Boolean functions with multiplicative complexity 3 and 4
Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta ( 2002 ), and Find et al. (IJICoT 4 (4), 222–236, 2017 ), respe...
Uloženo v:
| Vydáno v: | Cryptography and communications Ročník 12; číslo 5; s. 935 - 946 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1936-2447, 1936-2455 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta (
2002
), and Find et al. (IJICoT
4
(4), 222–236,
2017
), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension
d
i
m
(
f
) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of
f
is at least ⌈
d
i
m
(
f
)/2⌉. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (
2018
). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of
n
-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on. |
|---|---|
| AbstractList | Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta (
2002
), and Find et al. (IJICoT
4
(4), 222–236,
2017
), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension
d
i
m
(
f
) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of
f
is at least ⌈
d
i
m
(
f
)/2⌉. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (
2018
). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of
n
-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on. Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta (2002), and Find et al. (IJICoT 4(4), 222–236, 2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least ⌈dim(f)/2⌉. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on. Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least [dim(f)/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least [dim(f)/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on. Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least [dim(f)/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on. Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension ( ) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of is at least [ ( )/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of -variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on. |
| Author | Çalık, Çağdaş Peralta, René Turan, Meltem Sönmez |
| Author_xml | – sequence: 1 givenname: Çağdaş orcidid: 0000-0003-1895-7719 surname: Çalık fullname: Çalık, Çağdaş email: cagdas.calik@nist.gov organization: NIST Computer Security Division – sequence: 2 givenname: Meltem Sönmez surname: Turan fullname: Turan, Meltem Sönmez organization: NIST Computer Security Division – sequence: 3 givenname: René surname: Peralta fullname: Peralta, René organization: NIST Computer Security Division |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33654507$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1LHTEUxUNR6kf7D3RRBtx0MzXfyWwKKlYLghu7DjFzRyOZ5HWSeVb_evP61KoLVzdwf-dwcs8O2ogpAkJfCP5OMFb7mVDciRZT3GLMuWjvP6Bt0jHZUi7ExvObqy20k_MNxlJQzj6iLcak4AKrbaQPUwpgYzPM0RWfYm5ufbluxjkUvwje2eKX0Lg0LgL89eWuYY2NfcM_oc3BhgyfH-cu-v3z-OLotD07P_l1dHDWOq54aTsimeYO7CVYyQjuuZMdpT0D7QhmdhWjt8RZiq0QrrfAiCTQcz0MyjnCdtGPte9ivhyhdxDLZINZTH60051J1pvXm-ivzVVaGtURTZWsBt8eDab0Z4ZczOizgxBshDRnQ3knKVOdxhXde4PepHmK9XuVYkpr3mlWqa8vEz1HeTpqBfQacFPKeYLBOF_s6rg1oA-GYLPqz6z7M7U_868_c1-l9I30yf1dEVuLcoXjFUz_Y7-jegD7ya2j |
| CitedBy_id | crossref_primary_10_1109_TC_2022_3141249 |
| Cites_doi | 10.1016/0304-3975(92)90235-8 10.1504/IJICOT.2017.086890 10.1006/jabr.1995.1043 10.1007/978-3-319-06686-8_13 10.1007/s12095-019-00377-3 10.1007/11523468_27 10.1007/978-3-319-96884-1_22 10.1007/3-540-47555-9_8 10.1016/S0304-3975(99)00182-6 10.1007/s12095-018-0297-2 10.1007/3-540-51083-4_47 10.1007/978-3-662-46800-5_17 10.1109/TIT.1972.1054732 10.1145/2090236.2090262 10.1007/s001450010011 |
| ContentType | Journal Article |
| Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. |
| Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. |
| DBID | AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1007/s12095-020-00445-z |
| DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | ProQuest Computer Science Collection MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1936-2455 |
| EndPage | 946 |
| ExternalDocumentID | PMC7918276 33654507 10_1007_s12095_020_00445_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Intramural NIST DOC grantid: 9999-NIST |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29F 2JY 2KG 2VQ 2~H 30V 4.4 406 408 40D 5GY 5VS 6NX 875 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HG6 HMJXF HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD J-C J0Z J9A JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9O PT4 QOS R89 RLLFE ROL RSV S1Z S27 S3B SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABJCF ABRTQ ADKFA AFDZB AFFHD AFKRA AFOHR AHPBZ ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS NPM JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-916384ceabea6310d4c6922d3e8c103a5450da1ca20a55cdae3161ed48ff7cc13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549667000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-2447 |
| IngestDate | Tue Nov 04 01:57:56 EST 2025 Thu Jul 10 22:46:39 EDT 2025 Thu Sep 25 20:06:31 EDT 2025 Mon Jul 21 05:35:52 EDT 2025 Tue Nov 18 21:56:00 EST 2025 Sat Nov 29 03:51:32 EST 2025 Fri Feb 21 02:49:08 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | 06E30 Boolean functions 94A60 Affine equivalence Multiplicative complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-916384ceabea6310d4c6922d3e8c103a5450da1ca20a55cdae3161ed48ff7cc13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1895-7719 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7918276 |
| PMID | 33654507 |
| PQID | 2437884983 |
| PQPubID | 2043935 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7918276 proquest_miscellaneous_2496237980 proquest_journals_2437884983 pubmed_primary_33654507 crossref_citationtrail_10_1007_s12095_020_00445_z crossref_primary_10_1007_s12095_020_00445_z springer_journals_10_1007_s12095_020_00445_z |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | Discrete Structures, Boolean Functions and Sequences |
| PublicationTitle | Cryptography and communications |
| PublicationTitleAbbrev | Cryptogr. Commun |
| PublicationTitleAlternate | Cryptogr Commun |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Schnorr, C-P: The multiplicative complexity of Boolean functions. In: AAECC, pp 45–58 (1988) Albrecht, MR, Rechberger, C, Schneider, T, Tiessen, T, Zohner, M: Ciphers for MPC and FHE. In: Oswald, E, Fischlin, M (eds.) Advances in Cryptology—EUROCRYPT 2015—34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26–30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pp 430–454. Springer, Berlin (2015) Braeken, A, Borissov, YL, Nikova, S, Preneel, B: Classification of Boolean functions of 6 variables or less with respect to some cryptographic properties. In: Caires, L, Italiano, GF, Monteiro, L, Palamidessi, C, Yung, M (eds.) ICALP, volume 3580 of Lecture Notes in Computer Science, pp 324–334. Springer, Berlin (2005) FindMGSmith-ToneDTuranMSThe number of Boolean functions with multiplicative complexity 2IJICoT201744222236370869410.1504/IJICOT.2017.086890 ÇalıkÇTuranMSPeraltaRThe multiplicative complexity of 6-variable boolean functionsCryptogr. Commun.201911193107389582510.1007/s12095-018-0297-2 Brakerski, Z, Gentry, C, Vaikuntanathan, V: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S (ed.) Innovations in Theoretical Computer Science, January 8–10, 2012, p 2012, Cambridge (2012) HouX-DAGL(m,2) acting on R(r, m)/R(s,m)J. Algebra19951713927938131592810.1006/jabr.1995.1043 MirwaldRSchnorrC-PThe multiplicative complexity of quadratic Boolean formsTheor. Comput. Sci.19921022307328117473710.1016/0304-3975(92)90235-8 Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Universiteit Leuven (1993) BoyarJPeraltaRPochuevDOn the multiplicative complexity of Boolean functions over the basis (∧, ⊕, 1)Theor. Comput. Sci.200023514357176596410.1016/S0304-3975(99)00182-6 Uyan, E: Analysis of Boolean functions with respect to Walsh Spectrum. PhD thesis, Middle East Technical University (2013) Fuller, JE: Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland University of Technology (2003) NIST Computer Security Division. Circuit Complexity Project Repository, https://github.com/usnistgov/Circuits Find, MG: On the complexity of computing two nonlinearity measures. In: Computer Science - Theory and Applications - 9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Proceedings, pp 167–175 (2014) BerlekampERWelchLRWeight distributions of the cosets of the (32, 6) Reed-Muller codeIEEE Trans. Inf. Theory197218120320739605410.1109/TIT.1972.1054732 Nyberg, K: On the construction of highly nonlinear permutations. In: Rueppel, RA (ed.) Advances in Cryptology - EUROCRYPT ’92, Workshop on the Theory and Application of of Cryptographic Techniques, Balatonfüred, Hungary, May 24–28, 1992, Proceedings, volume 658 of Lecture Notes in Computer Science, pp 92–98. Springer, Berlin (1992) TuranMSPeraltaRThe Multiplicative Complexity of Boolean Functions on Four and Five Variables2015ChamSpringer International Publishing21331382.94167 Fischer, M. J., Peralta, R.: Counting Predicates of Conjunctive Complexity One. Yale Technical Report 1222 (2002) BoyarJDamgårdIPeraltaRShort non-interactive cryptographic proofsJ. Cryptol.2000134449472178851510.1007/s001450010011 Dobraunig, C, Eichlseder, M, Grassi, L, Lallemand, V, Leander, G, List, E, Mendel, F, Rechberger, C: Rasta: a cipher with low ANDdepth and few ANDs per bit. In: CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pp 662–692. Springer, Berlin (2018) BrandãoLTANÇalıkÇTuranMSPeraltaRUpper bounds on the multiplicative complexity of symmetric boolean functionsCryptogr. Commun.201911613391362403317810.1007/s12095-019-00377-3 Kolesnikov, V, Schneider, T: Improved garbled circuit: free XOR gates and applications. In: Aceto, L, Damgård, I, Goldberg, L.A., Halldórsson, MM, Ingólfsdóttir, A, Walukiewicz, I (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pp 486–498. Springer, Berlin (2008) MaioranaJAA classification of the cosets of the Reed-Muller code R(1,6)Math. Comput.19915719540341410790270724.94016 Ç Çalık (445_CR8) 2019; 11 LTAN Brandão (445_CR7) 2019; 11 X-D Hou (445_CR14) 1995; 171 MG Find (445_CR11) 2017; 4 JA Maiorana (445_CR16) 1991; 57 445_CR6 445_CR5 445_CR18 445_CR19 445_CR1 ER Berlekamp (445_CR2) 1972; 18 445_CR15 J Boyar (445_CR3) 2000; 13 445_CR10 445_CR21 MS Turan (445_CR22) 2015 445_CR12 445_CR23 445_CR9 445_CR13 R Mirwald (445_CR17) 1992; 102 445_CR20 J Boyar (445_CR4) 2000; 235 |
| References_xml | – reference: Brakerski, Z, Gentry, C, Vaikuntanathan, V: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S (ed.) Innovations in Theoretical Computer Science, January 8–10, 2012, p 2012, Cambridge (2012) – reference: Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Universiteit Leuven (1993) – reference: Schnorr, C-P: The multiplicative complexity of Boolean functions. In: AAECC, pp 45–58 (1988) – reference: TuranMSPeraltaRThe Multiplicative Complexity of Boolean Functions on Four and Five Variables2015ChamSpringer International Publishing21331382.94167 – reference: Albrecht, MR, Rechberger, C, Schneider, T, Tiessen, T, Zohner, M: Ciphers for MPC and FHE. In: Oswald, E, Fischlin, M (eds.) Advances in Cryptology—EUROCRYPT 2015—34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26–30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pp 430–454. Springer, Berlin (2015) – reference: MirwaldRSchnorrC-PThe multiplicative complexity of quadratic Boolean formsTheor. Comput. Sci.19921022307328117473710.1016/0304-3975(92)90235-8 – reference: Nyberg, K: On the construction of highly nonlinear permutations. In: Rueppel, RA (ed.) Advances in Cryptology - EUROCRYPT ’92, Workshop on the Theory and Application of of Cryptographic Techniques, Balatonfüred, Hungary, May 24–28, 1992, Proceedings, volume 658 of Lecture Notes in Computer Science, pp 92–98. Springer, Berlin (1992) – reference: ÇalıkÇTuranMSPeraltaRThe multiplicative complexity of 6-variable boolean functionsCryptogr. Commun.201911193107389582510.1007/s12095-018-0297-2 – reference: BoyarJDamgårdIPeraltaRShort non-interactive cryptographic proofsJ. Cryptol.2000134449472178851510.1007/s001450010011 – reference: Find, MG: On the complexity of computing two nonlinearity measures. In: Computer Science - Theory and Applications - 9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Proceedings, pp 167–175 (2014) – reference: FindMGSmith-ToneDTuranMSThe number of Boolean functions with multiplicative complexity 2IJICoT201744222236370869410.1504/IJICOT.2017.086890 – reference: Fuller, JE: Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland University of Technology (2003) – reference: Braeken, A, Borissov, YL, Nikova, S, Preneel, B: Classification of Boolean functions of 6 variables or less with respect to some cryptographic properties. In: Caires, L, Italiano, GF, Monteiro, L, Palamidessi, C, Yung, M (eds.) ICALP, volume 3580 of Lecture Notes in Computer Science, pp 324–334. Springer, Berlin (2005) – reference: BrandãoLTANÇalıkÇTuranMSPeraltaRUpper bounds on the multiplicative complexity of symmetric boolean functionsCryptogr. Commun.201911613391362403317810.1007/s12095-019-00377-3 – reference: Uyan, E: Analysis of Boolean functions with respect to Walsh Spectrum. PhD thesis, Middle East Technical University (2013) – reference: Fischer, M. J., Peralta, R.: Counting Predicates of Conjunctive Complexity One. Yale Technical Report 1222 (2002) – reference: Kolesnikov, V, Schneider, T: Improved garbled circuit: free XOR gates and applications. In: Aceto, L, Damgård, I, Goldberg, L.A., Halldórsson, MM, Ingólfsdóttir, A, Walukiewicz, I (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pp 486–498. Springer, Berlin (2008) – reference: MaioranaJAA classification of the cosets of the Reed-Muller code R(1,6)Math. Comput.19915719540341410790270724.94016 – reference: Dobraunig, C, Eichlseder, M, Grassi, L, Lallemand, V, Leander, G, List, E, Mendel, F, Rechberger, C: Rasta: a cipher with low ANDdepth and few ANDs per bit. In: CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pp 662–692. Springer, Berlin (2018) – reference: NIST Computer Security Division. Circuit Complexity Project Repository, https://github.com/usnistgov/Circuits/ – reference: BerlekampERWelchLRWeight distributions of the cosets of the (32, 6) Reed-Muller codeIEEE Trans. Inf. Theory197218120320739605410.1109/TIT.1972.1054732 – reference: HouX-DAGL(m,2) acting on R(r, m)/R(s,m)J. Algebra19951713927938131592810.1006/jabr.1995.1043 – reference: BoyarJPeraltaRPochuevDOn the multiplicative complexity of Boolean functions over the basis (∧, ⊕, 1)Theor. Comput. Sci.200023514357176596410.1016/S0304-3975(99)00182-6 – volume: 102 start-page: 307 issue: 2 year: 1992 ident: 445_CR17 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(92)90235-8 – volume: 4 start-page: 222 issue: 4 year: 2017 ident: 445_CR11 publication-title: IJICoT doi: 10.1504/IJICOT.2017.086890 – start-page: 21 volume-title: The Multiplicative Complexity of Boolean Functions on Four and Five Variables year: 2015 ident: 445_CR22 – volume: 171 start-page: 927 issue: 3 year: 1995 ident: 445_CR14 publication-title: J. Algebra doi: 10.1006/jabr.1995.1043 – ident: 445_CR12 – ident: 445_CR15 – ident: 445_CR10 doi: 10.1007/978-3-319-06686-8_13 – ident: 445_CR13 – ident: 445_CR18 – volume: 11 start-page: 1339 issue: 6 year: 2019 ident: 445_CR7 publication-title: Cryptogr. Commun. doi: 10.1007/s12095-019-00377-3 – ident: 445_CR5 doi: 10.1007/11523468_27 – ident: 445_CR9 doi: 10.1007/978-3-319-96884-1_22 – ident: 445_CR19 doi: 10.1007/3-540-47555-9_8 – volume: 235 start-page: 43 issue: 1 year: 2000 ident: 445_CR4 publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(99)00182-6 – volume: 11 start-page: 93 issue: 1 year: 2019 ident: 445_CR8 publication-title: Cryptogr. Commun. doi: 10.1007/s12095-018-0297-2 – ident: 445_CR21 doi: 10.1007/3-540-51083-4_47 – ident: 445_CR23 – ident: 445_CR1 doi: 10.1007/978-3-662-46800-5_17 – volume: 18 start-page: 203 issue: 1 year: 1972 ident: 445_CR2 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1972.1054732 – volume: 57 start-page: 403 issue: 195 year: 1991 ident: 445_CR16 publication-title: Math. Comput. – ident: 445_CR6 doi: 10.1145/2090236.2090262 – ident: 445_CR20 – volume: 13 start-page: 449 issue: 4 year: 2000 ident: 445_CR3 publication-title: J. Cryptol. doi: 10.1007/s001450010011 |
| SSID | ssj0065243 |
| Score | 2.1642363 |
| Snippet | Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT).... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 935 |
| SubjectTerms | Affine transformations Boolean Boolean algebra Boolean functions Circuits Codes Coding and Information Theory Communications Engineering Complexity Computer Science Data Structures and Information Theory Equivalence Gates (circuits) Information and Communication Linearity Lower bounds Mathematics of Computing Networks |
| Title | Boolean functions with multiplicative complexity 3 and 4 |
| URI | https://link.springer.com/article/10.1007/s12095-020-00445-z https://www.ncbi.nlm.nih.gov/pubmed/33654507 https://www.proquest.com/docview/2437884983 https://www.proquest.com/docview/2496237980 https://pubmed.ncbi.nlm.nih.gov/PMC7918276 |
| Volume | 12 |
| WOSCitedRecordID | wos000549667000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1936-2455 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065243 issn: 1936-2447 databaseCode: RSV dateStart: 20090401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4MCF8aYwpiBxg0ptkzbJESEmThPipd2qNE3FpKlDewnt15Okj2kMkOBc9xHHjr8m9meAS0oijeK5MV4iXCIz4iaZb4ggJU_CVDCVJrbZBO31WL_PH8qisEmV7V4dSdqVelnsFni2mthUQhMSuosGbOpwx0zDhsen12r9jcKgSKvnOHJ18KJlqcz3z1gNR2sYcz1V8st5qQ1D3db_BrALOyXsRDeFnezBhsr3oVW1dEClhx-AoZgdKpEjE--sSSKzU4vKvEO7wTdXyCaiqw-N4BFGIk8ROYSX7t3z7b1bNldwJaFkqhc57XlEKpEoEWmMlxIZ8SBIsWLS97DQyMpLhS9F4IkwlKlQWINDlRKWZVRKHx9BMx_l6gRQqCFZxqnECctI5BFBQxXwMPODRKmM-Q74lY5jWTKPmwYYw3jJmWxUE2vVxFY18cKBq_qe94J341fpdjV1cemDk9hQLTJGOMMOXNSXtfeYIxGRq9HMyHCN_6g2IgeOi5muX4dxZJRAHaArNlALGGbu1Sv54M0ydFOuf9to5MB1ZQnLz_p5FKd_Ez-D7cAak0l4a0NzOp6pc9iS8-lgMu5Ag_ZZx3rGJ-OYB8k |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50FfTF-6hnBN-00DZpkzyKKCvqIl7sW0nTBBeWruyF-OtNsu0u6wX63OmRyUzmazLzDcAxJYlB8dwaLxE-kZr4mQ4tEaTkWZwLpvLMNZugjQZrNvldWRTWq7LdqyNJt1JPit2iwFUT20poQmL_fRbmiIlYljH__uG5Wn-TOBql1XOc-CZ40bJU5vtnTIejLxjza6rkp_NSF4Yul_83gBVYKmEnOhvZySrMqGINlquWDqj08HWwFLNtJQpk450zSWR3alGZd-g2-IYKuUR09WYQPMJIFDkiG_B0efF4XvfL5gq-JJT0zSJnPI9IJTIlEoPxciITHkU5VkyGARYGWQW5CKWIAhHHMhcKG3CocsK0plKGeBNqRadQ24BiA8k0pxJnTJMkIILGKuKxDqNMKc1CD8JKx6ksmcdtA4x2OuFMtqpJjWpSp5r03YOT8T2vI96NX6X3qqlLSx_spZZqkTHCGfbgaHzZeI89EhGF6gysDDf4j3IWeLA1munx6zBOrBKoB3TKBsYClpl7-krRenEM3ZSb3zaaeHBaWcLks34exc7fxA9hof54e5PeXDWud2ExcoZlk9_2oNbvDtQ-zMthv9XrHjj_-AARLQnF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tAyFe6AaMhW1gJN4gahI7sf2IxqpNoKrSAPUtcvyhVZqyaWuraX89PidpKQWkac--fPh8Z_9s3_0O4ANnhUfxEo2XqZhpx-LKpUgEqWWVGyWsqUKxCT4civFYjn7L4g_R7t2VZJPTgCxN9bR_bVx_mfiWJSGzGLOiGcvj-03YZhhIj_v185_dXFzkWRNiL2kR-4WMt2kzf3_H6tK0hjfXwyb_uDsNS9Kg9_jO7MDzFo6Sz4397MKGrV9Aryv1QFrPfwlIPXtpVU1wHQymSvAEl7TxiOHgb25JCFC3dx7ZE0pUbQh7BT8GJ9-PT-O26EKsGWdTP_l5j2TaqsqqwmM_w3Qhs8xQK3SaUOURV2JUqlWWqDzXRlnqQaM1TDjHtU7pHmzVV7XdB5J7qOYk17QSjhUJUzy3mcxdmlXWOpFGkHb6LnXLSI6FMS7LJZcyqqb0qimDasr7CD4unrlu-Dj-K33YDWPZ-uZtiRSMQjApaATvF83eq_CqRNX2aoYy0uNCLkUSwetm1Befo7RAJfAI-Io9LASQsXu1pZ5cBOZuLv12jhcRfOqsYvlb_-7Fm4eJv4Onoy-D8tvZ8OsBPMuCXWFM3CFsTW9m9gie6Pl0cnvzNrjKL6fFEqk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boolean+functions+with+multiplicative+complexity+3+and+4&rft.jtitle=Cryptography+and+communications&rft.au=%C3%87al%C4%B1k+%C3%87a%C4%9Fda%C5%9F&rft.au=Turan%2C+Meltem+S%C3%B6nmez&rft.au=Peralta+Ren%C3%A9&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1936-2447&rft.eissn=1936-2455&rft.volume=12&rft.issue=5&rft.spage=935&rft.epage=946&rft_id=info:doi/10.1007%2Fs12095-020-00445-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-2447&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-2447&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-2447&client=summon |