A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA

This paper presents a prototype Carbon Monitoring System (CMS) developed to produce regionally unbiased annual estimates of aboveground biomass (AGB). Our CMS employed a bottom-up, two-step modeling strategy beginning with a spatially and temporally biased sample: project datasets collected and cont...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research letters Vol. 15; no. 9; pp. 95003 - 95019
Main Authors: Hudak, Andrew T, Fekety, Patrick A, Kane, Van R, Kennedy, Robert E, Filippelli, Steven K, Falkowski, Michael J, Tinkham, Wade T, Smith, Alistair M S, Crookston, Nicholas L, Domke, Grant M, Corrao, Mark V, Bright, Benjamin C, Churchill, Derek J, Gould, Peter J, McGaughey, Robert J, Kane, Jonathan T, Dong, Jinwei
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.09.2020
Subjects:
ISSN:1748-9326, 1748-9326
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a prototype Carbon Monitoring System (CMS) developed to produce regionally unbiased annual estimates of aboveground biomass (AGB). Our CMS employed a bottom-up, two-step modeling strategy beginning with a spatially and temporally biased sample: project datasets collected and contributed by US Forest Service (USFS) and other forestry stakeholders in 29 different project areas in the northwestern USA. Plot-level AGB estimates collected in the project areas served as the response variable for predicting AGB primarily from lidar metrics of canopy height and density (R2 = 0.8, RMSE = 115 Mg ha−1, Bias = 2 Mg ha−1). This landscape model was used to map AGB estimates at 30 m resolution where lidar data were available. A stratified random sample of AGB pixels from these landscape-level AGB maps then served as training data for predicting AGB regionally from Landsat image time series variables processed through LandTrendr. In addition, climate metrics calculated from downscaled 30 year climate normals were considered as predictors in both models, as were topographic metrics calculated from elevation data; these environmental predictors allowed AGB estimation over the full range of observations with the regional model (R2 = 0.8, RMSE = 152 Mg ha−1, Bias = 9 Mg ha−1), including higher AGB values (>400 Mg ha−1) where spectral predictors alone saturate. For both the landscape and regional models, the machine-learning algorithm Random Forests (RF) was consistently applied to select predictor variables and estimate AGB. We then calibrated the regional AGB maps using field plot data systematically collected without bias by the national Forest Inventory and Analysis (FIA) Program. We found both our project landscape and regional, annual AGB estimates to be unbiased with respect to FIA estimates (Biases of 1% and 0.7%, respectively) and conclude that they are well suited to inform forest management and planning decisions by our contributing stakeholders. Social media abstract Lidar-based biomass estimates can be upscaled with Landsat data to regionally unbiased annual maps.
AbstractList This paper presents a prototype Carbon Monitoring System (CMS) developed to produce regionally unbiased annual estimates of aboveground biomass (AGB). Our CMS employed a bottom-up, two-step modeling strategy beginning with a spatially and temporally biased sample: project datasets collected and contributed by US Forest Service (USFS) and other forestry stakeholders in 29 different project areas in the northwestern USA. Plot-level AGB estimates collected in the project areas served as the response variable for predicting AGB primarily from lidar metrics of canopy height and density (R 2 = 0.8, RMSE = 115 Mg ha −1 , Bias = 2 Mg ha −1 ). This landscape model was used to map AGB estimates at 30 m resolution where lidar data were available. A stratified random sample of AGB pixels from these landscape-level AGB maps then served as training data for predicting AGB regionally from Landsat image time series variables processed through LandTrendr. In addition, climate metrics calculated from downscaled 30 year climate normals were considered as predictors in both models, as were topographic metrics calculated from elevation data; these environmental predictors allowed AGB estimation over the full range of observations with the regional model (R 2 = 0.8, RMSE = 152 Mg ha −1 , Bias = 9 Mg ha −1 ), including higher AGB values (>400 Mg ha −1 ) where spectral predictors alone saturate. For both the landscape and regional models, the machine-learning algorithm Random Forests (RF) was consistently applied to select predictor variables and estimate AGB. We then calibrated the regional AGB maps using field plot data systematically collected without bias by the national Forest Inventory and Analysis (FIA) Program. We found both our project landscape and regional, annual AGB estimates to be unbiased with respect to FIA estimates (Biases of 1% and 0.7%, respectively) and conclude that they are well suited to inform forest management and planning decisions by our contributing stakeholders. Social media abstract Lidar-based biomass estimates can be upscaled with Landsat data to regionally unbiased annual maps.
This paper presents a prototype Carbon Monitoring System (CMS) developed to produce regionally unbiased annual estimates of aboveground biomass (AGB). Our CMS employed a bottom-up, two-step modeling strategy beginning with a spatially and temporally biased sample: project datasets collected and contributed by US Forest Service (USFS) and other forestry stakeholders in 29 different project areas in the northwestern USA. Plot-level AGB estimates collected in the project areas served as the response variable for predicting AGB primarily from lidar metrics of canopy height and density (R2 = 0.8, RMSE = 115 Mg ha−1, Bias = 2 Mg ha−1). This landscape model was used to map AGB estimates at 30 m resolution where lidar data were available. A stratified random sample of AGB pixels from these landscape-level AGB maps then served as training data for predicting AGB regionally from Landsat image time series variables processed through LandTrendr. In addition, climate metrics calculated from downscaled 30 year climate normals were considered as predictors in both models, as were topographic metrics calculated from elevation data; these environmental predictors allowed AGB estimation over the full range of observations with the regional model (R2 = 0.8, RMSE = 152 Mg ha−1, Bias = 9 Mg ha−1), including higher AGB values (>400 Mg ha−1) where spectral predictors alone saturate. For both the landscape and regional models, the machine-learning algorithm Random Forests (RF) was consistently applied to select predictor variables and estimate AGB. We then calibrated the regional AGB maps using field plot data systematically collected without bias by the national Forest Inventory and Analysis (FIA) Program. We found both our project landscape and regional, annual AGB estimates to be unbiased with respect to FIA estimates (Biases of 1% and 0.7%, respectively) and conclude that they are well suited to inform forest management and planning decisions by our contributing stakeholders. Social media abstract Lidar-based biomass estimates can be upscaled with Landsat data to regionally unbiased annual maps.
This paper presents a prototype Carbon Monitoring System (CMS) developed to produce regionally unbiased annual estimates of aboveground biomass (AGB). Our CMS employed a bottom-up, two-step modeling strategy beginning with a spatially and temporally biased sample: project datasets collected and contributed by US Forest Service (USFS) and other forestry stakeholders in 29 different project areas in the northwestern USA. Plot-level AGB estimates collected in the project areas served as the response variable for predicting AGB primarily from lidar metrics of canopy height and density (R ^2 = 0.8, RMSE = 115 Mg ha ^−1 , Bias = 2 Mg ha ^−1 ). This landscape model was used to map AGB estimates at 30 m resolution where lidar data were available. A stratified random sample of AGB pixels from these landscape-level AGB maps then served as training data for predicting AGB regionally from Landsat image time series variables processed through LandTrendr. In addition, climate metrics calculated from downscaled 30 year climate normals were considered as predictors in both models, as were topographic metrics calculated from elevation data; these environmental predictors allowed AGB estimation over the full range of observations with the regional model (R ^2 = 0.8, RMSE = 152 Mg ha ^−1 , Bias = 9 Mg ha ^−1 ), including higher AGB values (>400 Mg ha ^−1 ) where spectral predictors alone saturate. For both the landscape and regional models, the machine-learning algorithm Random Forests (RF) was consistently applied to select predictor variables and estimate AGB. We then calibrated the regional AGB maps using field plot data systematically collected without bias by the national Forest Inventory and Analysis (FIA) Program. We found both our project landscape and regional, annual AGB estimates to be unbiased with respect to FIA estimates (Biases of 1% and 0.7%, respectively) and conclude that they are well suited to inform forest management and planning decisions by our contributing stakeholders. Social media abstract Lidar-based biomass estimates can be upscaled with Landsat data to regionally unbiased annual maps.
Author Falkowski, Michael J
McGaughey, Robert J
Filippelli, Steven K
Churchill, Derek J
Gould, Peter J
Dong, Jinwei
Corrao, Mark V
Tinkham, Wade T
Kennedy, Robert E
Crookston, Nicholas L
Bright, Benjamin C
Kane, Jonathan T
Domke, Grant M
Kane, Van R
Hudak, Andrew T
Fekety, Patrick A
Smith, Alistair M S
Author_xml – sequence: 1
  givenname: Andrew T
  orcidid: 0000-0001-7480-1458
  surname: Hudak
  fullname: Hudak, Andrew T
  email: andrew.hudak@usda.gov
  organization: Author to whom any correspondence should be addressed
– sequence: 2
  givenname: Patrick A
  surname: Fekety
  fullname: Fekety, Patrick A
  organization: Colorado State University, Natural Resources Ecology Laboratory, Fort Collins , Colorado, United States of America
– sequence: 3
  givenname: Van R
  surname: Kane
  fullname: Kane, Van R
  organization: University of Washington, School of Environmental and Forest Sciences , Seattle, WA 98195, United States of America
– sequence: 4
  givenname: Robert E
  orcidid: 0000-0002-5507-474X
  surname: Kennedy
  fullname: Kennedy, Robert E
  organization: Oregon State University, College of Earth, Ocean, and Atmospheric Sciences , Corvallis, Oregon, United States of America
– sequence: 5
  givenname: Steven K
  orcidid: 0000-0001-7291-0888
  surname: Filippelli
  fullname: Filippelli, Steven K
  organization: Colorado State University, Natural Resources Ecology Laboratory, Fort Collins , Colorado, United States of America
– sequence: 6
  givenname: Michael J
  surname: Falkowski
  fullname: Falkowski, Michael J
  organization: Colorado State University, Natural Resources Ecology Laboratory, Fort Collins , Colorado, United States of America
– sequence: 7
  givenname: Wade T
  surname: Tinkham
  fullname: Tinkham, Wade T
  organization: Colorado State University, Department of Forest and Rangeland Stewardship, Fort Collins , Colorado 80523, United States of America
– sequence: 8
  givenname: Alistair M S
  surname: Smith
  fullname: Smith, Alistair M S
  organization: University of Idaho, Department of Forest, Rangeland, and Fire Sciences , Idaho, United States of America
– sequence: 9
  givenname: Nicholas L
  surname: Crookston
  fullname: Crookston, Nicholas L
  organization: Private Forestry Consultant , Moscow, Idaho, United States of America
– sequence: 10
  givenname: Grant M
  surname: Domke
  fullname: Domke, Grant M
  organization: USDA Forest Service, Northern Research Station , St. Paul, Minnesota, United States of America
– sequence: 11
  givenname: Mark V
  surname: Corrao
  fullname: Corrao, Mark V
  organization: Northwest Management, Inc. , Moscow, ID 83843, United States of America
– sequence: 12
  givenname: Benjamin C
  surname: Bright
  fullname: Bright, Benjamin C
  organization: USDA Forest Service, Northern Research Station , St. Paul, Minnesota, United States of America
– sequence: 13
  givenname: Derek J
  surname: Churchill
  fullname: Churchill, Derek J
  organization: Washington State Department of Natural Resources , Olympia, Washington, United States of America
– sequence: 14
  givenname: Peter J
  surname: Gould
  fullname: Gould, Peter J
  organization: Washington State Department of Natural Resources , Olympia, Washington, United States of America
– sequence: 15
  givenname: Robert J
  surname: McGaughey
  fullname: McGaughey, Robert J
  organization: USDA Forest Service, Pacific Northwest Research Station , Seattle, Washington, United States of America
– sequence: 16
  givenname: Jonathan T
  surname: Kane
  fullname: Kane, Jonathan T
  organization: University of Washington, School of Environmental and Forest Sciences , Seattle, WA 98195, United States of America
– sequence: 17
  givenname: Jinwei
  orcidid: 0000-0001-5687-803X
  surname: Dong
  fullname: Dong, Jinwei
  organization: Chinese Academy of Sciences, Institute of Geographic Sciences and Natural Resource Research, Chaoyang District , Beijing, People's Republic of China
BookMark eNp9UU1r3TAQFCWFJmnvPQp6zWskS9bH8RHyBYEe2pzFWpYdPWzJkfUS8u8jx01aAi172GWYGXZ3jtBBiMEh9JWS75QodUolVxvNKnEKjWad_oAO36CDv-ZP6Gied4TUvJbqEPVbbCE1MeAxBp9j8qHH89Oc3Yi7mPAI07RAyfU-BhhOMISwhwFDEx9cn-I-tLjxcYR5xmBTLC3fORxiynePrvikgG9_bj-jjx0Ms_vyux-j24vzX2dXm5sfl9dn25uN5ZLnjRaKWNFWlFFtWcuJZJoyzVrKrNa8slQKxSiv69oVpGoY4Z1yoDS1DXGEHaPr1beNsDNT8iOkJxPBmxcgpt5Ayt4OzjjJWu0ksVIxrmmroWKC6loIJZtSxevb6jWleL8vt5hd3KfyhNlUtaoqQrhYWGJlvRyfXGesz5DLt3ICPxhKzBKQWRIwSwJmDagIyTvh67r_kZysEh-nP8v8k_4MhfChzg
CODEN ERLNAL
CitedBy_id crossref_primary_10_1080_19475705_2025_2471019
crossref_primary_10_1093_forestry_cpae034
crossref_primary_10_1007_s00477_022_02359_z
crossref_primary_10_1016_j_jclepro_2025_145616
crossref_primary_10_1139_cjfr_2023_0118
crossref_primary_10_3390_f16091430
crossref_primary_10_1016_j_foreco_2021_119640
crossref_primary_10_1093_jofore_fvab036
crossref_primary_10_1088_1748_9326_ad8be0
crossref_primary_10_1016_j_ecoinf_2023_102404
crossref_primary_10_1088_1748_9326_abd2ef
crossref_primary_10_1016_j_compeleceng_2024_109793
crossref_primary_10_1080_10106049_2022_2071475
crossref_primary_10_1017_eds_2024_53
crossref_primary_10_1016_j_rse_2025_114951
crossref_primary_10_3390_rs17162757
crossref_primary_10_1080_22797254_2024_2315413
crossref_primary_10_1093_forsci_fxae015
crossref_primary_10_3390_rs13020261
crossref_primary_10_1007_s44392_025_00029_w
crossref_primary_10_3390_rs15143550
crossref_primary_10_1016_j_envres_2024_119432
crossref_primary_10_1109_JSTARS_2022_3179819
crossref_primary_10_1016_j_jag_2022_103059
crossref_primary_10_1038_s41598_025_15585_6
crossref_primary_10_3390_rs15061548
crossref_primary_10_1038_s43247_024_01678_z
crossref_primary_10_3390_s24113488
crossref_primary_10_3390_fire6030108
crossref_primary_10_3390_rs14143480
crossref_primary_10_1016_j_apgeog_2024_103249
crossref_primary_10_3390_rs14091989
crossref_primary_10_3390_rs17101761
crossref_primary_10_3390_rs14236024
crossref_primary_10_3390_f11030362
crossref_primary_10_1088_1748_9326_ac5ee0
crossref_primary_10_1139_cjfr_2020_0433
crossref_primary_10_3390_rs16234586
crossref_primary_10_3390_rs13193910
crossref_primary_10_3390_rs14164097
crossref_primary_10_1016_j_foreco_2024_121894
crossref_primary_10_1016_j_rse_2023_113678
crossref_primary_10_18172_cig_6767
crossref_primary_10_1139_cjfr_2020_0424
crossref_primary_10_1186_s13021_024_00286_w
crossref_primary_10_1016_j_foreco_2021_119155
crossref_primary_10_3389_ffgc_2021_745916
crossref_primary_10_1016_j_forpol_2022_102778
crossref_primary_10_3390_rs14040935
crossref_primary_10_3390_land10070752
crossref_primary_10_1016_j_foreco_2023_121348
crossref_primary_10_1016_j_rsase_2025_101544
Cites_doi 10.5589/m10-037
10.1139/x98-166
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1016/j.foreco.2015.09.007
10.1016/j.rse.2019.02.015
10.1139/x02-011
10.1016/j.rse.2006.07.017
10.1080/014311600210119
10.1016/j.foreco.2015.10.042
10.1016/S0034-4257(96)00112-5
10.1016/j.rse.2014.01.025
10.1016/S0034-4257(02)00130-X
10.1080/02827580310019257
10.1016/j.rse.2016.01.015
10.1029/2011JG001708
10.1007/s40725-019-00087-2
10.1139/cjfr-2014-0405
10.1016/j.rse.2014.04.014
10.5589/m09-038
10.1186/s13021-018-0093-5
10.5589/m13-051
10.1186/1750-0680-9-3
10.1080/01431161.2020.1723173
10.3390/rs1040776
10.3390/rs8110933
10.2737/RDS-2009-0010
10.1007/s10661-015-4839-1
10.1139/x00-142
10.3390/rs10050691
10.1016/j.foreco.2008.11.022
10.3390/rs1040934
10.3133/ofr20161196
10.3390/rs11161919
10.1186/s13021-018-0104-6
10.1016/j.foreco.2013.06.044
10.5558/tfc2013-132
10.1016/j.rse.2018.02.002
10.1080/01431161.2012.693969
10.1016/j.foreco.2010.07.013
10.1023/A:1010933404324
10.1088/1748-9326/aa9d9e
10.1080/07038992.2018.1461557
10.1080/07038992.2016.1220826
10.1016/j.rse.2011.10.012
10.1016/j.rse.2007.08.021
10.1080/17538947.2016.1187673
10.1016/j.rse.2009.12.018
10.1139/X06-321
10.1016/j.isprsjprs.2014.08.014
10.1088/1748-9326/ab0bbe
10.1016/j.rse.2017.09.005
10.1080/01431160701736489
10.1186/s13021-020-00140-9
10.1007/s10021-013-9669-9
10.1088/1748-9326/aa8ea9
10.1016/j.rse.2012.08.022
10.1016/j.rse.2010.07.008
10.1007/s00267-014-0364-1
10.3390/rs6097878
10.1016/j.rse.2004.01.006
10.1186/s40663-016-0064-9
10.1080/07038992.2014.987376
10.1016/j.rse.2007.10.009
10.1080/02827580410019553
10.3390/rs11070795
10.1016/j.rse.2008.02.010
10.1139/cjfr-2018-0196
10.1016/j.rse.2009.08.017
10.1093/treephys/25.7.903
10.1016/j.foreco.2015.04.031
10.3390/rs70100229
10.1016/j.rse.2013.12.013
10.1016/j.foreco.2015.05.032
10.1016/j.rse.2017.11.019
10.1046/j.1466-822x.2002.00303.x
10.3390/f10050397
10.5589/m06-007
10.1139/X10-024
10.1016/j.rse.2015.05.005
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd
Copyright IOP Publishing Sep 2020
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd
– notice: Copyright IOP Publishing Sep 2020
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
DOA
DOI 10.1088/1748-9326/ab93f9
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
Environmental Science Database (subscripiton)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Forestry
DocumentTitleAlternate A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA
EISSN 1748-9326
ExternalDocumentID oai_doaj_org_article_e73d9e70c783491d9a2361956687b7b7
10_1088_1748_9326_ab93f9
erlab93f9
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NASA Carbon Monitoring Systems Program
  grantid: NNH15AZ06I
GroupedDBID 1JI
29G
2WC
5B3
5GY
5PX
5VS
7.Q
AAFWJ
AAHBH
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATCPS
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
BHPHI
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KNG
KQ8
LAP
M45
M48
M7S
M~E
N5L
N9A
O3W
OK1
P2P
PATMY
PIMPY
PJBAE
PTHSS
PYCSY
RIN
RNS
RO9
SY9
T37
TR2
TSCCA
W28
~02
AAYXX
AEINN
AEUYN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
L6V
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c474t-9680c6d21319c3d407391393d13c9942c1768314555e3c92b304f8ea891cb0e03
IEDL.DBID O3W
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565760100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-9326
IngestDate Fri Oct 03 12:41:14 EDT 2025
Wed Aug 13 04:56:01 EDT 2025
Sat Nov 29 06:16:51 EST 2025
Tue Nov 18 20:54:59 EST 2025
Wed Aug 21 03:33:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-9680c6d21319c3d407391393d13c9942c1768314555e3c92b304f8ea891cb0e03
Notes ERL-107637.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5507-474X
0000-0001-5687-803X
0000-0001-7291-0888
0000-0001-7480-1458
OpenAccessLink https://iopscience.iop.org/article/10.1088/1748-9326/ab93f9
PQID 2582200467
PQPubID 4998671
PageCount 17
ParticipantIDs crossref_citationtrail_10_1088_1748_9326_ab93f9
crossref_primary_10_1088_1748_9326_ab93f9
iop_journals_10_1088_1748_9326_ab93f9
doaj_primary_oai_doaj_org_article_e73d9e70c783491d9a2361956687b7b7
proquest_journals_2582200467
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Environmental research letters
PublicationTitleAbbrev ERL
PublicationTitleAlternate Environ. Res. Lett
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Crookston (erlab93f9bib14) 2016
Gregoire (erlab93f9bib37) 1998; 28
Ståhl (erlab93f9bib85) 2016; 3
Ohmann (erlab93f9bib71) 2002; 32
Cohen (erlab93f9bib12) 2016; 360
(erlab93f9bib92) 2011
Blackard (erlab93f9bib9) 2008; 112
Dixon (erlab93f9bib22) 2018
Simard (erlab93f9bib83) 2011; 116
Mcgaughey (erlab93f9bib66) 2015
Hermosilla (erlab93f9bib39) 2016; 9
Masek (erlab93f9bib64) 2015; 355
Fekety (erlab93f9bib30) 2020a; 15
Bell (erlab93f9bib6) 2015; 358
Johnson (erlab93f9bib51) 2015; 187
Avery (erlab93f9bib1) 2002
Qin (erlab93f9bib77) 2016; 8
Mondino (erlab93f9bib68) 2020; 41
Birdsey (erlab93f9bib7) 2015; 355
Fekety (erlab93f9bib34) 2020
Sexton (erlab93f9bib80) 2009; 257
Evans (erlab93f9bib29) 2017
Omernik (erlab93f9bib72) 2014; 54
Wang (erlab93f9bib93) 2018; 205
(erlab93f9bib13) 1997
Lefsky (erlab93f9bib61) 2001; 31
Dolan (erlab93f9bib23) 2017; 12
Shimada (erlab93f9bib82) 2014; 155
(erlab93f9bib17) 2019
(erlab93f9bib74) 2014
Qin (erlab93f9bib76) 2017; 201
Hurtt (erlab93f9bib47) 2019; 8
Latifi (erlab93f9bib58) 2012; 33
Hayashi (erlab93f9bib38) 2015; 7
Hudak (erlab93f9bib43) 2008; 112
Lefsky (erlab93f9bib59) 2002a; 11
Husch (erlab93f9bib48) 2003
Bechtold (erlab93f9bib4) 2005
Hyde (erlab93f9bib49) 2007; 106
Maltamo (erlab93f9bib62) 2004; 90
Huete (erlab93f9bib45) 1997; 59
Zhang (erlab93f9bib100) 2014; 151
Fekety (erlab93f9bib33) 2019
Johnson (erlab93f9bib52) 2014; 9
Kennedy (erlab93f9bib57) 2018b; 10
Rebain (erlab93f9bib78) 2015
Deo (erlab93f9bib19) 2016; 42
Robinson (erlab93f9bib79) 2005; 25
Tinkham (erlab93f9bib89) 2018; 48
Hyyppä (erlab93f9bib50) 2008; 29
Masek (erlab93f9bib65) 2008; 112
Miles (erlab93f9bib67) 2019
Banskota (erlab93f9bib3) 2014; 40
Steininger (erlab93f9bib86) 2000; 21
Smith (erlab93f9bib84) 2009; 35
Powell (erlab93f9bib75) 2010; 114
Zhu (erlab93f9bib101) 2015; 102
Breiman (erlab93f9bib10) 2001; 45
Zald (erlab93f9bib99) 2016; 176
Fekety (erlab93f9bib31) 2015; 45
Dong (erlab93f9bib25) 2012; 127
Fekety (erlab93f9bib35) 2020b
(erlab93f9bib91) 2018
Blackard (erlab93f9bib8) 2009
Urbazaev (erlab93f9bib90) 2018; 13
Buma (erlab93f9bib11) 2013; 306
Kane (erlab93f9bib53) 2010; 40
Wulder (erlab93f9bib96) 2013; 39
Zald (erlab93f9bib98) 2014; 143
Dixon (erlab93f9bib21) 2002
Kennedy (erlab93f9bib54) 2018a; 13
Evans (erlab93f9bib28) 2009; 1
Kennedy (erlab93f9bib56) 2010; 114
Durante (erlab93f9bib27) 2019; 11
Packard (erlab93f9bib73) 2007; 37
Wulder (erlab93f9bib97) 2019; 225
Deng (erlab93f9bib18) 2014; 6
White (erlab93f9bib95) 2018; 208
Masek (erlab93f9bib63) 2013; 16
Sugarbaker (erlab93f9bib88) 2017
Strunk (erlab93f9bib87) 2019; 10
Duncanson (erlab93f9bib26) 2010; 36
Crookston (erlab93f9bib16) 2010; 260
Fekety (erlab93f9bib32) 2018; 44
Kennedy (erlab93f9bib55) 2015; 166
Dong (erlab93f9bib24) 2003; 84
Hudak (erlab93f9bib42) 2006; 32
Næsset (erlab93f9bib70) 2004; 19
Sheridan (erlab93f9bib81) 2015; 7
Hudak (erlab93f9bib44) 2009; 1
Lefsky (erlab93f9bib60) 2002b; 52
Crookston (erlab93f9bib15) 2014
Bell (erlab93f9bib5) 2018; 13
Dietmaier (erlab93f9bib20) 2019; 11
Goodbody (erlab93f9bib36) 2019; 5
Hummel (erlab93f9bib46) 2011; 109
Næsset (erlab93f9bib69) 2004; 19
Avitabile (erlab93f9bib2) 2012; 117
White (erlab93f9bib94) 2013
Huang (erlab93f9bib41) 2010; 114
Homer (erlab93f9bib40) 2015; 81
References_xml – volume: 36
  start-page: 12
  year: 2010
  ident: erlab93f9bib26
  article-title: Integration of GLAS and Landsat TM data for aboveground biomass estimation
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m10-037
– volume: 28
  start-page: 1429
  year: 1998
  ident: erlab93f9bib37
  article-title: Design-based and model-based inference in survey sampling: appreciating the difference
  publication-title: Can. J. For. Res.
  doi: 10.1139/x98-166
– volume: 52
  start-page: 19
  year: 2002b
  ident: erlab93f9bib60
  article-title: Lidar remote sensing for ecosystem studies: lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists
  publication-title: BioScience
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– volume: 358
  start-page: 154
  year: 2015
  ident: erlab93f9bib6
  article-title: Imputed forest structure uncertainty varies across elevational and longitudinal gradients in the western Cascade Mountains, Oregon, USA
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2015.09.007
– volume: 225
  start-page: 127
  year: 2019
  ident: erlab93f9bib97
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– start-page: p 226
  year: 2002
  ident: erlab93f9bib21
  article-title: Essential FVS: A user’s guide to the Forest Vegetation Simulator
– volume: 32
  start-page: 725
  year: 2002
  ident: erlab93f9bib71
  article-title: Predictive mapping of forest composition and structure with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A.
  publication-title: Can. J. For. Res.
  doi: 10.1139/x02-011
– volume: 106
  start-page: 28
  year: 2007
  ident: erlab93f9bib49
  article-title: Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.07.017
– volume: 21
  start-page: 1139
  year: 2000
  ident: erlab93f9bib86
  article-title: Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210119
– volume: 360
  start-page: 242
  year: 2016
  ident: erlab93f9bib12
  article-title: Forest disturbance across the conterminous United States from 1985-2012: the emerging dominance of forest decline
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2015.10.042
– year: 2014
  ident: erlab93f9bib74
  article-title: ‘New global 25m-resolution PALSAR mosaic and forest/non-forest map (2007-2010) - version 1’
– volume: 59
  start-page: 440
  year: 1997
  ident: erlab93f9bib45
  article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00112-5
– volume: 151
  start-page: 44
  year: 2014
  ident: erlab93f9bib100
  article-title: Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.025
– volume: 84
  start-page: 393
  year: 2003
  ident: erlab93f9bib24
  article-title: Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00130-X
– volume: 19
  start-page: 164
  year: 2004
  ident: erlab93f9bib69
  article-title: Practical large-scale forest inventory using a small-footprint airborne scanning laser
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827580310019257
– volume: 176
  start-page: 188
  year: 2016
  ident: erlab93f9bib99
  article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.015
– volume: 116
  year: 2011
  ident: erlab93f9bib83
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res.
  doi: 10.1029/2011JG001708
– volume: 5
  start-page: 55
  year: 2019
  ident: erlab93f9bib36
  article-title: Digital aerial photogrammetry for updating area-based forest inventories: a review of opportunities, challenges, and future directions
  publication-title: Curr. For. Rep.
  doi: 10.1007/s40725-019-00087-2
– volume: 45
  start-page: 422
  year: 2015
  ident: erlab93f9bib31
  article-title: Temporal transferability of LiDAR-based imputation of forest structure attributes
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2014-0405
– volume: 155
  start-page: 13
  year: 2014
  ident: erlab93f9bib82
  article-title: New global forest/non-forest maps from ALOS PALSAR data (2007-2010)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.014
– year: 2016
  ident: erlab93f9bib14
  article-title: ‘Climate estimates and plant-climate relationships’
– volume: 35
  start-page: 447
  year: 2009
  ident: erlab93f9bib84
  article-title: A cross-comparison of field, spectral, and lidar estimates of forest canopy cover
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m09-038
– volume: 13
  start-page: 5
  year: 2018
  ident: erlab93f9bib90
  article-title: Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico
  publication-title: Carbon Balance Manage.
  doi: 10.1186/s13021-018-0093-5
– volume: 39
  start-page: 81
  year: 2013
  ident: erlab93f9bib96
  article-title: Status and prospects for LiDAR remote sensing of forested ecosystems
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m13-051
– year: 2002
  ident: erlab93f9bib1
– volume: 9
  start-page: 3
  year: 2014
  ident: erlab93f9bib52
  article-title: Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system
  publication-title: Carbon Balance Manage.
  doi: 10.1186/1750-0680-9-3
– volume: 41
  start-page: 4551
  year: 2020
  ident: erlab93f9bib68
  article-title: How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1723173
– volume: 1
  start-page: 776
  year: 2009
  ident: erlab93f9bib28
  article-title: Discrete return lidar in natural resources: recommendations for project planning, data processing, and deliverables
  publication-title: Remote Sens.
  doi: 10.3390/rs1040776
– volume: 8
  start-page: 933
  year: 2016
  ident: erlab93f9bib77
  article-title: Mapping annual forest cover in sub-humid and semi-arid regions through analysis of Landsat and PALSAR imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs8110933
– year: 2009
  ident: erlab93f9bib8
  doi: 10.2737/RDS-2009-0010
– volume: 187
  start-page: 1658
  year: 2015
  ident: erlab93f9bib51
  article-title: Integrating LIDAR and forest inventories to fill the trees outside forests data gap
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4839-1
– volume: 31
  start-page: 78
  year: 2001
  ident: erlab93f9bib61
  article-title: An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon
  publication-title: Can. J. For. Res.
  doi: 10.1139/x00-142
– volume: 10
  start-page: 691
  year: 2018b
  ident: erlab93f9bib57
  article-title: Implementation of the LandTrendr algorithm on Google Earth Engine
  publication-title: Remote Sens.
  doi: 10.3390/rs10050691
– start-page: p 403
  year: 2015
  ident: erlab93f9bib78
  article-title: The fire and fuels extension to the forest vegetation simulator: updated model documentation
– volume: 257
  start-page: 1136
  year: 2009
  ident: erlab93f9bib80
  article-title: A comparison of LiDAR, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2008.11.022
– volume: 1
  start-page: 934
  year: 2009
  ident: erlab93f9bib44
  article-title: Review: LiDAR utility for natural resource managers
  publication-title: Remote Sens.
  doi: 10.3390/rs1040934
– start-page: p 13
  year: 2017
  ident: erlab93f9bib88
  article-title: Status of the 3D elevation program
  doi: 10.3133/ofr20161196
– year: 2019
  ident: erlab93f9bib67
  article-title: ‘Forest Inventory EVALIDator web-application Version 1.6.0.03’
– volume: 11
  start-page: 16
  year: 2019
  ident: erlab93f9bib20
  article-title: Comparison of LiDAR and digital aerial photogrammetry for characterizing canopy openings in the boreal forest of northern Alberta
  publication-title: Remote Sens.
  doi: 10.3390/rs11161919
– year: 2019
  ident: erlab93f9bib17
  article-title: ‘Weather averages for the United States’
– volume: 13
  start-page: 15
  year: 2018
  ident: erlab93f9bib5
  article-title: Multiscale divergence between Landsatand lidar‐based biomass mapping is related to regional variation in canopy cover and composition
  publication-title: Carbon Balance Manage.
  doi: 10.1186/s13021-018-0104-6
– volume: 306
  start-page: 216
  year: 2013
  ident: erlab93f9bib11
  article-title: Forest resilience, climate change, and opportunities for adaptation: A specific case of a general problem
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2013.06.044
– year: 2013
  ident: erlab93f9bib94
  article-title: A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach
  doi: 10.5558/tfc2013-132
– volume: 208
  start-page: 1
  year: 2018
  ident: erlab93f9bib95
  article-title: Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.002
– volume: 33
  start-page: 6668
  year: 2012
  ident: erlab93f9bib58
  article-title: Evaluation of most similar neighbor and random forest methods for imputing forest inventory variables using data from target and auxiliary stands
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.693969
– start-page: p 71
  year: 1997
  ident: erlab93f9bib13
– volume: 260
  start-page: 1198
  year: 2010
  ident: erlab93f9bib16
  article-title: Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2010.07.013
– year: 2020b
  ident: erlab93f9bib35
– year: 2011
  ident: erlab93f9bib92
  article-title: ‘National Land Cover, version 2’
– volume: 45
  start-page: 5
  year: 2001
  ident: erlab93f9bib10
  article-title: Random forests
  publication-title: Mach Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  year: 2018a
  ident: erlab93f9bib54
  article-title: An empirical, integrated forest biomass monitoring system
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa9d9e
– volume: 44
  start-page: 131
  year: 2018
  ident: erlab93f9bib32
  article-title: Transferability of lidar-derived basal area and stem density models within a northern Idaho ecoregion
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2018.1461557
– volume: 42
  start-page: 428
  year: 2016
  ident: erlab93f9bib19
  article-title: Optimizing variable radius plot size and LiDAR resolution to model standing volume in conifer forests
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1220826
– volume: 117
  start-page: 366
  year: 2012
  ident: erlab93f9bib2
  article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.012
– volume: 112
  start-page: 1658
  year: 2008
  ident: erlab93f9bib9
  article-title: Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.08.021
– volume: 9
  start-page: 1035
  year: 2016
  ident: erlab93f9bib39
  article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2016.1187673
– volume: 114
  start-page: 1053
  year: 2010
  ident: erlab93f9bib75
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.12.018
– year: 2018
  ident: erlab93f9bib91
  article-title: ‘USGS EROS archive - Digital elevation - Shuttle radar topography mission (SRTM) 1 Arc-Second Global’
– year: 2018
  ident: erlab93f9bib22
  article-title: Essential FVS: A User’s Guide to the Forest Vegetation Simulator
– volume: 37
  start-page: 1460
  year: 2007
  ident: erlab93f9bib73
  article-title: Forest sampling combing fixed- and variable-radius sample plots
  publication-title: Can. J. For. Res.
  doi: 10.1139/X06-321
– volume: 7
  start-page: 49
  year: 2015
  ident: erlab93f9bib38
  article-title: Evaluation of alternative methods for using LiDAR to predict aboveground biomass in mixed species and structurally complex forests in northeastern North America
  publication-title: Math. Comput. For. Nat. Resour. Sci.
– volume: 102
  start-page: 222
  year: 2015
  ident: erlab93f9bib101
  article-title: Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.isprsjprs.2014.08.014
– volume: 8
  year: 2019
  ident: erlab93f9bib47
  article-title: Beyond MRV: high-resolution forest carbon modeling for climate mitigation planning over Maryland, USA
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab0bbe
– volume: 201
  start-page: 73
  year: 2017
  ident: erlab93f9bib76
  article-title: Annual dynamics of forest areas in South America during 2007–2010 at 50-m spatial resolution
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.005
– volume: 29
  start-page: 1339
  year: 2008
  ident: erlab93f9bib50
  article-title: Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701736489
– volume: 15
  start-page: 5
  year: 2020a
  ident: erlab93f9bib30
  article-title: Hundred year projected carbon loads and species compositions for four National Forests in the northwestern USA
  publication-title: Carbon Balance Manage.
  doi: 10.1186/s13021-020-00140-9
– volume: 16
  start-page: 1087
  year: 2013
  ident: erlab93f9bib63
  article-title: United States forest disturbance trends observed with Landsat time series
  publication-title: Ecosystems
  doi: 10.1007/s10021-013-9669-9
– volume: 12
  year: 2017
  ident: erlab93f9bib23
  article-title: Disturbance distance: quantifying forests’ vulnerability to disturbance under current and future conditions
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa8ea9
– volume: 127
  start-page: 60
  year: 2012
  ident: erlab93f9bib25
  article-title: A comparison of forest cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and FRA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.022
– volume: 114
  start-page: 2897
  year: 2010
  ident: erlab93f9bib56
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
– start-page: p 38
  year: 2014
  ident: erlab93f9bib15
  article-title: Climate-FVS Version 2: content, users guide, applications, and behavior
– volume: 54
  start-page: 1249
  year: 2014
  ident: erlab93f9bib72
  article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-014-0364-1
– volume: 6
  start-page: 7878
  year: 2014
  ident: erlab93f9bib18
  article-title: Estimating forest aboveground biomass by combining ALOS PALSAR and WorldView-2 data: A case study at Purple Mountain National Park, Nanjing, China
  publication-title: Remote Sens.
  doi: 10.3390/rs6097878
– volume: 90
  start-page: 319
  year: 2004
  ident: erlab93f9bib62
  article-title: Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.01.006
– volume: 3
  start-page: 5
  year: 2016
  ident: erlab93f9bib85
  article-title: Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation
  publication-title: For. Ecosyst.
  doi: 10.1186/s40663-016-0064-9
– volume: 40
  start-page: 362
  year: 2014
  ident: erlab93f9bib3
  article-title: Forest monitoring using Landsat time series data: A review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2014.987376
– volume: 112
  start-page: 2232
  year: 2008
  ident: erlab93f9bib43
  article-title: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.10.009
– volume: 19
  start-page: 482
  year: 2004
  ident: erlab93f9bib70
  article-title: Laser scanning of forest resources: the Nordic experience
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827580410019553
– start-page: p 85
  year: 2005
  ident: erlab93f9bib4
  article-title: The enhanced forest inventory and analysis program - national sampling design and estimation procedures
– volume: 11
  start-page: 795
  year: 2019
  ident: erlab93f9bib27
  article-title: Improving aboveground forest biomass maps: from high-resolution to national scale
  publication-title: Remote Sens.
  doi: 10.3390/rs11070795
– volume: 112
  start-page: 2914
  year: 2008
  ident: erlab93f9bib65
  article-title: North American forest disturbance mapped from a decadal Landsat record
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.010
– volume: 48
  start-page: 1251
  year: 2018
  ident: erlab93f9bib89
  article-title: Applications of the United States forest inventory and analysis dataset: a review and future directions
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2018-0196
– volume: 81
  start-page: 345
  year: 2015
  ident: erlab93f9bib40
  article-title: Completion of the 2011 National Land Cover Database for the Conterminous United States – representing a decade of land cover change information
  publication-title: Photogram. Eng. Remote Sens.
– volume: 114
  start-page: 183
  year: 2010
  ident: erlab93f9bib41
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.017
– volume: 25
  start-page: 903
  year: 2005
  ident: erlab93f9bib79
  article-title: A regression-based equivalence test for model validation: shifting the burden of proof
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/25.7.903
– volume: 355
  start-page: 83
  year: 2015
  ident: erlab93f9bib7
  article-title: Trends in management of the world’s forests and impacts on carbon stocks
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2015.04.031
– year: 2015
  ident: erlab93f9bib66
– year: 2017
  ident: erlab93f9bib29
  article-title: ‘rfUtilities: random forests model selection and performance evaluation R package version 2.1-1’
– volume: 7
  start-page: 229
  year: 2015
  ident: erlab93f9bib81
  article-title: Modeling forest aboveground biomass and volume using airborne LiDAR metrics and forest inventory and analysis data in the Pacific Northwest
  publication-title: Remote Sens.
  doi: 10.3390/rs70100229
– volume: 143
  start-page: 26
  year: 2014
  ident: erlab93f9bib98
  article-title: Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.013
– year: 2020
  ident: erlab93f9bib34
– volume: 355
  start-page: 109
  year: 2015
  ident: erlab93f9bib64
  article-title: The role of remote sensing in process-scaling of managed forest ecosystems
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2015.05.032
– volume: 205
  start-page: 166
  year: 2018
  ident: erlab93f9bib93
  article-title: Characterizing the encroachment of juniper forests into sub-humid and semi-arid prairies from 1984 to 2010 using PALSAR and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.019
– volume: 11
  start-page: 393
  year: 2002a
  ident: erlab93f9bib59
  article-title: Lidar remote sensing of above-ground biomass in three biomes
  publication-title: Glob. Ecol. Biogeog.
  doi: 10.1046/j.1466-822x.2002.00303.x
– volume: 10
  start-page: 397
  year: 2019
  ident: erlab93f9bib87
  article-title: Large area forest yield estimation with pushbroom digital aerial photogrammetry
  publication-title: Forests
  doi: 10.3390/f10050397
– volume: 32
  start-page: 126
  year: 2006
  ident: erlab93f9bib42
  article-title: Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m06-007
– volume: 40
  start-page: 761
  year: 2010
  ident: erlab93f9bib53
  article-title: Comparisons between field- and LiDAR-based measures of stand structural complexity
  publication-title: Can. J. For. Res.
  doi: 10.1139/X10-024
– volume: 109
  start-page: 267
  year: 2011
  ident: erlab93f9bib46
  article-title: A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest
  publication-title: J. For.
– year: 2003
  ident: erlab93f9bib48
– year: 2019
  ident: erlab93f9bib33
– volume: 166
  start-page: 271
  year: 2015
  ident: erlab93f9bib55
  article-title: Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.05.005
SSID ssj0054578
Score 2.5173922
Snippet This paper presents a prototype Carbon Monitoring System (CMS) developed to produce regionally unbiased annual estimates of aboveground biomass (AGB). Our CMS...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95003
SubjectTerms Algorithms
Bias
Biomass
Carbon
Climate models
Commercial Off-The-Shelf (COTS) lidar
Decision trees
Elevation
Estimates
Forest Inventory and Analysis (FIA)
Forest management
Forestry
Forests
Landsat
landsat image time series
Landsat satellites
Landscape
LandTrendr
Learning algorithms
Lidar
Machine learning
Monitoring
Monitoring systems
National forests
Remote sensing
reporting
Satellite imagery
verification (MRV)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHgRX8VqlRz0ILjsI9tNcqzS4qkIWuht2Ty2FOy2tLW_35lk2ypCvXjdzWbDPDJfHvMNIXc2liXEaR1EpZIBRCgWFEzFgeLKyKTDFPiUKzbBBwMxGsnXb6W-8E6Ypwf2ggstZ0ZaHmmsCCFjIwukCwFUnwkOHbo8ckA9m8WUn4MBFnBRH0qCG4UAu8GtAamEhZKslD-CkOPqh9Aymc1_TcguyvRPyHEND2nXD-uUHNjqjDR7u2w0eFm74_KcjLtUFws1q-jUuSbu0VHPzUwBjNJpgewLY4rVFxBxP1JPQUpB82uLCR2VoZiADwiaFm6sFAAhrVyNdc-hQIdv3Qsy7Pfen1-CunJCoFOergKZiUhnJonBwTQzKR7HAdRjJmZayjTRMawyGHKUdyw8SRSL0lLYQshYq8hGrEka1ayyl4RCHyBvE4kUhJilRsKCTEsbW2bTkpW8RcKNKHNd04pjdYuP3B1vC5Gj8HMUfu6F3yIP2y_mnlJjT9sn1M62HZJhuwdgInltIvlfJtIi96DbvHbO5Z6ftTfa3zVOOgChcBeBX_3HWK7JUYIrdndLrU0aq8WnvSGHer2aLBe3zoi_ANkS8eQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5iZZq4bIwNwcYmH7YD0qLGsRvbp6lMRTtVCIbELYp_pEKCpLSFv3_vOS4VmtTLro6TOHrv-X3Pjr8P4FvgpsE87bK8sSbDDCWyWlieWWW9KUbCYkxFsQk1neqbG3ORFtyW6bfK9ZwYJ2rfOVojHxYjTGVUzamf84eMVKNodzVJaLyCXWIqkwPYPZtMLy7XczHCA6XT5iSG0xDhN4Y3IpZhbY1ozItkFDn7McXcdvN_JuaYbc7f_e849-Ftwpls3DvGe9gJ7QEcTjbH2vBiiuvlAbwhhU6SffsAszFz9cJ2LbuP4U7rfqzne2YIcNl9TYwOM0aKDoTif7Ce1pShNz0FOiTSekaH-hGVszp-N0OQydqo297zMrDrq_FHuD6f_Pn1O0tqDJmTSq4yU-rclb7gGLROeElbfAgfhefCGSMLx7FyEcR7PgrYUliRy0aHWhvubB5ycQiDtmvDETB8hii5z7VEg5TSGyzynAk8iCAb0ahjGK7NUrlEVU6KGXdV3DLXuiJDVmTIqjfkMZw-3zHvaTq29D0jSz_3I4Lt2NAtZlWK1yoo4U1QuSMhEsO9qYmlBovJUiv0Yxzid_STKgX8csvLTtZusum88ZFP2y9_hr2C6vv4T9sJDFaLx_AFXrun1e1y8TU5-1_shQXu
  priority: 102
  providerName: ProQuest
Title A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA
URI https://iopscience.iop.org/article/10.1088/1748-9326/ab93f9
https://www.proquest.com/docview/2582200467
https://doaj.org/article/e73d9e70c783491d9a2361956687b7b7
Volume 15
WOSCitedRecordID wos000565760100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: O3W
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: M7S
  dateStart: 20061101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: PATMY
  dateStart: 20061101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: BENPR
  dateStart: 20061101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: PIMPY
  dateStart: 20061101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5B4MCFPigCSqM9lAMSbrxex7urnkIV1B4aogICTpb3YVSpOChJc-xv78x6E4RaoUq9WJa99trz2Pn29Q3Ae891jXHaJmltdIIRSiSVMDwx0jid9YVBnwrJJuRopG5u9HgNPq72wkweYtP_AU9bouBWhHFBnOohhkYfRdjRq4wWtV6HDaH6BRn5ubheNsOIDKSK85J_e-pJHAp0_RhdsMo_2uQQaM5e_NcnvoTtiC_ZoC36CtZ88xp2h4_b2fBm9OfZDtwNmK2mZtKw--DbNMjHWnJnhmiW3VdE33DHKH0DQfYT1nKYMjSdhacdIY1jtIMfITirwp8yRJSsCUnaWxIGdnUxeANXZ8PLT5-TmHohsbnM54kuVGoLl3H0UCtcTvN5iBWF48JqnWeWYzdFEMl53-OVzIg0r5WvlObWpD4Vu9BpJo3fA4bvEAV3qcpRKkXuNPborPbcC5_Xopb70FsqorSRl5zSY_wow_y4UiVJsyRplq009-F49cRDy8nxTNlT0u2qHLFphwuotjKqrfRSOO1lainriOZOV0RJgz3HQkk0WvzEI9R0Gb179kxlh0vbeSyc9RGD0TCEPPjH17yFrYx69WEl2yF05tOf_h1s2sX8-2zahY3T4Wj8rRtGD7q0VvWCjr-G3WD_eH_85ev49jc4FwIn
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKQI2PAoVhQKzoAskrNgexzOzQChAq0Zto0i0UlkNnoejStQOSSjip_hG7h3bjRBSdl2wtcev8bmveZwD8NonqsQ4baO4NCrCCMWjgpskMsI4lQ64QZsKYhNiPJbn52qyAb-7vTC0rLLzicFRu9rSGHk_HWAoo2pOvJ99j0g1imZXOwmNBhZH_tdPLNkW70af8P_upenB_unHw6hVFYhsJrJlpHIZ29ylCYLPcpfRVBWmQdwl3CqVpTbBDJwTf_fA45HUYMFfSl9IlVgT-5jjfW_BZoZglz3YnIxOJl8634_piJDtZCiabx_TfXQnmCH1C6N4qf4KfkEjAEPaRT37JxCE6Hbw4H_rl4dwv82j2bAB_iPY8NUWbO-vtu3hydZvLbbgDimQkqzdY5gOmS3mpq7YZXBnNK7JGj5rhgk8uyyIsWLKSLGCqpS3rKFtZWgtV542wVSOEWkBVh2sCP3MMIlmVdClb3gn2Nnn4RM4u5Hv34ZeVVf-KTC8B88TF8sMAZBnTmERa5VPPPdZyUuxA_0OBtq2VOykCPJNhyUBUmoCjibg6AY4O_Dm-opZQ0Oypu0HQtZ1OyIQDwfq-VS3_kh7wZ3yIrYktKISpwpi4cFiOZcC7RRfcQ9xqVuHtljzsN0OlqvGK0w-W3_6Fdw9PD051sej8dFzuJfSWEZYv7cLveX8h38Bt-3V8mIxf9kaGoOvN43hP5SQXkw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgqRAXoC9RKOADHJCabpxJYvu4QFegoqUSVPRmxY9Uldrsanfp72fG8W6FqKpK3CLHdpwZj-fz6xvG3gWhW_TTLstbqzP0UJA1YEVmpfW6qMCiTcVgE3IyUWdn-iTFOY13YaazNPQf4mNPFNyLMB2IU0PE0GijCDuGjdXQ6uHMtw_ZowoqoNgN3-HXaihGdCBV2pu8reRfvihS9qOHwc_-My5HZzN-9t_NfM6eJpzJR332TfYgdFts9-jmWhu-THa92GbnI-6auZ12_CraOC328Z7kmSOq5VcN0TiccwrjQND9gPdcphy70HWgmyGd53STH6E4b-LfckSWvIvB2nsyBn76Y7TDTsdHPz99yVIIhsyVslxmula5q30h0FId-JL29RAzghfgtC4LJ3C6AkR2XgVMKSzkZatCo7RwNg857LJBN-3CC8axDqiFz1WJkqlLr3Fm53QQAULZQiv32HClDOMSPzmFybg0cZ9cKUMSNSRR00t0j31Yl5j13Bx35P1I-l3nI1btmICqM0l1JkjwOsjcUfQRLbxuiJoGZ5C1kth5sYnvUdsmWfnijo_tr_rPTeaiQixGyxHy5T2recsen3wem29fJ8ev2JOCJvrxcNs-Gyznv8NrtuGulxeL-ZvY6f8AdTwBHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+carbon+monitoring+system+for+mapping+regional%2C+annual+aboveground+biomass+across+the+northwestern+USA&rft.jtitle=Environmental+research+letters&rft.au=Hudak%2C+Andrew+T&rft.au=Fekety%2C+Patrick+A&rft.au=Kane%2C+Van+R&rft.au=Kennedy%2C+Robert+E&rft.date=2020-09-01&rft.pub=IOP+Publishing&rft.eissn=1748-9326&rft.volume=15&rft.issue=9&rft_id=info:doi/10.1088%2F1748-9326%2Fab93f9&rft.externalDocID=erlab93f9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon