Boolean functions with multiplicative complexity 3 and 4

Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta ( 2002 ), and Find et al. (IJICoT 4 (4), 222–236, 2017 ), respe...

Full description

Saved in:
Bibliographic Details
Published in:Cryptography and communications Vol. 12; no. 5; pp. 935 - 946
Main Authors: Çalık, Çağdaş, Turan, Meltem Sönmez, Peralta, René
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2020
Springer Nature B.V
Subjects:
ISSN:1936-2447, 1936-2455
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta ( 2002 ), and Find et al. (IJICoT 4 (4), 222–236, 2017 ), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension d i m ( f ) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least ⌈ d i m ( f )/2⌉. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. ( 2018 ). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n -variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.
AbstractList Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta ( 2002 ), and Find et al. (IJICoT 4 (4), 222–236, 2017 ), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension d i m ( f ) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least ⌈ d i m ( f )/2⌉. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. ( 2018 ). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n -variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.
Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta (2002), and Find et al. (IJICoT 4(4), 222–236, 2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least ⌈dim(f)/2⌉. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.
Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least [dim(f)/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least [dim(f)/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.
Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least [dim(f)/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.
Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension ( ) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of is at least [ ( )/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of -variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.
Author Çalık, Çağdaş
Peralta, René
Turan, Meltem Sönmez
Author_xml – sequence: 1
  givenname: Çağdaş
  orcidid: 0000-0003-1895-7719
  surname: Çalık
  fullname: Çalık, Çağdaş
  email: cagdas.calik@nist.gov
  organization: NIST Computer Security Division
– sequence: 2
  givenname: Meltem Sönmez
  surname: Turan
  fullname: Turan, Meltem Sönmez
  organization: NIST Computer Security Division
– sequence: 3
  givenname: René
  surname: Peralta
  fullname: Peralta, René
  organization: NIST Computer Security Division
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33654507$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LHTEUxUNR6kf7D3RRBtx0MzXfyWwKKlYLghu7DjFzRyOZ5HWSeVb_evP61KoLVzdwf-dwcs8O2ogpAkJfCP5OMFb7mVDciRZT3GLMuWjvP6Bt0jHZUi7ExvObqy20k_MNxlJQzj6iLcak4AKrbaQPUwpgYzPM0RWfYm5ufbluxjkUvwje2eKX0Lg0LgL89eWuYY2NfcM_oc3BhgyfH-cu-v3z-OLotD07P_l1dHDWOq54aTsimeYO7CVYyQjuuZMdpT0D7QhmdhWjt8RZiq0QrrfAiCTQcz0MyjnCdtGPte9ivhyhdxDLZINZTH60051J1pvXm-ivzVVaGtURTZWsBt8eDab0Z4ZczOizgxBshDRnQ3knKVOdxhXde4PepHmK9XuVYkpr3mlWqa8vEz1HeTpqBfQacFPKeYLBOF_s6rg1oA-GYLPqz6z7M7U_868_c1-l9I30yf1dEVuLcoXjFUz_Y7-jegD7ya2j
CitedBy_id crossref_primary_10_1109_TC_2022_3141249
Cites_doi 10.1016/0304-3975(92)90235-8
10.1504/IJICOT.2017.086890
10.1006/jabr.1995.1043
10.1007/978-3-319-06686-8_13
10.1007/s12095-019-00377-3
10.1007/11523468_27
10.1007/978-3-319-96884-1_22
10.1007/3-540-47555-9_8
10.1016/S0304-3975(99)00182-6
10.1007/s12095-018-0297-2
10.1007/3-540-51083-4_47
10.1007/978-3-662-46800-5_17
10.1109/TIT.1972.1054732
10.1145/2090236.2090262
10.1007/s001450010011
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020.
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1007/s12095-020-00445-z
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
ProQuest Computer Science Collection
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1936-2455
EndPage 946
ExternalDocumentID PMC7918276
33654507
10_1007_s12095_020_00445_z
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29F
2JY
2KG
2VQ
2~H
30V
4.4
406
408
40D
5GY
5VS
6NX
875
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HG6
HMJXF
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PT4
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3B
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABJCF
ABRTQ
ADKFA
AFDZB
AFFHD
AFKRA
AFOHR
AHPBZ
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c474t-916384ceabea6310d4c6922d3e8c103a5450da1ca20a55cdae3161ed48ff7cc13
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549667000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-2447
IngestDate Tue Nov 04 01:57:56 EST 2025
Thu Jul 10 22:46:39 EDT 2025
Thu Sep 25 20:06:31 EDT 2025
Mon Jul 21 05:35:52 EDT 2025
Tue Nov 18 21:56:00 EST 2025
Sat Nov 29 03:51:32 EST 2025
Fri Feb 21 02:49:08 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 06E30
Boolean functions
94A60
Affine equivalence
Multiplicative complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-916384ceabea6310d4c6922d3e8c103a5450da1ca20a55cdae3161ed48ff7cc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1895-7719
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7918276
PMID 33654507
PQID 2437884983
PQPubID 2043935
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7918276
proquest_miscellaneous_2496237980
proquest_journals_2437884983
pubmed_primary_33654507
crossref_citationtrail_10_1007_s12095_020_00445_z
crossref_primary_10_1007_s12095_020_00445_z
springer_journals_10_1007_s12095_020_00445_z
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Discrete Structures, Boolean Functions and Sequences
PublicationTitle Cryptography and communications
PublicationTitleAbbrev Cryptogr. Commun
PublicationTitleAlternate Cryptogr Commun
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Schnorr, C-P: The multiplicative complexity of Boolean functions. In: AAECC, pp 45–58 (1988)
Albrecht, MR, Rechberger, C, Schneider, T, Tiessen, T, Zohner, M: Ciphers for MPC and FHE. In: Oswald, E, Fischlin, M (eds.) Advances in Cryptology—EUROCRYPT 2015—34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26–30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pp 430–454. Springer, Berlin (2015)
Braeken, A, Borissov, YL, Nikova, S, Preneel, B: Classification of Boolean functions of 6 variables or less with respect to some cryptographic properties. In: Caires, L, Italiano, GF, Monteiro, L, Palamidessi, C, Yung, M (eds.) ICALP, volume 3580 of Lecture Notes in Computer Science, pp 324–334. Springer, Berlin (2005)
FindMGSmith-ToneDTuranMSThe number of Boolean functions with multiplicative complexity 2IJICoT201744222236370869410.1504/IJICOT.2017.086890
ÇalıkÇTuranMSPeraltaRThe multiplicative complexity of 6-variable boolean functionsCryptogr. Commun.201911193107389582510.1007/s12095-018-0297-2
Brakerski, Z, Gentry, C, Vaikuntanathan, V: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S (ed.) Innovations in Theoretical Computer Science, January 8–10, 2012, p 2012, Cambridge (2012)
HouX-DAGL(m,2) acting on R(r, m)/R(s,m)J. Algebra19951713927938131592810.1006/jabr.1995.1043
MirwaldRSchnorrC-PThe multiplicative complexity of quadratic Boolean formsTheor. Comput. Sci.19921022307328117473710.1016/0304-3975(92)90235-8
Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Universiteit Leuven (1993)
BoyarJPeraltaRPochuevDOn the multiplicative complexity of Boolean functions over the basis (∧, ⊕, 1)Theor. Comput. Sci.200023514357176596410.1016/S0304-3975(99)00182-6
Uyan, E: Analysis of Boolean functions with respect to Walsh Spectrum. PhD thesis, Middle East Technical University (2013)
Fuller, JE: Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland University of Technology (2003)
NIST Computer Security Division. Circuit Complexity Project Repository, https://github.com/usnistgov/Circuits
Find, MG: On the complexity of computing two nonlinearity measures. In: Computer Science - Theory and Applications - 9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Proceedings, pp 167–175 (2014)
BerlekampERWelchLRWeight distributions of the cosets of the (32, 6) Reed-Muller codeIEEE Trans. Inf. Theory197218120320739605410.1109/TIT.1972.1054732
Nyberg, K: On the construction of highly nonlinear permutations. In: Rueppel, RA (ed.) Advances in Cryptology - EUROCRYPT ’92, Workshop on the Theory and Application of of Cryptographic Techniques, Balatonfüred, Hungary, May 24–28, 1992, Proceedings, volume 658 of Lecture Notes in Computer Science, pp 92–98. Springer, Berlin (1992)
TuranMSPeraltaRThe Multiplicative Complexity of Boolean Functions on Four and Five Variables2015ChamSpringer International Publishing21331382.94167
Fischer, M. J., Peralta, R.: Counting Predicates of Conjunctive Complexity One. Yale Technical Report 1222 (2002)
BoyarJDamgårdIPeraltaRShort non-interactive cryptographic proofsJ. Cryptol.2000134449472178851510.1007/s001450010011
Dobraunig, C, Eichlseder, M, Grassi, L, Lallemand, V, Leander, G, List, E, Mendel, F, Rechberger, C: Rasta: a cipher with low ANDdepth and few ANDs per bit. In: CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pp 662–692. Springer, Berlin (2018)
BrandãoLTANÇalıkÇTuranMSPeraltaRUpper bounds on the multiplicative complexity of symmetric boolean functionsCryptogr. Commun.201911613391362403317810.1007/s12095-019-00377-3
Kolesnikov, V, Schneider, T: Improved garbled circuit: free XOR gates and applications. In: Aceto, L, Damgård, I, Goldberg, L.A., Halldórsson, MM, Ingólfsdóttir, A, Walukiewicz, I (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pp 486–498. Springer, Berlin (2008)
MaioranaJAA classification of the cosets of the Reed-Muller code R(1,6)Math. Comput.19915719540341410790270724.94016
Ç Çalık (445_CR8) 2019; 11
LTAN Brandão (445_CR7) 2019; 11
X-D Hou (445_CR14) 1995; 171
MG Find (445_CR11) 2017; 4
JA Maiorana (445_CR16) 1991; 57
445_CR6
445_CR5
445_CR18
445_CR19
445_CR1
ER Berlekamp (445_CR2) 1972; 18
445_CR15
J Boyar (445_CR3) 2000; 13
445_CR10
445_CR21
MS Turan (445_CR22) 2015
445_CR12
445_CR23
445_CR9
445_CR13
R Mirwald (445_CR17) 1992; 102
445_CR20
J Boyar (445_CR4) 2000; 235
References_xml – reference: Brakerski, Z, Gentry, C, Vaikuntanathan, V: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S (ed.) Innovations in Theoretical Computer Science, January 8–10, 2012, p 2012, Cambridge (2012)
– reference: Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Universiteit Leuven (1993)
– reference: Schnorr, C-P: The multiplicative complexity of Boolean functions. In: AAECC, pp 45–58 (1988)
– reference: TuranMSPeraltaRThe Multiplicative Complexity of Boolean Functions on Four and Five Variables2015ChamSpringer International Publishing21331382.94167
– reference: Albrecht, MR, Rechberger, C, Schneider, T, Tiessen, T, Zohner, M: Ciphers for MPC and FHE. In: Oswald, E, Fischlin, M (eds.) Advances in Cryptology—EUROCRYPT 2015—34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26–30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pp 430–454. Springer, Berlin (2015)
– reference: MirwaldRSchnorrC-PThe multiplicative complexity of quadratic Boolean formsTheor. Comput. Sci.19921022307328117473710.1016/0304-3975(92)90235-8
– reference: Nyberg, K: On the construction of highly nonlinear permutations. In: Rueppel, RA (ed.) Advances in Cryptology - EUROCRYPT ’92, Workshop on the Theory and Application of of Cryptographic Techniques, Balatonfüred, Hungary, May 24–28, 1992, Proceedings, volume 658 of Lecture Notes in Computer Science, pp 92–98. Springer, Berlin (1992)
– reference: ÇalıkÇTuranMSPeraltaRThe multiplicative complexity of 6-variable boolean functionsCryptogr. Commun.201911193107389582510.1007/s12095-018-0297-2
– reference: BoyarJDamgårdIPeraltaRShort non-interactive cryptographic proofsJ. Cryptol.2000134449472178851510.1007/s001450010011
– reference: Find, MG: On the complexity of computing two nonlinearity measures. In: Computer Science - Theory and Applications - 9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Proceedings, pp 167–175 (2014)
– reference: FindMGSmith-ToneDTuranMSThe number of Boolean functions with multiplicative complexity 2IJICoT201744222236370869410.1504/IJICOT.2017.086890
– reference: Fuller, JE: Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland University of Technology (2003)
– reference: Braeken, A, Borissov, YL, Nikova, S, Preneel, B: Classification of Boolean functions of 6 variables or less with respect to some cryptographic properties. In: Caires, L, Italiano, GF, Monteiro, L, Palamidessi, C, Yung, M (eds.) ICALP, volume 3580 of Lecture Notes in Computer Science, pp 324–334. Springer, Berlin (2005)
– reference: BrandãoLTANÇalıkÇTuranMSPeraltaRUpper bounds on the multiplicative complexity of symmetric boolean functionsCryptogr. Commun.201911613391362403317810.1007/s12095-019-00377-3
– reference: Uyan, E: Analysis of Boolean functions with respect to Walsh Spectrum. PhD thesis, Middle East Technical University (2013)
– reference: Fischer, M. J., Peralta, R.: Counting Predicates of Conjunctive Complexity One. Yale Technical Report 1222 (2002)
– reference: Kolesnikov, V, Schneider, T: Improved garbled circuit: free XOR gates and applications. In: Aceto, L, Damgård, I, Goldberg, L.A., Halldórsson, MM, Ingólfsdóttir, A, Walukiewicz, I (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pp 486–498. Springer, Berlin (2008)
– reference: MaioranaJAA classification of the cosets of the Reed-Muller code R(1,6)Math. Comput.19915719540341410790270724.94016
– reference: Dobraunig, C, Eichlseder, M, Grassi, L, Lallemand, V, Leander, G, List, E, Mendel, F, Rechberger, C: Rasta: a cipher with low ANDdepth and few ANDs per bit. In: CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pp 662–692. Springer, Berlin (2018)
– reference: NIST Computer Security Division. Circuit Complexity Project Repository, https://github.com/usnistgov/Circuits/
– reference: BerlekampERWelchLRWeight distributions of the cosets of the (32, 6) Reed-Muller codeIEEE Trans. Inf. Theory197218120320739605410.1109/TIT.1972.1054732
– reference: HouX-DAGL(m,2) acting on R(r, m)/R(s,m)J. Algebra19951713927938131592810.1006/jabr.1995.1043
– reference: BoyarJPeraltaRPochuevDOn the multiplicative complexity of Boolean functions over the basis (∧, ⊕, 1)Theor. Comput. Sci.200023514357176596410.1016/S0304-3975(99)00182-6
– volume: 102
  start-page: 307
  issue: 2
  year: 1992
  ident: 445_CR17
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(92)90235-8
– volume: 4
  start-page: 222
  issue: 4
  year: 2017
  ident: 445_CR11
  publication-title: IJICoT
  doi: 10.1504/IJICOT.2017.086890
– start-page: 21
  volume-title: The Multiplicative Complexity of Boolean Functions on Four and Five Variables
  year: 2015
  ident: 445_CR22
– volume: 171
  start-page: 927
  issue: 3
  year: 1995
  ident: 445_CR14
  publication-title: J. Algebra
  doi: 10.1006/jabr.1995.1043
– ident: 445_CR12
– ident: 445_CR15
– ident: 445_CR10
  doi: 10.1007/978-3-319-06686-8_13
– ident: 445_CR13
– ident: 445_CR18
– volume: 11
  start-page: 1339
  issue: 6
  year: 2019
  ident: 445_CR7
  publication-title: Cryptogr. Commun.
  doi: 10.1007/s12095-019-00377-3
– ident: 445_CR5
  doi: 10.1007/11523468_27
– ident: 445_CR9
  doi: 10.1007/978-3-319-96884-1_22
– ident: 445_CR19
  doi: 10.1007/3-540-47555-9_8
– volume: 235
  start-page: 43
  issue: 1
  year: 2000
  ident: 445_CR4
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(99)00182-6
– volume: 11
  start-page: 93
  issue: 1
  year: 2019
  ident: 445_CR8
  publication-title: Cryptogr. Commun.
  doi: 10.1007/s12095-018-0297-2
– ident: 445_CR21
  doi: 10.1007/3-540-51083-4_47
– ident: 445_CR23
– ident: 445_CR1
  doi: 10.1007/978-3-662-46800-5_17
– volume: 18
  start-page: 203
  issue: 1
  year: 1972
  ident: 445_CR2
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1972.1054732
– volume: 57
  start-page: 403
  issue: 195
  year: 1991
  ident: 445_CR16
  publication-title: Math. Comput.
– ident: 445_CR6
  doi: 10.1145/2090236.2090262
– ident: 445_CR20
– volume: 13
  start-page: 449
  issue: 4
  year: 2000
  ident: 445_CR3
  publication-title: J. Cryptol.
  doi: 10.1007/s001450010011
SSID ssj0065243
Score 2.1642363
Snippet Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT)....
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 935
SubjectTerms Affine transformations
Boolean
Boolean algebra
Boolean functions
Circuits
Codes
Coding and Information Theory
Communications Engineering
Complexity
Computer Science
Data Structures and Information Theory
Equivalence
Gates (circuits)
Information and Communication
Linearity
Lower bounds
Mathematics of Computing
Networks
Title Boolean functions with multiplicative complexity 3 and 4
URI https://link.springer.com/article/10.1007/s12095-020-00445-z
https://www.ncbi.nlm.nih.gov/pubmed/33654507
https://www.proquest.com/docview/2437884983
https://www.proquest.com/docview/2496237980
https://pubmed.ncbi.nlm.nih.gov/PMC7918276
Volume 12
WOSCitedRecordID wos000549667000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1936-2455
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065243
  issn: 1936-2447
  databaseCode: RSV
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwcHBXD158P6qrRPCmhbZJm_QoongQEV_srUzTFAWp4j6Q_Xon2XaX9QV6baZNM5lXMi-AQ8wTes5zP86l8IVKlJ_rUPtpHImSoxbC9Yx8uJRXV6rbTa_rpLBeE-3euCSdpJ4mu0WByya2mdBCxP6oBfOk7pRt2HBz-9DI34Rm4WNfcuKT8pJ1qsz335hVR19szK-hkp_8pU4NnS__bwErsFSbnexkTCerMGeqNVhuWjqwmsPXwZaYfTZYMavvHEkye1PL6rhDd8E3NMwFopt3suAZZ1gVTGzA_fnZ3emFXzdX8LWQok9CjjhPaIO5wYRsvELoJI2ighulw4AjWVZBgaHGKMA41gUaTsahKYQqS6l1yDehXb1UZhsYN4ESodElEnOXGjEslIqNpKNjiTpHD8IGx5muK4_bBhjP2bRmskVNRqjJHGqykQdHk3dex3U3foXuNFuX1TzYy2ypRaVEqrgHB5Nh4h7rEsHKvAwsTEr2nyQi8mBrvNOT6ThPLBKkB3KGBiYAtjL37Ej19OgqdMuUjm0y8eC4oYTpb_28ip2_ge_CYuSIyQa8daDdfxuYPVjQw_5T720fWrKr9h1nfAB3cgi0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwED98gX5xvq1OjeA3LbRN2qQfRRyKc4gv9q1c0xQHo4p7IP71Jlm7MV-gX5u0aS53uUvu7ncAR5hG-jlN3TDlzGUiEm4qfenGYcByipIxWzPysclbLdFuxzdlUlivinavXJJ2p54kuwWezSY2mdCMhe77LMwzrbEMYv7t3WO1_0Z6FDryJUeuVl68TJX5_hvT6uiLjfk1VPKTv9SqoUbtfxNYgeXS7CSnIz5ZhRlVrEGtKulASglfBwMx21VYEKPvLEsSc1NLyrhDe8E3VMQGoqs3bcETSrDICNuAh8b5_dmFWxZXcCXjrK83OS15TCpMFUbaxsuYjOIgyKgS0vcoasvKy9CXGHgYhjJDRbVxqDIm8pxL6dNNmCueC7UNhCpPMF_JHLVw5xLRz4QIFddHxxxlig74FY0TWSKPmwIY3WSCmWxIk2jSJJY0ybsDx-N3Xka4G7_2rldLl5Qy2EsM1KIQLBbUgcNxs5Ye4xLBQj0PTJ9Y2388Fp4DW6OVHg9HaWSIwB3gUzww7mCQuadbis6TRejmsT628ciBk4oTJr_18yx2_tb9ABYv7q-bSfOydbULS4FlLBP8Voe5_utA7cGCHPY7vdd9Kx8fqnoKsA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50FfHF-6hnBN-02DZpkz6KuijKInjgW5mmKQpLd3FXkf31Jmm763qB-NqkTTOZyUwyM98A7GMa6ec0dcOUM5eJSLip9KUbhwHLKUrGbM3I-yveaomHh_j6Qxa_jXavXZJlToNBaSr6R90sPxolvgWezSw2WdGMhe5gEqaYCaQ35_Wb-3ovjvSItPQrR65WZLxKm_n-G-Oq6Yu9-TVs8pPv1Kqk5vz_J7MAc5U5So5L_lmECVUswXxd6oFUkr8MBnq2rbAgRg9aViXmBpdU8Yj24u9VERugrt60ZU8owSIjbAXumme3J-duVXTBlYyzvt78tEQyqTBVGGnbL2MyioMgo0pI36OoLS4vQ19i4GEYygwV1UajypjIcy6lT1ehUXQKtQ6EKk8wX8kctdDnEtHPhAgV10fKHGWKDvg1vRNZIZKbwhjtZISlbEiTaNIkljTJwIGD4TvdEo_j195b9TImlWz2EgPBKASLBXVgb9ispcq4SrBQnRfTJ9Z2IY-F58BauerD4SiNDBG4A3yMH4YdDGL3eEvx9GiRu3msj3M8cuCw5orRb_08i42_dd-FmevTZnJ10brchNnA8pWJiduCRv_5RW3DtHztP_Wed6yovANAxhOU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boolean+Functions+with+Multiplicative+Complexity+3+and+4&rft.jtitle=Cryptography+and+communications&rft.au=%C3%87al%C4%B1k%2C+%C3%87a%C4%9Fda%C5%9F&rft.au=Turan%2C+Meltem+S%C3%B6nmez&rft.au=Peralta%2C+Ren%C3%A9&rft.date=2020-09-01&rft.issn=1936-2447&rft.volume=12&rft_id=info:doi/10.1007%2Fs12095-020-00445-z&rft_id=info%3Apmid%2F33654507&rft.externalDocID=33654507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-2447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-2447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-2447&client=summon