSSKtAtEJrx3QQPVilBw2Cj8o6PY6yGyAwx7itivaK3K25LsLO7BPOkI4mAppfH3V5A6mgnbzRXELXa6bC6CRTVkM_uGDFAABScVWzXq1Z-xS_H3wuZsZcEU-w-HjIpuIaGD9tVqUvH6SHcfbu9-BHplXwZhXYFHNOPhiLBQrGpSTAyXBmTh2anVk7NKcOzdphNcu_zI_5_7G9XW2-Av-BPpls0S_WO0zelkoE_x3wE-0XtgI |
| CitedBy_id | crossref_primary_10_1016_j_pharmthera_2025_108850 crossref_primary_10_3389_frtra_2024_1356948 crossref_primary_10_3389_fnagi_2025_1505185 crossref_primary_10_1038_s43587_024_00646_8 crossref_primary_10_1093_cvr_cvae079 crossref_primary_10_14336_AD_2025_0272 crossref_primary_10_1016_j_jhazmat_2024_136162 crossref_primary_10_7554_eLife_99924_3 crossref_primary_10_1016_j_gde_2024_102306 crossref_primary_10_3390_biomedicines13010015 crossref_primary_10_1186_s12967_023_04321_1 crossref_primary_10_1038_s41684_023_01286_y crossref_primary_10_1038_s43587_025_00958_3 crossref_primary_10_1016_j_arr_2024_102653 crossref_primary_10_1016_j_arr_2024_102530 crossref_primary_10_1111_acel_14122 crossref_primary_10_1016_j_arr_2024_102253 crossref_primary_10_1016_j_jnha_2024_100203 crossref_primary_10_1039_D4FO00147H crossref_primary_10_1016_j_cell_2023_08_003 crossref_primary_10_1016_j_puhe_2025_105874 crossref_primary_10_1038_s43587_022_00238_4 crossref_primary_10_1002_ggn2_202200024 crossref_primary_10_1016_j_exger_2023_112162 crossref_primary_10_1097_PXH_0000000000000018 crossref_primary_10_1002_aac2_12061 crossref_primary_10_1152_physrev_00045_2024 crossref_primary_10_3390_ijms25073581 crossref_primary_10_1007_s11357_022_00723_z crossref_primary_10_1111_acel_70014 crossref_primary_10_3390_biology11121768 crossref_primary_10_1186_s12916_025_04223_7 crossref_primary_10_1111_acel_14351 crossref_primary_10_1038_s43587_024_00662_8 crossref_primary_10_1016_j_tma_2024_12_001 crossref_primary_10_7554_eLife_96926 crossref_primary_10_3390_antiox12061178 crossref_primary_10_1016_j_ymeth_2024_09_001 crossref_primary_10_1093_lifemeta_loaf012 crossref_primary_10_1007_s43657_023_00106_0 crossref_primary_10_1080_19490976_2024_2359677 crossref_primary_10_1016_j_cell_2025_03_011 crossref_primary_10_1038_s41380_022_01680_x crossref_primary_10_1038_s41591_023_02296_6 crossref_primary_10_3390_ijms25126793 crossref_primary_10_1007_s11357_023_01009_8 crossref_primary_10_3390_ijms24098020 crossref_primary_10_3390_ijms252413741 crossref_primary_10_1016_j_exer_2022_109254 crossref_primary_10_1016_j_numecd_2025_103964 crossref_primary_10_3390_ijms241612550 crossref_primary_10_1038_s43587_025_00928_9 crossref_primary_10_1007_s00394_025_03667_0 crossref_primary_10_1080_19490976_2023_2295394 crossref_primary_10_1038_s41398_022_02123_5 crossref_primary_10_1002_mco2_315 crossref_primary_10_1038_s43587_024_00734_9 crossref_primary_10_1038_s43587_022_00335_4 crossref_primary_10_1016_j_cell_2024_05_050 crossref_primary_10_1111_acel_13942 crossref_primary_10_1113_JP282887 crossref_primary_10_1016_j_cmet_2024_11_007 crossref_primary_10_1016_j_ecoenv_2025_118733 crossref_primary_10_3389_fmicb_2022_985283 crossref_primary_10_1038_s41467_024_49283_0 crossref_primary_10_1007_s00391_024_02329_w crossref_primary_10_2147_CCID_S508946 crossref_primary_10_1016_j_arr_2022_101805 crossref_primary_10_3389_fnut_2025_1618158 crossref_primary_10_1016_j_advnut_2025_100486 crossref_primary_10_3390_nu15061503 crossref_primary_10_1186_s12979_024_00489_2 crossref_primary_10_3390_ijms26188858 crossref_primary_10_1007_s00018_023_04832_6 crossref_primary_10_1007_s10522_025_10283_2 crossref_primary_10_1111_acel_14049 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1111_acel_14460 crossref_primary_10_1080_0886022X_2024_2393754 crossref_primary_10_3390_genes16030244 crossref_primary_10_1016_j_mcpro_2023_100561 crossref_primary_10_53941_hm_2025_100022 crossref_primary_10_1016_j_tins_2024_02_001 crossref_primary_10_1186_s40104_023_00874_9 crossref_primary_10_3390_biom15070960 crossref_primary_10_7554_eLife_99924 crossref_primary_10_7554_eLife_96926_4 crossref_primary_10_1136_bjo_2024_325846 crossref_primary_10_1111_jgs_18611 crossref_primary_10_1038_s43587_025_00938_7 crossref_primary_10_1016_j_cellin_2025_100254 crossref_primary_10_1007_s10522_022_09997_4 crossref_primary_10_1038_s43587_025_00935_w crossref_primary_10_3389_fendo_2023_1208441 crossref_primary_10_1016_j_arr_2022_101743 crossref_primary_10_1016_j_arr_2023_101982 crossref_primary_10_1016_j_arr_2023_102158 crossref_primary_10_1007_s10877_024_01149_y crossref_primary_10_3389_fnut_2024_1474597 crossref_primary_10_1016_j_arcmed_2024_103033 crossref_primary_10_1007_s11357_024_01155_7 crossref_primary_10_1038_s41569_025_01130_5 crossref_primary_10_1093_procel_pwae011 crossref_primary_10_3390_ijms25031713 crossref_primary_10_1016_j_arr_2022_101735 crossref_primary_10_3389_fphar_2025_1497988 crossref_primary_10_1038_s41467_025_59964_z crossref_primary_10_3390_antiox12010140 crossref_primary_10_1111_acel_14035 crossref_primary_10_3390_ijms252312634 |
| Cites_doi | 10.1016/j.mad.2005.10.004 10.1137/120875909 10.1136/gutjnl-2019-319766 10.1038/s41574-018-0059-4 10.1101/gr.107524.110 10.1038/s41591-019-0673-2 10.1093/bioinformatics/btp324 10.1073/pnas.88.12.5360 10.1038/527S14a 10.1038/nbt.2942 10.1146/annurev-biochem-062917-012239 10.1093/bioinformatics/btp336 10.1016/S0169-7439(99)00047-7 10.1093/gerona/62.10.1096 10.1016/j.diff.2016.02.005 10.1016/j.arr.2020.101154 10.1093/gigascience/giz082 10.1016/0047-6374(80)90008-1 10.1534/genetics.115.176735 10.1038/s41591-019-0719-5 10.1111/acel.12325 10.1038/nrg1916 10.1186/s13059-016-1030-0 10.1186/gb-2013-14-10-r115 10.1023/A:1026594602252 10.1038/srep32894 10.1136/gutjnl-2018-317561 10.1038/s41576-018-0004-3 10.1017/S0029665113003923 10.1186/s13742-015-0047-8 10.1038/nrm3822 10.1016/j.mad.2009.12.001 10.1016/S0140-6736(69)90950-7 10.1086/423901 10.1097/00005768-200102000-00008 10.1016/j.jmb.2017.06.019 10.12965/jer.1836644.322 10.1093/gerona/gls233 10.1038/nmeth.3589 10.4082/kjfm.2017.38.4.181 10.1124/pr.118.015768 10.1016/0531-5565(84)90016-0 10.1098/rstb.2017.0318 10.1016/j.psyneuen.2019.03.012 10.1016/0047-6374(88)90109-1 10.1038/s41587-019-0233-9 10.1016/j.archger.2007.08.009 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
| DOI | 10.1016/j.celrep.2022.110459 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| ExternalDocumentID | oai_doaj_org_article_914a56907fbd407c9a68dfc28aaa4717 35263580 10_1016_j_celrep_2022_110459 S2211124722001863 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c474t-9a148e787f51fa3940424c7a23299d09f26ac7989a21b7cd9bb458af0d01c99d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768265300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Fri Oct 03 12:53:23 EDT 2025 Thu Jul 10 18:48:59 EDT 2025 Thu Jan 02 22:54:54 EST 2025 Wed Nov 05 20:38:57 EST 2025 Tue Nov 18 22:39:54 EST 2025 Tue Jul 25 20:58:47 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | multi-omics NHANES aging biomarker organ aging CLHLS biological ages |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-9a148e787f51fa3940424c7a23299d09f26ac7989a21b7cd9bb458af0d01c99d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3536-0324 0000-0002-5754-1874 |
| OpenAccessLink | https://doaj.org/article/914a56907fbd407c9a68dfc28aaa4717 |
| PMID | 35263580 |
| PQID | 2638013299 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_914a56907fbd407c9a68dfc28aaa4717 proquest_miscellaneous_2638013299 pubmed_primary_35263580 crossref_citationtrail_10_1016_j_celrep_2022_110459 crossref_primary_10_1016_j_celrep_2022_110459 elsevier_sciencedirect_doi_10_1016_j_celrep_2022_110459 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-08 |
| PublicationDateYYYYMMDD | 2022-03-08 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Tabibzadeh (bib48) 2021; 3 Akima, Kano, Enomoto, Ishizu, Okada, Oishi, Katsuta, Kuno (bib2) 2001; 33 Bae, Kang, Kim, Cho, Kang, Yu, Lee, Cho, Lee, Lee (bib4) 2008; 47 Ahadi, Zhou, Rose, Sailani, Contrepois, Avina, Ashland, Brunet, Snyder (bib1) 2020; 26 Wilmanski, Rappaport, Earls, Magis, Manor, Lovejoy, Omenn, Hood, Gibbons, Price (bib52) 2019; 37 Wang, Yang, Li, Zhao, Hao, Qin, Zhang, Zhang, Bian, Zuo (bib51) 2020; 69 Bakshi, Zhu, Vinkhuyzen, Hill, McRae, Visscher, Yang (bib5) 2016; 6 Li, Jia, Cai, Zhong, Feng, Sunagawa, Arumugam, Kultima, Prifti, Nielsen (bib36) 2014; 32 Niedernhofer, Gurkar, Wang, Vijg, Hoeijmakers, Robbins (bib45) 2018; 87 Marteijn, Lans, Vermeulen, Hoeijmakers (bib39) 2014; 15 Chang, Chow, Tellier, Vattikuti, Purcell, Lee (bib7) 2015; 4 Li, Yu, Li, Lam, Yiu, Kristiansen, Wang (bib37) 2009; 25 Delude (bib15) 2015; 527 Lehallier, Gate, Schaum, Nanasi, Lee, Yousef, Losada, Berdnik, Keller, Verghese (bib33) 2019; 25 Comfort (bib13) 1969; 294 Franceschi, Garagnani, Parini, Giuliani, Santoro (bib17) 2018; 14 Jee (bib27) 2019; 15 Lee, Park, Oh, Joh, Hwang, Kim, Park (bib32) 2017; 38 Hofecker, Skalicky, Kment, Niedermüller (bib20) 1980; 14 Cho, Park, Lim (bib10) 2010; 131 McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly (bib41) 2010; 20 Horvath (bib22) 2013; 14 Truong, Franzosa, Tickle, Scholz, Weingart, Pasolli, Tett, Huttenhower, Segata (bib49) 2015; 12 Choi, O'Reilly (bib11) 2019; 8 Dubina, Mints, Zhuk (bib16) 1984; 19 Horvath, Gurven, Levine, Trumble, Kaplan, Allayee, Ritz, Chen, Lu, Rickabaugh (bib24) 2016; 17 Jaslove, Nelson (bib26) 2018; 373 Wallach (bib50) 2007 Chen, Geng, Zhang, Qian, Wan, Jiang, Mao (bib9) 2020; 64 Harman (bib18) 1991; 88 Nakamura, Miyao, Ozeki (bib43) 1988; 46 Hastings, Shalev, Belsky (bib19) 2019; 106 Hollingsworth, Hashizume, Jablon (bib21) 1965; 38 Horvath, Garagnani, Bacalini, Pirazzini, Salvioli, Gentilini, Di Blasio, Giuliani, Tung, Vinters (bib23) 2015; 14 Liberti, Lavor, Maculan, Mucherino (bib38) 2014; 56 Krøll, Saxtrup (bib30) 2000; 1 Li, Durbin (bib35) 2009; 25 Horvath, Raj (bib25) 2018; 19 Klemera, Doubal (bib29) 2006; 127 Almalki, Agrawal (bib3) 2016; 92 De Maesschalck, Jouan-Rimbaud, Massart (bib14) 2000; 50 Nakamura, Miyao (bib42) 2007; 62 Kuh, Karunananthan, Bergman, Cooper (bib31) 2014; 73 Balding (bib6) 2006; 7 Clarke, Sandhu, Griffin, Dinan, Cryan, Hyland (bib12) 2019; 71 Chen, Marioni, Colicino, Peters, Ward-Caviness, Tsai, Roetker, Just, Demerath, Guan (bib8) 2016; 8 Joossens, Faust, Gryp, Nguyen, Wang, Eloot, Schepers, Dhondt, Pletinck, Vieira-Silva (bib28) 2019; 68 Levine (bib34) 2013; 68 Stegeman, Weake (bib47) 2017; 429 Zeng, Nie, Min, Liu, Li, Chen, Xu, Wang, Ni, Li (bib53) 2016; 6 McFadden (bib40) 1979 Rampelli, Soverini, D'Amico, Barone, Tavella, Monti, Capri, Astolfi, Brigidi, Biagi (bib46) 2019; 5 Zhang, Du, Su, Wang, Zeng, Zhang, Hong, Nie, Wu, Cao (bib54) 2015; 201 Neale, Sham (bib44) 2004; 75 Zeng (10.1016/j.celrep.2022.110459_bib53) 2016; 6 Hofecker (10.1016/j.celrep.2022.110459_bib20) 1980; 14 Lee (10.1016/j.celrep.2022.110459_bib32) 2017; 38 Wallach (10.1016/j.celrep.2022.110459_bib50) 2007 Wang (10.1016/j.celrep.2022.110459_bib51) 2020; 69 Nakamura (10.1016/j.celrep.2022.110459_bib43) 1988; 46 Wilmanski (10.1016/j.celrep.2022.110459_bib52) 2019; 37 Horvath (10.1016/j.celrep.2022.110459_bib23) 2015; 14 Horvath (10.1016/j.celrep.2022.110459_bib25) 2018; 19 Clarke (10.1016/j.celrep.2022.110459_bib12) 2019; 71 Liberti (10.1016/j.celrep.2022.110459_bib38) 2014; 56 Klemera (10.1016/j.celrep.2022.110459_bib29) 2006; 127 Hollingsworth (10.1016/j.celrep.2022.110459_bib21) 1965; 38 Balding (10.1016/j.celrep.2022.110459_bib6) 2006; 7 Nakamura (10.1016/j.celrep.2022.110459_bib42) 2007; 62 Joossens (10.1016/j.celrep.2022.110459_bib28) 2019; 68 Zhang (10.1016/j.celrep.2022.110459_bib54) 2015; 201 Choi (10.1016/j.celrep.2022.110459_bib11) 2019; 8 Bakshi (10.1016/j.celrep.2022.110459_bib5) 2016; 6 Niedernhofer (10.1016/j.celrep.2022.110459_bib45) 2018; 87 Kuh (10.1016/j.celrep.2022.110459_bib31) 2014; 73 Ahadi (10.1016/j.celrep.2022.110459_bib1) 2020; 26 Marteijn (10.1016/j.celrep.2022.110459_bib39) 2014; 15 Li (10.1016/j.celrep.2022.110459_bib35) 2009; 25 Almalki (10.1016/j.celrep.2022.110459_bib3) 2016; 92 Chang (10.1016/j.celrep.2022.110459_bib7) 2015; 4 Akima (10.1016/j.celrep.2022.110459_bib2) 2001; 33 Lehallier (10.1016/j.celrep.2022.110459_bib33) 2019; 25 Comfort (10.1016/j.celrep.2022.110459_bib13) 1969; 294 Chen (10.1016/j.celrep.2022.110459_bib9) 2020; 64 Levine (10.1016/j.celrep.2022.110459_bib34) 2013; 68 Hastings (10.1016/j.celrep.2022.110459_bib19) 2019; 106 Jaslove (10.1016/j.celrep.2022.110459_bib26) 2018; 373 Delude (10.1016/j.celrep.2022.110459_bib15) 2015; 527 Harman (10.1016/j.celrep.2022.110459_bib18) 1991; 88 Stegeman (10.1016/j.celrep.2022.110459_bib47) 2017; 429 Horvath (10.1016/j.celrep.2022.110459_bib22) 2013; 14 Truong (10.1016/j.celrep.2022.110459_bib49) 2015; 12 McKenna (10.1016/j.celrep.2022.110459_bib41) 2010; 20 Cho (10.1016/j.celrep.2022.110459_bib10) 2010; 131 Horvath (10.1016/j.celrep.2022.110459_bib24) 2016; 17 Neale (10.1016/j.celrep.2022.110459_bib44) 2004; 75 Jee (10.1016/j.celrep.2022.110459_bib27) 2019; 15 Chen (10.1016/j.celrep.2022.110459_bib8) 2016; 8 Rampelli (10.1016/j.celrep.2022.110459_bib46) 2019; 5 De Maesschalck (10.1016/j.celrep.2022.110459_bib14) 2000; 50 Bae (10.1016/j.celrep.2022.110459_bib4) 2008; 47 Tabibzadeh (10.1016/j.celrep.2022.110459_bib48) 2021; 3 Li (10.1016/j.celrep.2022.110459_bib36) 2014; 32 Li (10.1016/j.celrep.2022.110459_bib37) 2009; 25 McFadden (10.1016/j.celrep.2022.110459_bib40) 1979 Dubina (10.1016/j.celrep.2022.110459_bib16) 1984; 19 Franceschi (10.1016/j.celrep.2022.110459_bib17) 2018; 14 Krøll (10.1016/j.celrep.2022.110459_bib30) 2000; 1 |
| References_xml | – volume: 33 start-page: 220 year: 2001 end-page: 226 ident: bib2 article-title: Muscle function in 164 men and women aged 20--84 yr publication-title: Med. Sci. Sports Exerc. – volume: 87 start-page: 295 year: 2018 end-page: 322 ident: bib45 article-title: Nuclear genomic instability and aging publication-title: Annu. Rev. Biochem. – volume: 73 start-page: 237 year: 2014 end-page: 248 ident: bib31 article-title: A life-course approach to healthy ageing: maintaining physical capability publication-title: Proc. Nutr. Soc. – volume: 14 start-page: 1 year: 2013 end-page: 20 ident: bib22 article-title: DNA methylation age of human tissues and cell types publication-title: Genome Biol. – volume: 14 start-page: 576 year: 2018 end-page: 590 ident: bib17 article-title: Inflammaging: a new immune–metabolic viewpoint for age-related diseases publication-title: Nat. Rev. Endocrinol. – volume: 19 start-page: 371 year: 2018 end-page: 384 ident: bib25 article-title: DNA methylation-based biomarkers and the epigenetic clock theory of ageing publication-title: Nat. Rev. Genet. – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: bib41 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. – volume: 38 start-page: 181 year: 2017 ident: bib32 article-title: Association between body mass index and quality of life in elderly people over 60 years of age publication-title: Korean J. Fam. Med. – volume: 88 start-page: 5360 year: 1991 end-page: 5363 ident: bib18 article-title: The aging process: major risk factor for disease and death publication-title: Proc. Natl. Acad. Sci. U S A – volume: 429 start-page: 2427 year: 2017 end-page: 2437 ident: bib47 article-title: Transcriptional signatures of aging publication-title: J. Mol. Biol. – volume: 25 start-page: 1966 year: 2009 end-page: 1967 ident: bib37 article-title: SOAP2: an improved ultrafast tool for short read alignment publication-title: Bioinformatics – volume: 8 start-page: 1844 year: 2016 ident: bib8 article-title: DNA methylation-based measures of biological age: meta-analysis predicting time to death publication-title: Aging (N Y) – volume: 294 start-page: 1411 year: 1969 end-page: 1415 ident: bib13 article-title: Test-battery to measure ageing-rate in man publication-title: Lancet – volume: 68 start-page: 667 year: 2013 end-page: 674 ident: bib34 article-title: Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? publication-title: J. Gerontol. Biol. Med. Sci. – volume: 64 start-page: 101154 year: 2020 ident: bib9 article-title: Fight to the bitter end: DNA repair and aging publication-title: Ageing Res. Rev. – volume: 5 start-page: e00124 year: 2019 ident: bib46 article-title: Shotgun metagenomics of human gut microbiota up to extreme longevity and the increasing role of xenobiotics degradation publication-title: mSystems – volume: 8 start-page: giz082 year: 2019 ident: bib11 article-title: PRSice-2: polygenic risk score software for biobank-scale data publication-title: Gigascience – volume: 75 start-page: 353 year: 2004 end-page: 362 ident: bib44 article-title: The future of association studies: gene-based analysis and replication publication-title: Am. J. Hum. Genet. – volume: 37 start-page: 1217 year: 2019 end-page: 1228 ident: bib52 article-title: Blood metabolome predicts gut microbiome α-diversity in humans publication-title: Nat. Biotechnol. – volume: 47 start-page: 253 year: 2008 end-page: 265 ident: bib4 article-title: Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters publication-title: Arch. Gerontol. Geriatr. – volume: 373 start-page: 20170318 year: 2018 ident: bib26 article-title: Smooth muscle: a stiff sculptor of epithelial shapes publication-title: Philos. Trans. R. Soc. B: Biol. Sci. – volume: 527 start-page: S14 year: 2015 end-page: S15 ident: bib15 article-title: Deep phenotyping: the details of disease publication-title: Nature – volume: 62 start-page: 1096 year: 2007 end-page: 1105 ident: bib42 article-title: A method for identifying biomarkers of aging and constructing an index of biological age in humans publication-title: J. Gerontol. Biol. Med. Sci. – volume: 46 start-page: 1 year: 1988 end-page: 18 ident: bib43 article-title: Assessment of biological age by principal component analysis publication-title: Mech. Ageing Dev. – volume: 3 start-page: 53 year: 2021 ident: bib48 article-title: Signaling pathways and effectors of aging publication-title: Growth – volume: 50 start-page: 1 year: 2000 end-page: 18 ident: bib14 article-title: The mahalanobis distance publication-title: Chemometrics Intell. Lab. Syst. – volume: 38 start-page: 11 year: 1965 ident: bib21 article-title: Correlations between tests of aging in Hiroshima subjects--an attempt to define" physiologic age" publication-title: Yale J. Biol. Med. – volume: 17 start-page: 1 year: 2016 end-page: 23 ident: bib24 article-title: An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease publication-title: Genome Biol. – year: 1979 ident: bib40 article-title: Quantitative Methods for Analysing Travel Behaviour of Individuals: Some Recent Developments – volume: 201 start-page: 459 year: 2015 end-page: 472 ident: bib54 article-title: IMonitor: a robust pipeline for TCR and BCR repertoire analysis publication-title: Genetics – volume: 1 start-page: 363 year: 2000 end-page: 368 ident: bib30 article-title: On the use of regression analysis for the estimation of human biological age publication-title: Biogerontology – volume: 7 start-page: 781 year: 2006 end-page: 791 ident: bib6 article-title: A tutorial on statistical methods for population association studies publication-title: Nat. Rev. Genet. – volume: 127 start-page: 240 year: 2006 end-page: 248 ident: bib29 article-title: A new approach to the concept and computation of biological age publication-title: Mech. Ageing Dev. – volume: 19 start-page: 133 year: 1984 end-page: 143 ident: bib16 article-title: Biological age and its estimation. III. Introduction of a correction to the multiple regression model of biological age and assessment of biological age in cross-sectional and longitudinal studies publication-title: Exp. Gerontol. – volume: 26 start-page: 83 year: 2020 end-page: 90 ident: bib1 article-title: Personal aging markers and ageotypes revealed by deep longitudinal profiling publication-title: Nat. Med. – volume: 14 start-page: 345 year: 1980 end-page: 359 ident: bib20 article-title: Models of the biological age of the rat. I. A factor model of age parameters publication-title: Mech. Ageing Dev. – volume: 131 start-page: 69 year: 2010 end-page: 78 ident: bib10 article-title: An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI) publication-title: Mech. Ageing Dev. – volume: 25 start-page: 1843 year: 2019 end-page: 1850 ident: bib33 article-title: Undulating changes in human plasma proteome profiles across the lifespan publication-title: Nat. Med. – volume: 71 start-page: 198 year: 2019 end-page: 224 ident: bib12 article-title: Gut reactions: breaking down xenobiotic–microbiome interactions publication-title: Pharmacol. Rev. – volume: 92 start-page: 41 year: 2016 end-page: 51 ident: bib3 article-title: Key transcription factors in the differentiation of mesenchymal stem cells publication-title: Differentiation – year: 2007 ident: bib50 article-title: Interpretation of Diagnostic Tests – volume: 14 start-page: 491 year: 2015 end-page: 495 ident: bib23 article-title: Accelerated epigenetic aging in down syndrome publication-title: Aging Cell – volume: 32 start-page: 834 year: 2014 end-page: 841 ident: bib36 article-title: An integrated catalog of reference genes in the human gut microbiome publication-title: Nat. Biotechnol. – volume: 6 start-page: 32894 year: 2016 ident: bib5 article-title: Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits publication-title: Sci. Rep. – volume: 12 start-page: 902 year: 2015 end-page: 903 ident: bib49 article-title: MetaPhlAn2 for enhanced metagenomic taxonomic profiling publication-title: Nat. Methods – volume: 15 start-page: 31 year: 2019 ident: bib27 article-title: Selection of a set of biomarkers and comparisons of biological age estimation models for Korean men publication-title: J. Exerc. Rehabil. – volume: 106 start-page: 171 year: 2019 end-page: 178 ident: bib19 article-title: Comparability of biological aging measures in the national health and nutrition examination study, 1999–2002 publication-title: Psychoneuroendocrinology – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: bib35 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics – volume: 15 start-page: 465 year: 2014 end-page: 481 ident: bib39 article-title: Understanding nucleotide excision repair and its roles in cancer and ageing publication-title: Nat. Rev. Mol. Cel. Biol. – volume: 4 start-page: 7 year: 2015 ident: bib7 article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets publication-title: Gigascience – volume: 69 start-page: 2131 year: 2020 end-page: 2142 ident: bib51 article-title: Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents publication-title: Gut – volume: 6 start-page: 1 year: 2016 end-page: 13 ident: bib53 article-title: Novel loci and pathways significantly associated with longevity publication-title: Sci. Rep. – volume: 68 start-page: 2257 year: 2019 end-page: 2260 ident: bib28 article-title: Gut microbiota dynamics and uraemic toxins: one size does not fit all publication-title: Gut – volume: 56 start-page: 3 year: 2014 end-page: 69 ident: bib38 article-title: Euclidean distance geometry and applications publication-title: SIAM Rev. – volume: 127 start-page: 240 year: 2006 ident: 10.1016/j.celrep.2022.110459_bib29 article-title: A new approach to the concept and computation of biological age publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2005.10.004 – volume: 56 start-page: 3 year: 2014 ident: 10.1016/j.celrep.2022.110459_bib38 article-title: Euclidean distance geometry and applications publication-title: SIAM Rev. doi: 10.1137/120875909 – volume: 3 start-page: 53 year: 2021 ident: 10.1016/j.celrep.2022.110459_bib48 article-title: Signaling pathways and effectors of aging publication-title: Growth – volume: 69 start-page: 2131 year: 2020 ident: 10.1016/j.celrep.2022.110459_bib51 article-title: Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents publication-title: Gut doi: 10.1136/gutjnl-2019-319766 – volume: 14 start-page: 576 year: 2018 ident: 10.1016/j.celrep.2022.110459_bib17 article-title: Inflammaging: a new immune–metabolic viewpoint for age-related diseases publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-018-0059-4 – volume: 20 start-page: 1297 year: 2010 ident: 10.1016/j.celrep.2022.110459_bib41 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 25 start-page: 1843 year: 2019 ident: 10.1016/j.celrep.2022.110459_bib33 article-title: Undulating changes in human plasma proteome profiles across the lifespan publication-title: Nat. Med. doi: 10.1038/s41591-019-0673-2 – volume: 8 start-page: 1844 year: 2016 ident: 10.1016/j.celrep.2022.110459_bib8 article-title: DNA methylation-based measures of biological age: meta-analysis predicting time to death publication-title: Aging (N Y) – volume: 38 start-page: 11 year: 1965 ident: 10.1016/j.celrep.2022.110459_bib21 article-title: Correlations between tests of aging in Hiroshima subjects--an attempt to define" physiologic age" publication-title: Yale J. Biol. Med. – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.celrep.2022.110459_bib35 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 88 start-page: 5360 year: 1991 ident: 10.1016/j.celrep.2022.110459_bib18 article-title: The aging process: major risk factor for disease and death publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.88.12.5360 – volume: 527 start-page: S14 year: 2015 ident: 10.1016/j.celrep.2022.110459_bib15 article-title: Deep phenotyping: the details of disease publication-title: Nature doi: 10.1038/527S14a – volume: 32 start-page: 834 year: 2014 ident: 10.1016/j.celrep.2022.110459_bib36 article-title: An integrated catalog of reference genes in the human gut microbiome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2942 – volume: 87 start-page: 295 year: 2018 ident: 10.1016/j.celrep.2022.110459_bib45 article-title: Nuclear genomic instability and aging publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-012239 – volume: 25 start-page: 1966 year: 2009 ident: 10.1016/j.celrep.2022.110459_bib37 article-title: SOAP2: an improved ultrafast tool for short read alignment publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp336 – volume: 50 start-page: 1 year: 2000 ident: 10.1016/j.celrep.2022.110459_bib14 article-title: The mahalanobis distance publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/S0169-7439(99)00047-7 – volume: 62 start-page: 1096 year: 2007 ident: 10.1016/j.celrep.2022.110459_bib42 article-title: A method for identifying biomarkers of aging and constructing an index of biological age in humans publication-title: J. Gerontol. Biol. Med. Sci. doi: 10.1093/gerona/62.10.1096 – volume: 92 start-page: 41 year: 2016 ident: 10.1016/j.celrep.2022.110459_bib3 article-title: Key transcription factors in the differentiation of mesenchymal stem cells publication-title: Differentiation doi: 10.1016/j.diff.2016.02.005 – volume: 64 start-page: 101154 year: 2020 ident: 10.1016/j.celrep.2022.110459_bib9 article-title: Fight to the bitter end: DNA repair and aging publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2020.101154 – volume: 8 start-page: giz082 year: 2019 ident: 10.1016/j.celrep.2022.110459_bib11 article-title: PRSice-2: polygenic risk score software for biobank-scale data publication-title: Gigascience doi: 10.1093/gigascience/giz082 – volume: 14 start-page: 345 year: 1980 ident: 10.1016/j.celrep.2022.110459_bib20 article-title: Models of the biological age of the rat. I. A factor model of age parameters publication-title: Mech. Ageing Dev. doi: 10.1016/0047-6374(80)90008-1 – volume: 201 start-page: 459 year: 2015 ident: 10.1016/j.celrep.2022.110459_bib54 article-title: IMonitor: a robust pipeline for TCR and BCR repertoire analysis publication-title: Genetics doi: 10.1534/genetics.115.176735 – volume: 26 start-page: 83 year: 2020 ident: 10.1016/j.celrep.2022.110459_bib1 article-title: Personal aging markers and ageotypes revealed by deep longitudinal profiling publication-title: Nat. Med. doi: 10.1038/s41591-019-0719-5 – volume: 14 start-page: 491 year: 2015 ident: 10.1016/j.celrep.2022.110459_bib23 article-title: Accelerated epigenetic aging in down syndrome publication-title: Aging Cell doi: 10.1111/acel.12325 – volume: 7 start-page: 781 year: 2006 ident: 10.1016/j.celrep.2022.110459_bib6 article-title: A tutorial on statistical methods for population association studies publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1916 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.celrep.2022.110459_bib24 article-title: An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease publication-title: Genome Biol. doi: 10.1186/s13059-016-1030-0 – volume: 14 start-page: 1 year: 2013 ident: 10.1016/j.celrep.2022.110459_bib22 article-title: DNA methylation age of human tissues and cell types publication-title: Genome Biol. doi: 10.1186/gb-2013-14-10-r115 – volume: 1 start-page: 363 year: 2000 ident: 10.1016/j.celrep.2022.110459_bib30 article-title: On the use of regression analysis for the estimation of human biological age publication-title: Biogerontology doi: 10.1023/A:1026594602252 – volume: 6 start-page: 32894 year: 2016 ident: 10.1016/j.celrep.2022.110459_bib5 article-title: Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits publication-title: Sci. Rep. doi: 10.1038/srep32894 – volume: 68 start-page: 2257 year: 2019 ident: 10.1016/j.celrep.2022.110459_bib28 article-title: Gut microbiota dynamics and uraemic toxins: one size does not fit all publication-title: Gut doi: 10.1136/gutjnl-2018-317561 – volume: 19 start-page: 371 year: 2018 ident: 10.1016/j.celrep.2022.110459_bib25 article-title: DNA methylation-based biomarkers and the epigenetic clock theory of ageing publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0004-3 – year: 2007 ident: 10.1016/j.celrep.2022.110459_bib50 – volume: 73 start-page: 237 year: 2014 ident: 10.1016/j.celrep.2022.110459_bib31 article-title: A life-course approach to healthy ageing: maintaining physical capability publication-title: Proc. Nutr. Soc. doi: 10.1017/S0029665113003923 – volume: 4 start-page: 7 year: 2015 ident: 10.1016/j.celrep.2022.110459_bib7 article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets publication-title: Gigascience doi: 10.1186/s13742-015-0047-8 – volume: 15 start-page: 465 year: 2014 ident: 10.1016/j.celrep.2022.110459_bib39 article-title: Understanding nucleotide excision repair and its roles in cancer and ageing publication-title: Nat. Rev. Mol. Cel. Biol. doi: 10.1038/nrm3822 – year: 1979 ident: 10.1016/j.celrep.2022.110459_bib40 – volume: 131 start-page: 69 year: 2010 ident: 10.1016/j.celrep.2022.110459_bib10 article-title: An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI) publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2009.12.001 – volume: 294 start-page: 1411 year: 1969 ident: 10.1016/j.celrep.2022.110459_bib13 article-title: Test-battery to measure ageing-rate in man publication-title: Lancet doi: 10.1016/S0140-6736(69)90950-7 – volume: 75 start-page: 353 year: 2004 ident: 10.1016/j.celrep.2022.110459_bib44 article-title: The future of association studies: gene-based analysis and replication publication-title: Am. J. Hum. Genet. doi: 10.1086/423901 – volume: 33 start-page: 220 year: 2001 ident: 10.1016/j.celrep.2022.110459_bib2 article-title: Muscle function in 164 men and women aged 20--84 yr publication-title: Med. Sci. Sports Exerc. doi: 10.1097/00005768-200102000-00008 – volume: 429 start-page: 2427 year: 2017 ident: 10.1016/j.celrep.2022.110459_bib47 article-title: Transcriptional signatures of aging publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.06.019 – volume: 15 start-page: 31 year: 2019 ident: 10.1016/j.celrep.2022.110459_bib27 article-title: Selection of a set of biomarkers and comparisons of biological age estimation models for Korean men publication-title: J. Exerc. Rehabil. doi: 10.12965/jer.1836644.322 – volume: 68 start-page: 667 year: 2013 ident: 10.1016/j.celrep.2022.110459_bib34 article-title: Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? publication-title: J. Gerontol. Biol. Med. Sci. doi: 10.1093/gerona/gls233 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.celrep.2022.110459_bib53 article-title: Novel loci and pathways significantly associated with longevity publication-title: Sci. Rep. – volume: 12 start-page: 902 year: 2015 ident: 10.1016/j.celrep.2022.110459_bib49 article-title: MetaPhlAn2 for enhanced metagenomic taxonomic profiling publication-title: Nat. Methods doi: 10.1038/nmeth.3589 – volume: 38 start-page: 181 year: 2017 ident: 10.1016/j.celrep.2022.110459_bib32 article-title: Association between body mass index and quality of life in elderly people over 60 years of age publication-title: Korean J. Fam. Med. doi: 10.4082/kjfm.2017.38.4.181 – volume: 71 start-page: 198 year: 2019 ident: 10.1016/j.celrep.2022.110459_bib12 article-title: Gut reactions: breaking down xenobiotic–microbiome interactions publication-title: Pharmacol. Rev. doi: 10.1124/pr.118.015768 – volume: 19 start-page: 133 year: 1984 ident: 10.1016/j.celrep.2022.110459_bib16 article-title: Biological age and its estimation. III. Introduction of a correction to the multiple regression model of biological age and assessment of biological age in cross-sectional and longitudinal studies publication-title: Exp. Gerontol. doi: 10.1016/0531-5565(84)90016-0 – volume: 373 start-page: 20170318 year: 2018 ident: 10.1016/j.celrep.2022.110459_bib26 article-title: Smooth muscle: a stiff sculptor of epithelial shapes publication-title: Philos. Trans. R. Soc. B: Biol. Sci. doi: 10.1098/rstb.2017.0318 – volume: 106 start-page: 171 year: 2019 ident: 10.1016/j.celrep.2022.110459_bib19 article-title: Comparability of biological aging measures in the national health and nutrition examination study, 1999–2002 publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2019.03.012 – volume: 46 start-page: 1 year: 1988 ident: 10.1016/j.celrep.2022.110459_bib43 article-title: Assessment of biological age by principal component analysis publication-title: Mech. Ageing Dev. doi: 10.1016/0047-6374(88)90109-1 – volume: 37 start-page: 1217 year: 2019 ident: 10.1016/j.celrep.2022.110459_bib52 article-title: Blood metabolome predicts gut microbiome α-diversity in humans publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0233-9 – volume: 47 start-page: 253 year: 2008 ident: 10.1016/j.celrep.2022.110459_bib4 article-title: Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters publication-title: Arch. Gerontol. Geriatr. doi: 10.1016/j.archger.2007.08.009 – volume: 5 start-page: e00124 year: 2019 ident: 10.1016/j.celrep.2022.110459_bib46 article-title: Shotgun metagenomics of human gut microbiota up to extreme longevity and the increasing role of xenobiotics degradation publication-title: mSystems |
| SSID | ssj0000601194 |
| Score | 2.6267738 |
| Snippet | Biological age (BA) has been proposed to evaluate the aging status instead of chronological age (CA). Our study shows evidence that there might be multiple... |
| SourceID | doaj proquest pubmed crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 110459 |
| SubjectTerms | Aged, 80 and over Aging aging biomarker biological ages CLHLS Humans Longevity Longitudinal Studies Metabolomics multi-omics NHANES Nutrition Surveys organ aging |
| Title | Distinct biological ages of organs and systems identified from a multi-omics study |
| URI | https://dx.doi.org/10.1016/j.celrep.2022.110459 https://www.ncbi.nlm.nih.gov/pubmed/35263580 https://www.proquest.com/docview/2638013299 https://doaj.org/article/914a56907fbd407c9a68dfc28aaa4717 |
| Volume | 38 |
| WOSCitedRecordID | wos000768265300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4qCl7E9TnqSgSvjdOZtEmO666yJ1lEYW6hOg8YkR6ZHgX_vVVJ9zB7kLl46cNQPR3qlSqq6ivGLoHyrTh0RelHihIUKhJGgw_wqCK1rENeNqHu7_V4bP4trfqinrAMD5wZd2VKCRWlcLH2mHw4A9faRyc0AKBjTXPkGPUsJVPZBxOWGZWUhaCeLSFVPzeXmrtceJkFgqsUghrhJUGVLt1LCb7_v-vpq_AzXUN3u2ynix_5r3zuH2wtNHtsK2-U_NhnD3_IZhs35xldiUTA0WW0fBp52uDUcmg8zwDOLZ_43C0UPKdBEw48dRgWNKvc8oQ9e8Ce7m4ff_8turUJhZNKzgsDmOIENMRYlRFo87kU0inA2MkYPzRRXINTRhsQZa2cN3UtKw1x6IelQ4rRIdtopk04Zlxr50rpvBfSSx8ElMh9LSL6xKquQA3YqGeadR2mOK22eLF989izzay2xGqbWT1gxeKt14ypsYL-huSxoCVE7PQDss12emJX6cmAqV6atgsuctCAfzVZ8fmLXvgWbY8KKtCE6VtrBTovqlUZpDnKWrE4JO0doBLzyXcc_pRt04FS75s-Yxvz2Vv4yTbd-3zSzs7Zuhrr82QAn13iBnY |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+biological+ages+of+organs+and+systems+identified+from+a+multi-omics+study&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Nie%2C+Chao&rft.au=Li%2C+Yan&rft.au=Li%2C+Rui&rft.au=Yan%2C+Yizhen&rft.date=2022-03-08&rft.eissn=2211-1247&rft.volume=38&rft.issue=10&rft.spage=110459&rft_id=info:doi/10.1016%2Fj.celrep.2022.110459&rft_id=info%3Apmid%2F35263580&rft.externalDocID=35263580 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |