Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review

Several machine-learning algorithms have been proposed for remote sensing image classification during the past two decades. Among these machine learning algorithms, Random Forest (RF) and Support Vector Machines (SVM) have drawn attention to image classification in several remote sensing application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 13; S. 6308 - 6325
Hauptverfasser: Sheykhmousa, Mohammadreza, Mahdianpari, Masoud, Ghanbari, Hamid, Mohammadimanesh, Fariba, Ghamisi, Pedram, Homayouni, Saeid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Several machine-learning algorithms have been proposed for remote sensing image classification during the past two decades. Among these machine learning algorithms, Random Forest (RF) and Support Vector Machines (SVM) have drawn attention to image classification in several remote sensing applications. This article reviews RF and SVM concepts relevant to remote sensing image classification and applies a meta-analysis of 251 peer-reviewed journal papers. A database with more than 40 quantitative and qualitative fields was constructed from these reviewed papers. The meta-analysis mainly focuses on 1) the analysis regarding the general characteristics of the studies, such as geographical distribution, frequency of the papers considering time, journals, application domains, and remote sensing software packages used in the case studies, and 2) a comparative analysis regarding the performances of RF and SVM classification against various parameters, such as data type, RS applications, spatial resolution, and the number of extracted features in the feature engineering step. The challenges, recommendations, and potential directions for future research are also discussed in detail. Moreover, a summary of the results is provided to aid researchers to customize their efforts in order to achieve the most accurate results based on their thematic applications.
AbstractList Several machine-learning algorithms have been proposed for remote sensing image classification during the past two decades. Among these machine learning algorithms, Random Forest (RF) and Support Vector Machines (SVM) have drawn attention to image classification in several remote sensing applications. This article reviews RF and SVM concepts relevant to remote sensing image classification and applies a meta-analysis of 251 peer-reviewed journal papers. A database with more than 40 quantitative and qualitative fields was constructed from these reviewed papers. The meta-analysis mainly focuses on 1) the analysis regarding the general characteristics of the studies, such as geographical distribution, frequency of the papers considering time, journals, application domains, and remote sensing software packages used in the case studies, and 2) a comparative analysis regarding the performances of RF and SVM classification against various parameters, such as data type, RS applications, spatial resolution, and the number of extracted features in the feature engineering step. The challenges, recommendations, and potential directions for future research are also discussed in detail. Moreover, a summary of the results is provided to aid researchers to customize their efforts in order to achieve the most accurate results based on their thematic applications.
Author Homayouni, Saeid
Ghanbari, Hamid
Ghamisi, Pedram
Mahdianpari, Masoud
Mohammadimanesh, Fariba
Sheykhmousa, Mohammadreza
Author_xml – sequence: 1
  givenname: Mohammadreza
  orcidid: 0000-0002-3673-7544
  surname: Sheykhmousa
  fullname: Sheykhmousa, Mohammadreza
  email: mohammadreza.sheykhmousa@opengeohub.org
  organization: OpenGeoHub, Wageningen, The Netherlands
– sequence: 2
  givenname: Masoud
  orcidid: 0000-0002-7234-959X
  surname: Mahdianpari
  fullname: Mahdianpari, Masoud
  email: m.mahdianpari@mun.ca
  organization: C-CORE, St. John's, NL, Canada
– sequence: 3
  givenname: Hamid
  orcidid: 0000-0002-9557-495X
  surname: Ghanbari
  fullname: Ghanbari, Hamid
  email: hamid.ghanbari.1@ulaval.ca
  organization: Department of Geography, Université Laval, Québec, QC, Canada
– sequence: 4
  givenname: Fariba
  surname: Mohammadimanesh
  fullname: Mohammadimanesh, Fariba
  email: fariba.mohammadimanesh@c-core.ca
  organization: C-CORE, St. John's, NL, Canada
– sequence: 5
  givenname: Pedram
  orcidid: 0000-0003-1203-741X
  surname: Ghamisi
  fullname: Ghamisi, Pedram
  email: p.ghamisi@gmail.com
  organization: Division of “Exploration Technology,” Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany
– sequence: 6
  givenname: Saeid
  orcidid: 0000-0002-0214-5356
  surname: Homayouni
  fullname: Homayouni, Saeid
  email: saeid.homayouni@ete.inrs.ca
  organization: Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec City, QC, Canada
BookMark eNqFUU1v1DAQjVCR2BZ-QS-WOGexHceOua1WFBa1QtoUrtbEmSxeJfFiZ4u2v77epuqBC6eRx-9jZt5ldjH6EbPsmtElY1R_-l7fr7b1klNOlwXlUnHxJltwVrKclUV5kS2YLnTOBBXvsssY95RKrnSxyB7r4-Hgw0R-oZ18IHdgf7sR0zPEYyRbGFs_kBsfME6kS4AtDn5CUuMY3bgjmwF2SNY9xOg6Z2FyfvxMVuQOJ8hXI_Sn6CJJKqQ-xQmHBLBJ48Hh3_fZ2w76iB9e6lX28-bL_fpbfvvj62a9us2tUGLKNYUSWrS6UQ3tFFJpi65pVCW5RKVoQkldUoRS0bQ37SwwW0hRFkwgpbq4yjazbuthbw7BDRBOxoMzzw0fdgZCGqtHU9kOWKWFlC0T0AjgjQZkVdtUinUVTVofZ61D8H-O6SZm748hrRkNF6UsuZL87FjMKBt8jAG7V1dGzTkwMwdmzoGZl8ASS__Dsm56PugUwPX_4V7PXIeIr26aU8nS7xO9TqZL
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3162693
crossref_primary_10_3390_rs13081427
crossref_primary_10_1007_s10661_023_11808_3
crossref_primary_10_1007_s12040_024_02388_y
crossref_primary_10_3390_rs16010182
crossref_primary_10_3390_rs14092097
crossref_primary_10_3390_rs14040894
crossref_primary_10_1016_j_isprsjprs_2023_03_017
crossref_primary_10_1007_s41748_024_00562_2
crossref_primary_10_1016_j_soilad_2025_100044
crossref_primary_10_1142_S021812662550402X
crossref_primary_10_1016_j_future_2022_03_017
crossref_primary_10_3390_f14091881
crossref_primary_10_3390_land14030630
crossref_primary_10_1109_JSTARS_2021_3105645
crossref_primary_10_1016_j_eswa_2024_125588
crossref_primary_10_3390_su151310298
crossref_primary_10_1016_j_asr_2024_03_027
crossref_primary_10_1016_j_procs_2025_04_657
crossref_primary_10_3390_rs13152965
crossref_primary_10_3390_su15086949
crossref_primary_10_1007_s13369_024_09771_3
crossref_primary_10_1109_ACCESS_2024_3422317
crossref_primary_10_1002_jmri_28276
crossref_primary_10_1007_s40808_023_01895_z
crossref_primary_10_3390_f14122376
crossref_primary_10_1109_JSTARS_2025_3564008
crossref_primary_10_3390_rs14225727
crossref_primary_10_1109_JSTARS_2024_3358846
crossref_primary_10_1109_ACCESS_2024_3388418
crossref_primary_10_1007_s11783_023_1608_1
crossref_primary_10_1016_j_ymssp_2025_112872
crossref_primary_10_1016_j_compag_2022_107504
crossref_primary_10_1109_ACCESS_2022_3229008
crossref_primary_10_1016_j_rse_2022_113206
crossref_primary_10_1080_10106049_2022_2082554
crossref_primary_10_28979_jarnas_1371067
crossref_primary_10_1080_17538947_2024_2356122
crossref_primary_10_1007_s11277_023_10662_3
crossref_primary_10_3390_ma16216837
crossref_primary_10_1016_j_agsy_2024_104247
crossref_primary_10_3390_rs14225852
crossref_primary_10_1002_ldr_5578
crossref_primary_10_1109_JSTARS_2021_3114116
crossref_primary_10_3390_app14167050
crossref_primary_10_3390_w13182553
crossref_primary_10_3390_geomatics4030016
crossref_primary_10_3390_f14112224
crossref_primary_10_1007_s42452_024_05994_z
crossref_primary_10_1016_j_rineng_2024_102878
crossref_primary_10_1016_j_isprsjprs_2023_02_005
crossref_primary_10_3390_rs13152980
crossref_primary_10_3390_ani14131957
crossref_primary_10_1016_j_heliyon_2023_e23012
crossref_primary_10_3390_rs14092060
crossref_primary_10_1016_j_jag_2024_104241
crossref_primary_10_1007_s10668_024_05569_3
crossref_primary_10_3390_rs16071227
crossref_primary_10_3390_rs14225862
crossref_primary_10_1007_s12273_024_1132_7
crossref_primary_10_1109_TGRS_2024_3418583
crossref_primary_10_1007_s00894_024_06188_5
crossref_primary_10_1016_j_indic_2025_100797
crossref_primary_10_1038_s41598_025_01981_5
crossref_primary_10_1002_cpe_6945
crossref_primary_10_1029_2024JH000550
crossref_primary_10_3390_rs17030547
crossref_primary_10_1109_ACCESS_2024_3524454
crossref_primary_10_3390_sym17060929
crossref_primary_10_1038_s41598_024_58501_0
crossref_primary_10_1109_TGRS_2025_3542800
crossref_primary_10_35377_saucis___1391636
crossref_primary_10_3390_rs14030803
crossref_primary_10_1049_ipr2_13067
crossref_primary_10_3390_rs17030366
crossref_primary_10_3390_w14020178
crossref_primary_10_3390_rs17071195
crossref_primary_10_3390_rs14092170
crossref_primary_10_3390_rs17030480
crossref_primary_10_3390_w16060813
crossref_primary_10_15446_esrj_v27n4_110128
crossref_primary_10_3390_agronomy11071363
crossref_primary_10_3390_app112110208
crossref_primary_10_31083_j_fbl2902082
crossref_primary_10_3390_w16172408
crossref_primary_10_1016_j_rse_2022_113144
crossref_primary_10_3390_electronics12020348
crossref_primary_10_1016_j_ajo_2025_08_035
crossref_primary_10_3390_rs15041001
crossref_primary_10_1016_j_jag_2025_104403
crossref_primary_10_3390_rs14174247
crossref_primary_10_7717_peerj_17563
crossref_primary_10_1016_j_eja_2025_127678
crossref_primary_10_1016_j_tust_2022_104852
crossref_primary_10_1002_mp_16227
crossref_primary_10_3390_rs14225644
crossref_primary_10_1007_s11069_024_06481_9
crossref_primary_10_3390_rs16173280
crossref_primary_10_3390_rs17020334
crossref_primary_10_1140_epjqt_s40507_022_00157_8
crossref_primary_10_3390_app13042551
crossref_primary_10_3390_su142215252
crossref_primary_10_1007_s12303_023_0032_7
crossref_primary_10_1016_j_heliyon_2024_e38731
crossref_primary_10_3390_wevj16020080
crossref_primary_10_1007_s11227_024_06697_3
crossref_primary_10_1016_j_geoderma_2025_117425
crossref_primary_10_25034_ijcua_2025_v9n2_5
crossref_primary_10_1080_0951192X_2023_2257648
crossref_primary_10_1007_s41870_023_01200_2
crossref_primary_10_3390_math12233872
crossref_primary_10_3390_rs15235461
crossref_primary_10_1016_j_seta_2025_104528
crossref_primary_10_1155_2023_4389885
crossref_primary_10_3390_rs13244995
crossref_primary_10_1108_TG_03_2024_0061
crossref_primary_10_1016_j_rse_2023_113680
crossref_primary_10_3390_app122312070
crossref_primary_10_1109_ACCESS_2024_3491502
crossref_primary_10_1109_JSTARS_2021_3136228
crossref_primary_10_1007_s11119_022_09922_2
crossref_primary_10_1016_j_pce_2025_104081
crossref_primary_10_1038_s41598_024_70936_z
crossref_primary_10_1016_j_heliyon_2024_e38947
crossref_primary_10_1007_s40098_025_01271_x
crossref_primary_10_3390_a17110519
crossref_primary_10_3390_rs14174382
crossref_primary_10_3390_rs15041144
crossref_primary_10_3390_app14219990
crossref_primary_10_3390_eng5040177
crossref_primary_10_3390_rs14205154
crossref_primary_10_3390_rs16010091
crossref_primary_10_3390_rs17030356
crossref_primary_10_3390_rs15020342
crossref_primary_10_3390_rs16142677
crossref_primary_10_1109_JSTARS_2024_3391332
crossref_primary_10_3390_agriculture13020388
crossref_primary_10_3390_su13168848
crossref_primary_10_1016_j_jhazmat_2024_134072
crossref_primary_10_1080_01431161_2024_2339192
crossref_primary_10_3390_rs15235456
crossref_primary_10_1016_j_engappai_2025_110057
crossref_primary_10_1016_j_atech_2023_100193
crossref_primary_10_3390_land14030649
crossref_primary_10_1109_TGRS_2025_3528411
crossref_primary_10_1080_10106049_2022_2060330
crossref_primary_10_1109_JSTARS_2024_3457791
crossref_primary_10_1016_j_culher_2023_11_005
crossref_primary_10_3390_f13050677
crossref_primary_10_1002_esp_5950
crossref_primary_10_1088_1755_1315_1051_1_012024
crossref_primary_10_1109_ACCESS_2022_3141595
crossref_primary_10_1080_07038992_2021_1901562
crossref_primary_10_3390_land13091427
crossref_primary_10_3390_rs13193899
crossref_primary_10_1016_j_jenvman_2025_125614
crossref_primary_10_1038_s41598_025_12689_x
crossref_primary_10_3390_rs15030658
crossref_primary_10_3390_rs17071274
crossref_primary_10_3390_s21061994
crossref_primary_10_1016_j_isprsjprs_2022_03_011
crossref_primary_10_3390_rs14246376
crossref_primary_10_3390_rs14246254
crossref_primary_10_3390_ijerph192215108
crossref_primary_10_1007_s43069_023_00278_5
crossref_primary_10_1109_TGRS_2025_3535749
crossref_primary_10_3390_rs16040686
crossref_primary_10_1016_j_jsse_2023_08_003
crossref_primary_10_1038_s41598_024_55570_z
crossref_primary_10_7235_HORT_20240022
crossref_primary_10_1109_ACCESS_2024_3438617
crossref_primary_10_3390_jmse12050800
crossref_primary_10_3390_math11040920
crossref_primary_10_1109_JSEN_2021_3130199
crossref_primary_10_1007_s12665_025_12377_z
crossref_primary_10_1007_s12517_021_07293_y
crossref_primary_10_3390_cli9040058
crossref_primary_10_3390_rs15164033
crossref_primary_10_3390_rs14143486
crossref_primary_10_1016_j_cj_2023_03_003
crossref_primary_10_3390_land11112028
crossref_primary_10_3390_rs17173074
crossref_primary_10_3390_s22051948
crossref_primary_10_3390_f15020288
crossref_primary_10_7780_kjrs_2025_41_2_1_1
crossref_primary_10_1111_csp2_70151
crossref_primary_10_1109_TGRS_2024_3370584
crossref_primary_10_3390_s21134408
crossref_primary_10_3390_w15142557
crossref_primary_10_1016_j_ecoleng_2024_107408
crossref_primary_10_1016_j_jnca_2024_103903
crossref_primary_10_1016_j_catena_2025_108889
crossref_primary_10_3390_rs15051388
crossref_primary_10_1007_s11760_024_03424_6
crossref_primary_10_3390_rs13214347
crossref_primary_10_1109_JSTARS_2020_3043836
crossref_primary_10_3390_land13101566
crossref_primary_10_1080_22797254_2023_2289616
crossref_primary_10_3389_fmed_2025_1574514
crossref_primary_10_1007_s11042_025_20919_7
crossref_primary_10_1016_j_csbj_2025_05_011
crossref_primary_10_1016_j_mfglet_2024_09_158
crossref_primary_10_1080_01431161_2022_2133579
crossref_primary_10_3390_app12178654
crossref_primary_10_3390_rs15143457
crossref_primary_10_1109_JSTARS_2025_3532816
crossref_primary_10_1109_JSTARS_2024_3357141
crossref_primary_10_1080_10106049_2023_2204099
crossref_primary_10_3390_s25175489
crossref_primary_10_1016_j_foreco_2024_121920
crossref_primary_10_1515_geo_2022_0745
crossref_primary_10_3390_computers13020034
crossref_primary_10_3390_w15050880
crossref_primary_10_3390_rs16173187
crossref_primary_10_1016_j_ecolind_2025_113874
crossref_primary_10_1016_j_heliyon_2024_e34710
crossref_primary_10_1016_j_ufug_2025_128953
crossref_primary_10_3390_rs16224194
crossref_primary_10_1016_j_compbiomed_2024_109032
crossref_primary_10_1088_1755_1315_1240_1_012017
crossref_primary_10_3390_rs16050798
crossref_primary_10_3390_rs15215113
crossref_primary_10_1109_ACCESS_2021_3105796
crossref_primary_10_1016_j_rsase_2025_101591
crossref_primary_10_1007_s11042_022_14122_1
crossref_primary_10_3390_rs13193863
crossref_primary_10_1007_s10661_024_12677_0
crossref_primary_10_1080_01431161_2024_2391588
crossref_primary_10_1049_cth2_12410
crossref_primary_10_1080_01431161_2024_2371618
crossref_primary_10_1016_j_watres_2025_123350
crossref_primary_10_3390_earth6030107
crossref_primary_10_1117_1_JRS_19_028505
crossref_primary_10_1186_s40537_023_00829_x
crossref_primary_10_3390_rs15225271
crossref_primary_10_1016_j_psj_2024_103739
crossref_primary_10_1002_htj_70053
crossref_primary_10_1007_s10044_024_01318_4
crossref_primary_10_3390_drones7110668
crossref_primary_10_3390_s25185697
crossref_primary_10_1111_exsy_70126
crossref_primary_10_3390_rs16030541
crossref_primary_10_1007_s12145_024_01318_2
crossref_primary_10_3390_hydrology12080214
crossref_primary_10_1109_JSTARS_2024_3370159
crossref_primary_10_3390_rs15030750
crossref_primary_10_3390_s23156821
crossref_primary_10_1080_10095020_2025_2514180
crossref_primary_10_2174_0126662558312821240804183436
crossref_primary_10_1007_s10515_023_00388_8
crossref_primary_10_1016_j_resconrec_2024_107751
crossref_primary_10_1007_s00217_023_04377_9
crossref_primary_10_3390_rs14133104
crossref_primary_10_1088_1361_6501_addf66
crossref_primary_10_1109_ACCESS_2023_3305473
crossref_primary_10_34288_jri_v7i3_375
crossref_primary_10_3390_app15189894
crossref_primary_10_3390_agronomy11081554
crossref_primary_10_3390_f14071509
crossref_primary_10_1016_j_biombioe_2024_107527
crossref_primary_10_3390_rs17132208
crossref_primary_10_1016_j_patcog_2025_111606
crossref_primary_10_1109_TETCI_2023_3300303
crossref_primary_10_1109_JSTARS_2023_3347571
crossref_primary_10_3390_f13091457
crossref_primary_10_3390_f14010032
crossref_primary_10_1016_j_compeleceng_2024_109255
crossref_primary_10_1109_TIP_2024_3522809
crossref_primary_10_1016_j_isprsjprs_2023_05_003
crossref_primary_10_3390_rs14143272
crossref_primary_10_1016_j_rsma_2024_103790
crossref_primary_10_3390_rs14205202
crossref_primary_10_1177_18724981251334507
crossref_primary_10_3390_land14051038
crossref_primary_10_1109_ACCESS_2023_3321800
crossref_primary_10_3390_geomatics5030042
crossref_primary_10_1080_01431161_2024_2370504
crossref_primary_10_3390_land11112039
crossref_primary_10_1007_s12517_020_06347_x
crossref_primary_10_1109_ACCESS_2023_3291451
crossref_primary_10_3390_rs14215478
crossref_primary_10_1016_j_vibspec_2024_103693
crossref_primary_10_1007_s41064_024_00329_4
crossref_primary_10_1016_j_rsase_2022_100824
crossref_primary_10_1016_j_jag_2022_102746
crossref_primary_10_1016_j_jag_2024_104286
crossref_primary_10_1016_j_isprsjprs_2023_12_012
crossref_primary_10_1038_s41598_024_80286_5
crossref_primary_10_3390_drones6050100
crossref_primary_10_1016_j_compag_2025_110115
crossref_primary_10_1016_j_apor_2023_103511
crossref_primary_10_3390_rs17132224
crossref_primary_10_3389_fpls_2025_1533855
crossref_primary_10_3390_rs14112661
crossref_primary_10_3390_rs14112663
crossref_primary_10_1007_s42835_024_01901_z
crossref_primary_10_1007_s12524_021_01444_0
crossref_primary_10_1007_s41651_025_00220_9
crossref_primary_10_3390_rs14030541
crossref_primary_10_3390_su16135748
crossref_primary_10_4018_IJITSA_351218
crossref_primary_10_3390_rs16203781
crossref_primary_10_1371_journal_pone_0312739
crossref_primary_10_3390_rs14163937
crossref_primary_10_3390_su17135957
crossref_primary_10_3390_s22114070
crossref_primary_10_3390_rs16224247
crossref_primary_10_1109_JSTARS_2022_3203145
crossref_primary_10_1016_j_rineng_2025_104769
crossref_primary_10_1088_1755_1315_1217_1_012032
crossref_primary_10_1016_j_pdpdt_2023_103708
crossref_primary_10_1016_j_oregeorev_2024_106391
crossref_primary_10_1117_1_JRS_18_014531
crossref_primary_10_1007_s41748_024_00393_1
crossref_primary_10_1016_j_prime_2022_100090
crossref_primary_10_1109_JSTARS_2025_3593138
crossref_primary_10_1007_s10661_022_09850_8
crossref_primary_10_1016_j_atmosenv_2023_119724
crossref_primary_10_3390_s24061982
crossref_primary_10_1016_j_specom_2023_102986
crossref_primary_10_3390_rs14020378
crossref_primary_10_1016_j_rsase_2022_100728
crossref_primary_10_1111_1752_1688_13160
crossref_primary_10_3390_rs16030580
crossref_primary_10_1016_j_sajb_2024_08_021
crossref_primary_10_1016_j_acags_2025_100273
crossref_primary_10_3390_bioengineering10030281
crossref_primary_10_1007_s00253_021_11375_y
crossref_primary_10_3390_app15137528
crossref_primary_10_1007_s10705_022_10233_1
crossref_primary_10_3390_ijgi11080424
crossref_primary_10_1016_j_rsma_2023_103240
crossref_primary_10_1007_s41748_025_00761_5
crossref_primary_10_1007_s10661_025_14438_z
crossref_primary_10_1016_j_rse_2025_114941
crossref_primary_10_1088_1755_1315_1195_1_012056
crossref_primary_10_1080_07038992_2021_2011180
crossref_primary_10_3390_rs13245007
crossref_primary_10_1080_07038992_2024_2384883
crossref_primary_10_3390_rs14133027
crossref_primary_10_1109_TGRS_2024_3505539
crossref_primary_10_3390_f13020340
crossref_primary_10_3390_su13094814
crossref_primary_10_1109_JSTARS_2024_3522662
crossref_primary_10_3390_en17174485
crossref_primary_10_1017_asb_2022_12
crossref_primary_10_1109_TIM_2025_3541807
crossref_primary_10_1088_1755_1315_1418_1_012001
crossref_primary_10_1016_j_rsase_2024_101257
crossref_primary_10_1080_01431161_2022_2161856
crossref_primary_10_1038_s41598_025_07883_w
crossref_primary_10_1007_s10661_023_11968_2
crossref_primary_10_1016_j_hazadv_2024_100576
crossref_primary_10_3390_agronomy15051106
crossref_primary_10_1016_j_asr_2025_07_100
crossref_primary_10_1007_s12145_025_01860_7
crossref_primary_10_1109_TGRS_2024_3377009
crossref_primary_10_1029_2021EA001742
crossref_primary_10_1007_s00267_023_01842_9
crossref_primary_10_1016_j_jag_2023_103418
crossref_primary_10_1007_s10531_024_02800_5
crossref_primary_10_14358_PERS_24_00026R2
crossref_primary_10_3390_rs15030608
crossref_primary_10_3390_min12111453
crossref_primary_10_1109_TGRS_2022_3208165
crossref_primary_10_3390_rs17050931
crossref_primary_10_3390_rs16193738
crossref_primary_10_7717_peerj_cs_2576
crossref_primary_10_1080_10106049_2025_2491640
crossref_primary_10_3390_land13030335
crossref_primary_10_1109_LGRS_2025_3537104
crossref_primary_10_3390_app122412774
crossref_primary_10_3390_drones8010013
crossref_primary_10_1109_JSTARS_2025_3595365
crossref_primary_10_1007_s12040_024_02305_3
crossref_primary_10_1016_j_rsase_2022_100898
crossref_primary_10_3390_rs13132581
crossref_primary_10_3390_rs17091597
crossref_primary_10_4018_JOEUC_384397
crossref_primary_10_1109_TGRS_2024_3378529
crossref_primary_10_3390_su132413752
crossref_primary_10_1117_1_JEI_32_6_063016
crossref_primary_10_3390_rs15215196
crossref_primary_10_1016_j_ecoinf_2023_102324
crossref_primary_10_1016_j_vibspec_2025_103826
crossref_primary_10_3390_rs17152686
crossref_primary_10_1016_j_msea_2024_146390
crossref_primary_10_3390_land11122154
crossref_primary_10_3390_math12091312
crossref_primary_10_1007_s11665_024_10167_5
crossref_primary_10_1016_j_scitotenv_2024_173537
crossref_primary_10_1109_ACCESS_2025_3602003
crossref_primary_10_3390_rs16193561
crossref_primary_10_1007_s11356_023_31022_5
crossref_primary_10_1109_JSTARS_2022_3201273
crossref_primary_10_3390_rs14215531
crossref_primary_10_3390_rs16020338
crossref_primary_10_3390_ijgi10040226
crossref_primary_10_3390_rs16234494
crossref_primary_10_1016_j_jenvrad_2025_107710
crossref_primary_10_3390_rs14041014
crossref_primary_10_1109_TVT_2024_3396691
crossref_primary_10_3390_electronics10202482
crossref_primary_10_46481_jnsps_2025_2938
crossref_primary_10_3390_rs13040777
crossref_primary_10_1109_ACCESS_2024_3415350
crossref_primary_10_3390_rs17152670
crossref_primary_10_3390_agronomy14010075
crossref_primary_10_3390_rs15164112
crossref_primary_10_1016_j_jestch_2025_102133
crossref_primary_10_1109_TGRS_2024_3370919
crossref_primary_10_1109_TII_2022_3201011
crossref_primary_10_1080_01431161_2023_2165421
crossref_primary_10_14358_PERS_24_00110R1
crossref_primary_10_1016_j_rsase_2024_101223
crossref_primary_10_1016_j_egyai_2025_100557
crossref_primary_10_1016_j_foreco_2024_122231
crossref_primary_10_1109_JSEN_2023_3329490
crossref_primary_10_1109_ACCESS_2023_3320792
crossref_primary_10_26848_rbgf_v17_5_p3715_3735
crossref_primary_10_3390_agronomy14040719
crossref_primary_10_3390_f16091376
crossref_primary_10_3390_rs15174140
crossref_primary_10_1016_j_srs_2025_100214
crossref_primary_10_1016_j_envsoft_2024_105956
crossref_primary_10_1016_j_asr_2022_10_012
crossref_primary_10_3390_rs17050742
crossref_primary_10_1109_JSTARS_2021_3065569
crossref_primary_10_3389_fmed_2025_1627617
crossref_primary_10_1109_JSTARS_2023_3308046
crossref_primary_10_3390_rs13214422
crossref_primary_10_1007_s13042_024_02415_w
crossref_primary_10_3390_rs14091977
crossref_primary_10_1016_j_foodchem_2025_144882
crossref_primary_10_3390_rs15092373
crossref_primary_10_3390_diagnostics13203245
crossref_primary_10_3390_rs14020359
crossref_primary_10_1080_02626667_2025_2456209
crossref_primary_10_3390_rs17173126
crossref_primary_10_1016_j_cpsurg_2025_101743
crossref_primary_10_1051_bioconf_202516705001
crossref_primary_10_3390_rs16030488
crossref_primary_10_3390_land12010036
crossref_primary_10_1016_j_cviu_2025_104382
crossref_primary_10_1016_j_ecoinf_2024_102847
crossref_primary_10_52326_jes_utm_2025_32_1__06
crossref_primary_10_1109_JSTARS_2021_3110763
crossref_primary_10_3390_rs16193657
crossref_primary_10_3390_rs14051066
crossref_primary_10_1007_s10661_023_11202_z
crossref_primary_10_1080_01431161_2023_2197131
crossref_primary_10_1109_LGRS_2022_3197764
crossref_primary_10_1109_MGRS_2021_3087445
crossref_primary_10_3390_make4040054
crossref_primary_10_1007_s12040_024_02345_9
crossref_primary_10_1002_esp_6009
crossref_primary_10_1109_ACCESS_2023_3243203
crossref_primary_10_1016_j_neucom_2025_130101
crossref_primary_10_1016_j_foreco_2025_122977
crossref_primary_10_1109_ACCESS_2022_3223094
crossref_primary_10_1002_widm_1522
crossref_primary_10_3390_rs15092350
crossref_primary_10_1016_j_catena_2023_107537
crossref_primary_10_3390_rs13050876
crossref_primary_10_1186_s13717_024_00555_z
crossref_primary_10_3390_rs15123168
crossref_primary_10_1002_cpe_7733
crossref_primary_10_1109_TIM_2023_3284941
crossref_primary_10_3390_w13243627
crossref_primary_10_3390_s23042180
crossref_primary_10_1186_s13717_024_00520_w
crossref_primary_10_1007_s12518_023_00530_x
crossref_primary_10_3390_rs13163322
crossref_primary_10_3390_electronics12040946
crossref_primary_10_1016_j_foodcont_2024_110527
crossref_primary_10_3390_bioengineering12070755
crossref_primary_10_3390_rs17030385
crossref_primary_10_1016_j_rsase_2024_101407
crossref_primary_10_3390_rs16050818
crossref_primary_10_1021_acsami_5c16395
crossref_primary_10_1109_JSEN_2024_3453909
crossref_primary_10_3390_rs13224704
crossref_primary_10_1016_j_measen_2023_100771
crossref_primary_10_1109_ACCESS_2024_3442205
crossref_primary_10_3390_land12071269
crossref_primary_10_3390_rs16091566
crossref_primary_10_3390_s23239328
crossref_primary_10_3390_app13042261
crossref_primary_10_1080_2150704X_2023_2185110
crossref_primary_10_1016_j_eswa_2025_129176
crossref_primary_10_1177_09544062241246862
crossref_primary_10_3390_s24227244
crossref_primary_10_1007_s12145_023_01008_5
crossref_primary_10_1007_s41060_023_00448_y
crossref_primary_10_1109_ACCESS_2023_3314819
crossref_primary_10_1109_JSTARS_2024_3473937
crossref_primary_10_3390_w17192796
crossref_primary_10_15446_esrj_v28n2_105296
crossref_primary_10_1007_s11540_024_09721_4
crossref_primary_10_3389_fnins_2024_1380886
crossref_primary_10_26848_rbgf_v17_4_p2582_2605
crossref_primary_10_3390_f16050794
crossref_primary_10_1002_jocb_1524
crossref_primary_10_1080_10106049_2024_2347935
crossref_primary_10_1111_jfpe_14664
crossref_primary_10_1016_j_bios_2024_116782
crossref_primary_10_3390_rs17162848
crossref_primary_10_1080_10643389_2023_2285691
crossref_primary_10_1016_j_jag_2023_103202
crossref_primary_10_1016_j_inffus_2024_102673
crossref_primary_10_3390_rs17091639
crossref_primary_10_3390_diagnostics12040957
crossref_primary_10_1016_j_ijpharm_2023_123458
crossref_primary_10_1080_07038992_2024_2430496
crossref_primary_10_3390_rs17020289
crossref_primary_10_1016_j_jag_2025_104809
crossref_primary_10_1016_j_asr_2024_09_010
crossref_primary_10_3390_rs15153859
crossref_primary_10_1117_1_JRS_17_036509
crossref_primary_10_1016_j_kjs_2025_100453
crossref_primary_10_3390_f16040570
crossref_primary_10_1016_j_eswa_2024_124583
crossref_primary_10_1109_JSTARS_2023_3296505
crossref_primary_10_3390_rs16244691
crossref_primary_10_3390_rs15092412
crossref_primary_10_1080_01431161_2024_2329529
crossref_primary_10_1016_j_patcog_2025_111378
crossref_primary_10_1007_s13762_022_04467_3
crossref_primary_10_3390_f15122247
crossref_primary_10_3390_rs16010039
crossref_primary_10_1080_07038992_2025_2551528
crossref_primary_10_3390_ani11123438
crossref_primary_10_3390_su14095700
crossref_primary_10_1016_j_gecco_2024_e03357
crossref_primary_10_1007_s11273_023_09971_y
crossref_primary_10_1080_01431161_2023_2195573
crossref_primary_10_3390_electronics14020377
crossref_primary_10_1016_j_compag_2023_108131
crossref_primary_10_1007_s11069_025_07345_6
crossref_primary_10_1007_s40435_023_01250_1
crossref_primary_10_1109_ACCESS_2022_3205337
crossref_primary_10_3390_rs14184436
crossref_primary_10_1109_ACCESS_2024_3485214
crossref_primary_10_1109_JSTARS_2024_3435372
crossref_primary_10_3390_f16040668
crossref_primary_10_1080_17538947_2025_2470851
crossref_primary_10_3390_app12105106
crossref_primary_10_3390_foods13172656
crossref_primary_10_3390_drones9040296
crossref_primary_10_1016_j_biosystems_2024_105360
crossref_primary_10_1371_journal_pone_0284316
crossref_primary_10_3390_s25020431
crossref_primary_10_1016_j_ecoinf_2021_101495
crossref_primary_10_3390_rs17020267
crossref_primary_10_3390_biomimetics9070440
crossref_primary_10_3390_rs14184585
crossref_primary_10_31677_2072_6724_2024_71_2_37_47
crossref_primary_10_1016_j_jag_2022_103154
crossref_primary_10_3390_rs15153853
crossref_primary_10_1016_j_ecoinf_2025_103152
crossref_primary_10_1016_j_jag_2022_103152
crossref_primary_10_1061__ASCE_HE_1943_5584_0002176
crossref_primary_10_1016_j_atmosenv_2025_121360
crossref_primary_10_3390_w14233809
crossref_primary_10_1016_j_algal_2024_103812
crossref_primary_10_1557_s43577_022_00342_1
crossref_primary_10_1016_j_measen_2023_100962
crossref_primary_10_1080_15325008_2023_2295963
crossref_primary_10_1117_1_JRS_18_046510
crossref_primary_10_3390_rs16060945
crossref_primary_10_1016_j_landusepol_2024_107402
crossref_primary_10_1109_TGRS_2023_3281511
crossref_primary_10_1186_s42492_022_00108_1
Cites_doi 10.1016/j.rse.2011.11.020
10.1016/j.isprsjprs.2012.04.001
10.1016/j.jag.2012.11.007
10.3390/rs70708489
10.1080/01431161.2018.1512769
10.1109/TGRS.2010.2048116
10.1109/JSTARS.2013.2243112
10.1109/MGRS.2016.2616418
10.1109/JSTARS.2013.2262926
10.1109/TGRS.2017.2686450
10.1016/j.isprsjprs.2019.04.016
10.1016/j.geoderma.2013.09.016
10.1007/s00500-016-2247-2
10.1007/3-540-59119-2_166
10.1007/s10462-017-9555-5
10.1016/j.rse.2016.08.013
10.1080/2150704X.2015.1019015
10.1109/TPAMI.2014.2382106
10.1080/01431160701395203
10.1080/01431160412331269698
10.1109/TGRS.2006.880628
10.1023/A:1010933404324
10.1109/TGRS.2008.2007128
10.1109/MGRS.2018.2854840
10.1109/JPROC.2012.2197589
10.3390/rs8110888
10.1007/s11590-008-0092-7
10.1109/TGRS.2004.827257
10.1109/LGRS.2009.2026656
10.1016/j.isprsjprs.2016.01.011
10.1016/j.isprsjprs.2014.11.007
10.1007/BF00994018
10.1109/LGRS.2012.2227297
10.1162/neco.1997.9.7.1545
10.1080/01431161.2018.1471542
10.5589/m12-022
10.1109/34.709601
10.1016/j.rse.2017.11.003
10.1117/1.JRS.10.035021
10.1117/1.JRS.10.015017
10.1109/TGRS.2009.2014688
10.3390/rs5073212
10.1117/1.JRS.10.025004
10.1109/TGRS.2019.2907932
10.3390/rs11111351
10.1016/j.isprsjprs.2019.11.023
10.1109/TGRS.2008.2010404
10.1016/j.isprsjprs.2009.02.002
10.1016/S0893-6080(03)00169-2
10.1016/j.isprsjprs.2019.04.015
10.1016/j.rse.2008.02.011
10.1109/TGRS.2006.877950
10.1080/01431161.2014.951740
10.1016/j.jag.2009.06.002
10.18637/jss.v077.i01
10.1016/j.rse.2017.09.035
10.21105/joss.01903
10.1016/j.geoderma.2020.114552
10.3390/rs10071119
10.1109/TGRS.2018.2805829
10.1109/LGRS.2012.2236818
10.3390/rs11131600
10.1186/1471-2105-9-307
10.1016/j.isprsjprs.2010.11.001
10.3390/rs11131525
10.1016/j.jag.2018.06.014
10.3390/rs8100792
10.3390/rs8110954
10.1016/j.isprsjprs.2015.10.004
10.1080/01431161.2013.845317
10.1109/LGRS.2017.2669304
10.1016/j.isprsjprs.2017.06.001
10.1109/36.905239
10.1080/01431161.2014.995276
10.1080/01431160802546837
10.1016/j.isprsjprs.2015.03.002
10.1109/TGRS.2004.842481
10.1016/j.patrec.2005.08.011
10.1109/TGRS.2008.922034
10.1016/j.patrec.2010.03.014
10.1080/07038992.2019.1711366
10.1016/j.jag.2018.01.004
10.1109/LGRS.2009.2020306
10.1080/01431161.2014.930206
10.1109/LGRS.2015.2504449
10.1109/JSTARS.2014.2307356
10.1109/ICDAR.1995.598994
10.1080/01431161.2013.788261
10.1002/widm.1301
10.3390/rs11101174
10.3390/rs11010043
10.3390/rs11060670
10.1109/JSTARS.2012.2183857
10.1109/LGRS.2017.2745049
10.1186/1471-2105-8-25
10.3390/rs9111180
10.1109/LGRS.2008.915597
10.3390/rs10040580
10.1080/01431161.2014.903435
10.1007/BF00058655
10.1080/21642583.2014.956265
10.1109/TGRS.2011.2141143
10.1109/TGRS.2008.916643
10.7551/mitpress/4175.001.0001
10.1016/j.isprsjprs.2013.11.013
10.1080/01431161.2018.1430399
10.1016/j.patcog.2010.08.011
10.1007/b95439
10.1109/LGRS.2008.915600
10.1109/TGRS.2007.894550
10.1109/3468.618255
10.3390/rs11060734
10.1016/S0034-4257(01)00295-4
10.1145/1656274.1656278
10.1016/j.isprsjprs.2015.03.014
10.1109/TGRS.2010.2047863
10.1109/TGRS.2008.2011983
10.1080/01431161.2017.1381355
10.1109/JSTARS.2016.2539282
10.3390/rs9111193
10.3390/rs11121442
10.3390/rs9111106
10.1109/TGRS.2012.2202912
10.1016/j.rse.2004.06.017
10.1016/j.neucom.2012.07.017
10.1016/j.neucom.2006.03.004
10.1016/j.isprsjprs.2017.05.010
10.1016/j.aca.2014.03.039
10.1201/9781420090741
10.1016/j.rse.2014.11.001
10.1080/01431160110040323
10.7326/0003-4819-151-4-200908180-00135
10.1016/j.rse.2006.04.001
10.21105/joss.01686
10.3390/rs11141713
10.1186/1471-2105-9-319
10.3390/rs9111163
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2020.3026724
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 6325
ExternalDocumentID oai_doaj_org_article_8cfa189466d14ab4a2b9ae18db871f80
10_1109_JSTARS_2020_3026724
9206124
Genre orig-research
GrantInformation_xml – fundername: European Union's the Innovation and Networks Executive Agency
  grantid: 2018-EU-IA-0095
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c474t-90a5adec9b7b0f7e06c3fbb78626e770c476950ea5707240fca1c3645314e0093
IEDL.DBID DOA
ISICitedReferencesCount 677
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583704200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:46:28 EDT 2025
Fri Jul 25 20:40:51 EDT 2025
Sat Nov 29 04:51:06 EST 2025
Tue Nov 18 21:38:55 EST 2025
Wed Aug 27 02:50:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-90a5adec9b7b0f7e06c3fbb78626e770c476950ea5707240fca1c3645314e0093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3673-7544
0000-0002-7234-959X
0000-0002-0214-5356
0000-0003-1203-741X
0000-0002-9557-495X
OpenAccessLink https://doaj.org/article/8cfa189466d14ab4a2b9ae18db871f80
PQID 2456527629
PQPubID 75722
PageCount 18
ParticipantIDs crossref_primary_10_1109_JSTARS_2020_3026724
crossref_citationtrail_10_1109_JSTARS_2020_3026724
doaj_primary_oai_doaj_org_article_8cfa189466d14ab4a2b9ae18db871f80
ieee_primary_9206124
proquest_journals_2456527629
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
kranj?i? (ref47) 2019; 11
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref40
milgram (ref92) 0
ref35
ref34
ref37
ref36
ref31
ref148
ref30
pedregosa (ref149) 2011; 12
ref33
ref146
klusowski (ref113) 2018; 13
ref32
ref147
ref39
ref38
ref153
ref152
ref150
meyer (ref142) 2019
ref24
ref23
ref25
ref20
ref22
ref21
ref28
scholkopf (ref72) 2001
ref27
ref29
ref13
ref12
ref128
ref15
ref129
ref14
ref126
ref127
ref96
ref124
kuhn (ref141) 2015
ref99
ref11
ref125
ho (ref110) 1995; 1
ref98
ref10
ref17
ref16
ref19
ref18
ref133
ref93
ref134
ref131
ref95
ref132
ref94
ref130
ref91
ref90
ref89
ref139
bo (ref101) 2016; 13
ref137
ref86
ref138
ref85
ref135
ref88
ref136
ref87
fernández-delgado (ref69) 2014; 15
ref144
ref145
ref81
ref84
ref143
ref83
ref140
shahzad (ref107) 2013; 4
ref80
kuo (ref75) 2014; 7
ref79
ref108
ref78
ref109
ref106
sun (ref97) 2009; 47
ref104
ref74
ref105
ref77
ref102
ho (ref111) 1998; 20
ref76
ref103
ref2
ref1
ref71
ref70
ref112
ref73
ref68
ref119
ref67
ref117
ref118
sun (ref82) 2013; 10
ref64
ref115
ref63
ref116
blaom (ref151) 2019
ref66
ref65
ref114
ref60
ref122
boulesteix (ref26) 2012; 22
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref28
  doi: 10.1016/j.rse.2011.11.020
– ident: ref27
  doi: 10.1016/j.isprsjprs.2012.04.001
– ident: ref23
  doi: 10.1016/j.jag.2012.11.007
– ident: ref25
  doi: 10.3390/rs70708489
– ident: ref41
  doi: 10.1080/01431161.2018.1512769
– ident: ref145
  doi: 10.1109/TGRS.2010.2048116
– ident: ref87
  doi: 10.1109/JSTARS.2013.2243112
– ident: ref7
  doi: 10.1109/MGRS.2016.2616418
– volume: 7
  start-page: 317
  year: 2014
  ident: ref75
  article-title: A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification
  publication-title: IEEE J Sel Topics Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2013.2262926
– ident: ref147
  doi: 10.1109/TGRS.2017.2686450
– ident: ref140
  doi: 10.1016/j.isprsjprs.2019.04.016
– ident: ref15
  doi: 10.1016/j.geoderma.2013.09.016
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref149
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: JMLR
– ident: ref57
  doi: 10.1007/s00500-016-2247-2
– ident: ref108
  doi: 10.1007/3-540-59119-2_166
– ident: ref94
  doi: 10.1007/s10462-017-9555-5
– ident: ref53
  doi: 10.1016/j.rse.2016.08.013
– ident: ref30
  doi: 10.1080/2150704X.2015.1019015
– ident: ref132
  doi: 10.1109/TPAMI.2014.2382106
– ident: ref24
  doi: 10.1080/01431160701395203
– ident: ref130
  doi: 10.1080/01431160412331269698
– ident: ref74
  doi: 10.1109/TGRS.2006.880628
– ident: ref114
  doi: 10.1023/A:1010933404324
– ident: ref89
  doi: 10.1109/TGRS.2008.2007128
– ident: ref143
  doi: 10.1109/MGRS.2018.2854840
– volume: 22
  start-page: 323
  year: 2012
  ident: ref26
  article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
  publication-title: Biologie in unserer Zeit
– ident: ref102
  doi: 10.1023/A:1010933404324
– ident: ref144
  doi: 10.1109/JPROC.2012.2197589
– ident: ref3
  doi: 10.3390/rs8110888
– ident: ref83
  doi: 10.1007/s11590-008-0092-7
– year: 2019
  ident: ref151
– ident: ref73
  doi: 10.1109/TGRS.2004.827257
– ident: ref35
  doi: 10.1109/LGRS.2009.2026656
– ident: ref67
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: ref11
  doi: 10.1016/j.isprsjprs.2014.11.007
– ident: ref78
  doi: 10.1007/BF00994018
– ident: ref120
  doi: 10.1109/LGRS.2012.2227297
– ident: ref112
  doi: 10.1162/neco.1997.9.7.1545
– ident: ref16
  doi: 10.1080/01431161.2018.1471542
– ident: ref86
  doi: 10.5589/m12-022
– volume: 20
  start-page: 832
  year: 1998
  ident: ref111
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– ident: ref119
  doi: 10.1016/j.rse.2017.11.003
– ident: ref90
  doi: 10.1117/1.JRS.10.035021
– ident: ref105
  doi: 10.1117/1.JRS.10.015017
– year: 2019
  ident: ref142
  article-title: Package 'e1071'
  publication-title: R Journal
– volume: 47
  start-page: 2957
  year: 2009
  ident: ref97
  article-title: A unified model for remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral data
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2009.2014688
– ident: ref44
  doi: 10.3390/rs5073212
– ident: ref43
  doi: 10.1117/1.JRS.10.025004
– ident: ref58
  doi: 10.1109/TGRS.2019.2907932
– ident: ref21
  doi: 10.3390/rs11111351
– ident: ref6
  doi: 10.1016/j.isprsjprs.2019.11.023
– ident: ref13
  doi: 10.1109/TGRS.2008.2010404
– ident: ref85
  doi: 10.1016/j.isprsjprs.2009.02.002
– ident: ref80
  doi: 10.1016/S0893-6080(03)00169-2
– ident: ref56
  doi: 10.1016/j.isprsjprs.2019.04.015
– year: 2015
  ident: ref141
  article-title: Caret: Classification and regression training
  publication-title: ascl
– ident: ref129
  doi: 10.1016/j.rse.2008.02.011
– ident: ref95
  doi: 10.1109/TGRS.2006.877950
– ident: ref18
  doi: 10.1080/01431161.2014.951740
– ident: ref79
  doi: 10.1016/j.jag.2009.06.002
– ident: ref134
  doi: 10.18637/jss.v077.i01
– ident: ref62
  doi: 10.1016/j.rse.2017.09.035
– ident: ref153
  doi: 10.21105/joss.01903
– ident: ref49
  doi: 10.1016/j.geoderma.2020.114552
– ident: ref48
  doi: 10.3390/rs10071119
– ident: ref76
  doi: 10.1109/TGRS.2018.2805829
– volume: 10
  start-page: 1224
  year: 2013
  ident: ref82
  article-title: Learn multiple-kernel SVMs for domain adaptation in hyperspectral data
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2236818
– ident: ref51
  doi: 10.3390/rs11131600
– ident: ref115
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: ref121
  doi: 10.1186/1471-2105-9-307
– ident: ref66
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: ref19
  doi: 10.3390/rs11131525
– ident: ref42
  doi: 10.1016/j.jag.2018.06.014
– ident: ref2
  doi: 10.3390/rs8100792
– ident: ref32
  doi: 10.3390/rs8110954
– ident: ref1
  doi: 10.1016/j.isprsjprs.2015.10.004
– ident: ref46
  doi: 10.1080/01431161.2013.845317
– ident: ref148
  doi: 10.1109/LGRS.2017.2669304
– ident: ref52
  doi: 10.1016/j.isprsjprs.2017.06.001
– ident: ref146
  doi: 10.1109/36.905239
– volume: 15
  start-page: 3133
  year: 2014
  ident: ref69
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Mach Learn Res
– ident: ref117
  doi: 10.1080/01431161.2014.995276
– ident: ref39
  doi: 10.1080/01431160802546837
– ident: ref38
  doi: 10.1016/j.isprsjprs.2015.03.002
– ident: ref135
  doi: 10.1109/TGRS.2004.842481
– ident: ref137
  doi: 10.1016/j.patrec.2005.08.011
– ident: ref96
  doi: 10.1109/TGRS.2008.922034
– ident: ref116
  doi: 10.1016/j.patrec.2010.03.014
– ident: ref133
  doi: 10.1080/07038992.2019.1711366
– volume: 11
  year: 2019
  ident: ref47
  article-title: Support vector machine accuracy assessment for extracting green urban areas in towns
  publication-title: Remote Sens
– ident: ref31
  doi: 10.1016/j.jag.2018.01.004
– ident: ref60
  doi: 10.1109/LGRS.2009.2020306
– volume: 13
  start-page: 1063
  year: 2018
  ident: ref113
  article-title: Complete analysis of a random forest model
– ident: ref71
  doi: 10.1080/01431161.2014.930206
– volume: 13
  start-page: 177
  year: 2016
  ident: ref101
  article-title: Hyperspectral image classification via JCR and SVM models with decision fusion
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2015.2504449
– ident: ref98
  doi: 10.1109/JSTARS.2014.2307356
– volume: 1
  start-page: 278
  year: 1995
  ident: ref110
  article-title: Random decision forests
  publication-title: Proc 3rd Int Conf Document Anal Recognition
  doi: 10.1109/ICDAR.1995.598994
– ident: ref127
  doi: 10.1080/01431161.2013.788261
– ident: ref128
  doi: 10.1002/widm.1301
– ident: ref65
  doi: 10.3390/rs11101174
– ident: ref12
  doi: 10.3390/rs11010043
– ident: ref104
  doi: 10.3390/rs11060670
– ident: ref22
  doi: 10.1109/JSTARS.2012.2183857
– ident: ref123
  doi: 10.1109/LGRS.2017.2745049
– ident: ref131
  doi: 10.1186/1471-2105-8-25
– ident: ref124
  doi: 10.3390/rs9111180
– ident: ref37
  doi: 10.1109/LGRS.2008.915597
– ident: ref126
  doi: 10.3390/rs10040580
– ident: ref10
  doi: 10.1080/01431161.2014.903435
– ident: ref109
  doi: 10.1007/BF00058655
– ident: ref103
  doi: 10.1080/21642583.2014.956265
– ident: ref59
  doi: 10.1109/TGRS.2011.2141143
– ident: ref17
  doi: 10.1109/TGRS.2008.916643
– year: 2001
  ident: ref72
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref136
  doi: 10.1016/j.patrec.2005.08.011
– ident: ref45
  doi: 10.1016/j.isprsjprs.2013.11.013
– ident: ref55
  doi: 10.1080/01431161.2018.1430399
– ident: ref122
  doi: 10.1016/j.patcog.2010.08.011
– year: 0
  ident: ref92
  article-title: 'One against one' or 'one against all': Which one is better for handwriting recognition with SVMs?
  publication-title: Proc Int'l Workshop Frontiers in Handwriting Recognition
– ident: ref77
  doi: 10.1007/b95439
– ident: ref63
  doi: 10.1016/j.isprsjprs.2019.04.016
– ident: ref88
  doi: 10.1109/LGRS.2008.915600
– ident: ref99
  doi: 10.1109/TGRS.2007.894550
– ident: ref106
  doi: 10.1109/3468.618255
– ident: ref84
  doi: 10.3390/rs11060734
– ident: ref50
  doi: 10.1016/S0034-4257(01)00295-4
– ident: ref150
  doi: 10.1145/1656274.1656278
– ident: ref33
  doi: 10.1016/j.isprsjprs.2015.03.014
– ident: ref61
  doi: 10.1109/TGRS.2010.2047863
– ident: ref34
  doi: 10.1109/TGRS.2008.2011983
– ident: ref93
  doi: 10.1109/LGRS.2008.915597
– ident: ref20
  doi: 10.1080/01431161.2017.1381355
– ident: ref100
  doi: 10.1109/JSTARS.2016.2539282
– ident: ref14
  doi: 10.3390/rs9111193
– ident: ref4
  doi: 10.3390/rs11121442
– ident: ref64
  doi: 10.3390/rs9111106
– ident: ref40
  doi: 10.1109/TGRS.2012.2202912
– ident: ref9
  doi: 10.1016/j.rse.2004.06.017
– ident: ref91
  doi: 10.1016/j.neucom.2012.07.017
– ident: ref81
  doi: 10.1016/j.neucom.2006.03.004
– ident: ref8
  doi: 10.1016/j.isprsjprs.2017.05.010
– ident: ref125
  doi: 10.1016/j.aca.2014.03.039
– ident: ref68
  doi: 10.1201/9781420090741
– ident: ref54
  doi: 10.1016/j.rse.2014.11.001
– ident: ref139
  doi: 10.1080/01431160110040323
– ident: ref138
  doi: 10.7326/0003-4819-151-4-200908180-00135
– ident: ref118
  doi: 10.1016/j.patrec.2010.03.014
– ident: ref36
  doi: 10.1016/j.rse.2006.04.001
– ident: ref152
  doi: 10.21105/joss.01686
– volume: 4
  start-page: 98
  year: 2013
  ident: ref107
  article-title: Comparative analysis of voting schemes for ensemble-based malware detection
  publication-title: J Wireless Mobile Netw Ubiquitous Comput Dependable Appl
– ident: ref29
  doi: 10.3390/rs11141713
– ident: ref70
  doi: 10.1186/1471-2105-9-319
– ident: ref5
  doi: 10.3390/rs9111163
SSID ssj0062793
Score 2.6823225
SecondaryResourceType review_article
Snippet Several machine-learning algorithms have been proposed for remote sensing image classification during the past two decades. Among these machine learning...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6308
SubjectTerms Algorithms
Analysis
Classification
Classification algorithms
Comparative analysis
Deep learning
Feature extraction
Geographical distribution
Hyperspectral sensors
Image classification
Image processing
Learning algorithms
Machine learning
Meta-analysis
Qualitative analysis
Radio frequency
random forest (RF)
Remote sensing
remote sensing (RS)
Spatial discrimination
Spatial resolution
support vector machine (SVM)
Support vector machines
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD60RcEXb1VcrZIHHxubyc5MEt9WsepDi-yq9C3kcqYIdla6s4L-enMy2QFRBN-GIQkhX5JzSfJ9AM_nKFsSwOHRBc_roBtu0DdcBud0Sz64CllsQp2f64sL82EPjqe3MIiYL5_hC_rMZ_lxHbaUKjsxkgxyvQ_7SqnxrdZu122lygS7yR8xnChjCsNQJcxJmuKL5SrFgjKFqKS4JOvfrFAm6y_qKn9sydnOnN75vx7ehdvFn2SLcQLcgz3s78PNt1mv98ch_CTVzuRhs885O8_O8t1JZJQm227Y0vVxfcVIn3MzsOS_siUm7JCt6F57f8neX6X9hmXlTLpTlGF8yRbsDAfHd4QmLLXCVhMlNBvPGx7Ap9M3H1-_40VugYda1QM3wjUuYjBeedEpFG2Yd94rinlQKZFKtaYR6Bol0hCKLrgq0CnmvKqRMiMP4aBf9_gIWGxUnMeu8SKFd1qh9qIKyVULySRr5aoZyN3w21C4yEkS46vNMYkwdsTMEma2YDaD46nSt5GK49_FXxGuU1Hi0c4_EmC2LEurQ-cqTRz7saqdr530xmGlo0-BZKfFDA4J5KmRgu8MjnazxJY1v7H5CFkm42Ie_73WE7hFHRwTOEdwMFxv8SncCN-HL5vrZ3k6_wKVGfGD
  priority: 102
  providerName: IEEE
Title Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review
URI https://ieeexplore.ieee.org/document/9206124
https://www.proquest.com/docview/2456527629
https://doaj.org/article/8cfa189466d14ab4a2b9ae18db871f80
Volume 13
WOSCitedRecordID wos000583704200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iCl5k1RVHx-EdPFpMM22T7G0Ufx0UmXHFW0jSVBbWKk5dWP9630s7gyLoxeuQSdt8r3k_8vp9jO0NgyhIACcprXdJ5lWe6ODyRHhrVUExuPRRbEJeXqrbW331RuqLesJaeuB24Q6Ur2yqiAW9TDPrMiuctiFVpcNQv1IxW8eoZ5ZMtXtwIdDsOo6hlOsDNPLReILZoMAklTSXRPbOD0W6_k5f5cOmHD3NyQ-22oWIMGpvbY0thHqdLZ9GCd7_G-yFhDgxaIabWHCHi9gOGYAqX89TGNu6fLgHktycNoAhKYwDwhFgQq3q9R2c3-MWAlEMk9qEIjK_YAQXobHJjKMEcBaYzFmeoT1C-Ml-nxxfH50lnYJC4jOZNYnmNrdl8NpJxysZeOGHlXOS0pggJcdRhc55sLnkuCa88jb1dDA5TLNAxY5Ntlg_1GGLQZnLclhWueOYsSkZlOOpx-jLo5dV0qY9JmbraXxHL04qF39NTDO4Ni0IhkAwHQg9tj__02PLrvH58EMCaj6UqLHjD2gwpjMY85XB9NgGwTyfRAuK8nDu_gx2073GUxNPhQX6C739HZfeYSv0OG0Fp88Wm6fnsMuW_L_mz_RpEC14EL9AfAXmPfQi
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1daxQxFL3UquhL_WjFtVXz4GPHZrKZSeLbKtYWu4vsVulbSDJ3RLCz0p0t1F9vbmZ2QBTBt2FIQshJcj-SnAPwaoyiJAGcrHLBZzLoIjPoi0wE53RJPrgKSWxCzWb64sJ82oLD4S0MIqbLZ_iaPtNZfrUMa0qVHRlBBlnegtuFlCLvXmtt9t1SqESxGz0SkxFpTM8xlHNzFCf5ZL6I0aCIQSppLgn5mx1KdP29vsofm3KyNMcP_q-PD2Gn9yjZpJsCj2ALm8dw90NS7L3ZhZ-k2xl9bPYl5efZNN2eREaJsvWKzV1TLS8ZKXSuWhY9WDbHiB6yBd1sb76y08u447CknUm3ihKQb9iETbF12YbShMVW2GIghWbdicMefD5-f_7uJOsFF7IglWwzw13hKgzGK89rhbwM49p7RVEPKsVjqdIUHF2heBxCXgeXBzrHHOcSKTfyBLabZYNPgVWFqsZVXXgeAzytUHueh-ishWiUtXL5CMRm-G3o2chJFOO7TVEJN7bDzBJmtsdsBIdDpR8dGce_i78lXIeixKSdfkTAbL8wrQ61yzWx7Fe5dF464Y3DXFc-hpK15iPYJZCHRnp8R3CwmSW2X_Urmw6RRTQv5tnfa72Eeyfn0zN7djr7uA_3qbNdOucAtturNT6HO-G6_ba6epGm9i9HnfTK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+Vector+Machine+Versus+Random+Forest+for+Remote+Sensing+Image+Classification%3A+A+Meta-Analysis+and+Systematic+Review&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Sheykhmousa%2C+Mohammadreza&rft.au=Mahdianpari%2C+Masoud&rft.au=Ghanbari%2C+Hamid&rft.au=Mohammadimanesh%2C+Fariba&rft.date=2020&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=13&rft.spage=6308&rft.epage=6325&rft_id=info:doi/10.1109%2FJSTARS.2020.3026724&rft.externalDocID=9206124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon