Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review
Several machine-learning algorithms have been proposed for remote sensing image classification during the past two decades. Among these machine learning algorithms, Random Forest (RF) and Support Vector Machines (SVM) have drawn attention to image classification in several remote sensing application...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 13; S. 6308 - 6325 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Several machine-learning algorithms have been proposed for remote sensing image classification during the past two decades. Among these machine learning algorithms, Random Forest (RF) and Support Vector Machines (SVM) have drawn attention to image classification in several remote sensing applications. This article reviews RF and SVM concepts relevant to remote sensing image classification and applies a meta-analysis of 251 peer-reviewed journal papers. A database with more than 40 quantitative and qualitative fields was constructed from these reviewed papers. The meta-analysis mainly focuses on 1) the analysis regarding the general characteristics of the studies, such as geographical distribution, frequency of the papers considering time, journals, application domains, and remote sensing software packages used in the case studies, and 2) a comparative analysis regarding the performances of RF and SVM classification against various parameters, such as data type, RS applications, spatial resolution, and the number of extracted features in the feature engineering step. The challenges, recommendations, and potential directions for future research are also discussed in detail. Moreover, a summary of the results is provided to aid researchers to customize their efforts in order to achieve the most accurate results based on their thematic applications. |
|---|---|
| AbstractList | Several machine-learning algorithms have been proposed for remote sensing image classification during the past two decades. Among these machine learning algorithms, Random Forest (RF) and Support Vector Machines (SVM) have drawn attention to image classification in several remote sensing applications. This article reviews RF and SVM concepts relevant to remote sensing image classification and applies a meta-analysis of 251 peer-reviewed journal papers. A database with more than 40 quantitative and qualitative fields was constructed from these reviewed papers. The meta-analysis mainly focuses on 1) the analysis regarding the general characteristics of the studies, such as geographical distribution, frequency of the papers considering time, journals, application domains, and remote sensing software packages used in the case studies, and 2) a comparative analysis regarding the performances of RF and SVM classification against various parameters, such as data type, RS applications, spatial resolution, and the number of extracted features in the feature engineering step. The challenges, recommendations, and potential directions for future research are also discussed in detail. Moreover, a summary of the results is provided to aid researchers to customize their efforts in order to achieve the most accurate results based on their thematic applications. |
| Author | Homayouni, Saeid Ghanbari, Hamid Ghamisi, Pedram Mahdianpari, Masoud Mohammadimanesh, Fariba Sheykhmousa, Mohammadreza |
| Author_xml | – sequence: 1 givenname: Mohammadreza orcidid: 0000-0002-3673-7544 surname: Sheykhmousa fullname: Sheykhmousa, Mohammadreza email: mohammadreza.sheykhmousa@opengeohub.org organization: OpenGeoHub, Wageningen, The Netherlands – sequence: 2 givenname: Masoud orcidid: 0000-0002-7234-959X surname: Mahdianpari fullname: Mahdianpari, Masoud email: m.mahdianpari@mun.ca organization: C-CORE, St. John's, NL, Canada – sequence: 3 givenname: Hamid orcidid: 0000-0002-9557-495X surname: Ghanbari fullname: Ghanbari, Hamid email: hamid.ghanbari.1@ulaval.ca organization: Department of Geography, Université Laval, Québec, QC, Canada – sequence: 4 givenname: Fariba surname: Mohammadimanesh fullname: Mohammadimanesh, Fariba email: fariba.mohammadimanesh@c-core.ca organization: C-CORE, St. John's, NL, Canada – sequence: 5 givenname: Pedram orcidid: 0000-0003-1203-741X surname: Ghamisi fullname: Ghamisi, Pedram email: p.ghamisi@gmail.com organization: Division of “Exploration Technology,” Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany – sequence: 6 givenname: Saeid orcidid: 0000-0002-0214-5356 surname: Homayouni fullname: Homayouni, Saeid email: saeid.homayouni@ete.inrs.ca organization: Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec City, QC, Canada |
| BookMark | eNqFUU1v1DAQjVCR2BZ-QS-WOGexHceOua1WFBa1QtoUrtbEmSxeJfFiZ4u2v77epuqBC6eRx-9jZt5ldjH6EbPsmtElY1R_-l7fr7b1klNOlwXlUnHxJltwVrKclUV5kS2YLnTOBBXvsssY95RKrnSxyB7r4-Hgw0R-oZ18IHdgf7sR0zPEYyRbGFs_kBsfME6kS4AtDn5CUuMY3bgjmwF2SNY9xOg6Z2FyfvxMVuQOJ8hXI_Sn6CJJKqQ-xQmHBLBJ48Hh3_fZ2w76iB9e6lX28-bL_fpbfvvj62a9us2tUGLKNYUSWrS6UQ3tFFJpi65pVCW5RKVoQkldUoRS0bQ37SwwW0hRFkwgpbq4yjazbuthbw7BDRBOxoMzzw0fdgZCGqtHU9kOWKWFlC0T0AjgjQZkVdtUinUVTVofZ61D8H-O6SZm748hrRkNF6UsuZL87FjMKBt8jAG7V1dGzTkwMwdmzoGZl8ASS__Dsm56PugUwPX_4V7PXIeIr26aU8nS7xO9TqZL |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3162693 crossref_primary_10_3390_rs13081427 crossref_primary_10_1007_s10661_023_11808_3 crossref_primary_10_1007_s12040_024_02388_y crossref_primary_10_3390_rs16010182 crossref_primary_10_3390_rs14092097 crossref_primary_10_3390_rs14040894 crossref_primary_10_1016_j_isprsjprs_2023_03_017 crossref_primary_10_1007_s41748_024_00562_2 crossref_primary_10_1016_j_soilad_2025_100044 crossref_primary_10_1142_S021812662550402X crossref_primary_10_1016_j_future_2022_03_017 crossref_primary_10_3390_f14091881 crossref_primary_10_3390_land14030630 crossref_primary_10_1109_JSTARS_2021_3105645 crossref_primary_10_1016_j_eswa_2024_125588 crossref_primary_10_3390_su151310298 crossref_primary_10_1016_j_asr_2024_03_027 crossref_primary_10_1016_j_procs_2025_04_657 crossref_primary_10_3390_rs13152965 crossref_primary_10_3390_su15086949 crossref_primary_10_1007_s13369_024_09771_3 crossref_primary_10_1109_ACCESS_2024_3422317 crossref_primary_10_1002_jmri_28276 crossref_primary_10_1007_s40808_023_01895_z crossref_primary_10_3390_f14122376 crossref_primary_10_1109_JSTARS_2025_3564008 crossref_primary_10_3390_rs14225727 crossref_primary_10_1109_JSTARS_2024_3358846 crossref_primary_10_1109_ACCESS_2024_3388418 crossref_primary_10_1007_s11783_023_1608_1 crossref_primary_10_1016_j_ymssp_2025_112872 crossref_primary_10_1016_j_compag_2022_107504 crossref_primary_10_1109_ACCESS_2022_3229008 crossref_primary_10_1016_j_rse_2022_113206 crossref_primary_10_1080_10106049_2022_2082554 crossref_primary_10_28979_jarnas_1371067 crossref_primary_10_1080_17538947_2024_2356122 crossref_primary_10_1007_s11277_023_10662_3 crossref_primary_10_3390_ma16216837 crossref_primary_10_1016_j_agsy_2024_104247 crossref_primary_10_3390_rs14225852 crossref_primary_10_1002_ldr_5578 crossref_primary_10_1109_JSTARS_2021_3114116 crossref_primary_10_3390_app14167050 crossref_primary_10_3390_w13182553 crossref_primary_10_3390_geomatics4030016 crossref_primary_10_3390_f14112224 crossref_primary_10_1007_s42452_024_05994_z crossref_primary_10_1016_j_rineng_2024_102878 crossref_primary_10_1016_j_isprsjprs_2023_02_005 crossref_primary_10_3390_rs13152980 crossref_primary_10_3390_ani14131957 crossref_primary_10_1016_j_heliyon_2023_e23012 crossref_primary_10_3390_rs14092060 crossref_primary_10_1016_j_jag_2024_104241 crossref_primary_10_1007_s10668_024_05569_3 crossref_primary_10_3390_rs16071227 crossref_primary_10_3390_rs14225862 crossref_primary_10_1007_s12273_024_1132_7 crossref_primary_10_1109_TGRS_2024_3418583 crossref_primary_10_1007_s00894_024_06188_5 crossref_primary_10_1016_j_indic_2025_100797 crossref_primary_10_1038_s41598_025_01981_5 crossref_primary_10_1002_cpe_6945 crossref_primary_10_1029_2024JH000550 crossref_primary_10_3390_rs17030547 crossref_primary_10_1109_ACCESS_2024_3524454 crossref_primary_10_3390_sym17060929 crossref_primary_10_1038_s41598_024_58501_0 crossref_primary_10_1109_TGRS_2025_3542800 crossref_primary_10_35377_saucis___1391636 crossref_primary_10_3390_rs14030803 crossref_primary_10_1049_ipr2_13067 crossref_primary_10_3390_rs17030366 crossref_primary_10_3390_w14020178 crossref_primary_10_3390_rs17071195 crossref_primary_10_3390_rs14092170 crossref_primary_10_3390_rs17030480 crossref_primary_10_3390_w16060813 crossref_primary_10_15446_esrj_v27n4_110128 crossref_primary_10_3390_agronomy11071363 crossref_primary_10_3390_app112110208 crossref_primary_10_31083_j_fbl2902082 crossref_primary_10_3390_w16172408 crossref_primary_10_1016_j_rse_2022_113144 crossref_primary_10_3390_electronics12020348 crossref_primary_10_1016_j_ajo_2025_08_035 crossref_primary_10_3390_rs15041001 crossref_primary_10_1016_j_jag_2025_104403 crossref_primary_10_3390_rs14174247 crossref_primary_10_7717_peerj_17563 crossref_primary_10_1016_j_eja_2025_127678 crossref_primary_10_1016_j_tust_2022_104852 crossref_primary_10_1002_mp_16227 crossref_primary_10_3390_rs14225644 crossref_primary_10_1007_s11069_024_06481_9 crossref_primary_10_3390_rs16173280 crossref_primary_10_3390_rs17020334 crossref_primary_10_1140_epjqt_s40507_022_00157_8 crossref_primary_10_3390_app13042551 crossref_primary_10_3390_su142215252 crossref_primary_10_1007_s12303_023_0032_7 crossref_primary_10_1016_j_heliyon_2024_e38731 crossref_primary_10_3390_wevj16020080 crossref_primary_10_1007_s11227_024_06697_3 crossref_primary_10_1016_j_geoderma_2025_117425 crossref_primary_10_25034_ijcua_2025_v9n2_5 crossref_primary_10_1080_0951192X_2023_2257648 crossref_primary_10_1007_s41870_023_01200_2 crossref_primary_10_3390_math12233872 crossref_primary_10_3390_rs15235461 crossref_primary_10_1016_j_seta_2025_104528 crossref_primary_10_1155_2023_4389885 crossref_primary_10_3390_rs13244995 crossref_primary_10_1108_TG_03_2024_0061 crossref_primary_10_1016_j_rse_2023_113680 crossref_primary_10_3390_app122312070 crossref_primary_10_1109_ACCESS_2024_3491502 crossref_primary_10_1109_JSTARS_2021_3136228 crossref_primary_10_1007_s11119_022_09922_2 crossref_primary_10_1016_j_pce_2025_104081 crossref_primary_10_1038_s41598_024_70936_z crossref_primary_10_1016_j_heliyon_2024_e38947 crossref_primary_10_1007_s40098_025_01271_x crossref_primary_10_3390_a17110519 crossref_primary_10_3390_rs14174382 crossref_primary_10_3390_rs15041144 crossref_primary_10_3390_app14219990 crossref_primary_10_3390_eng5040177 crossref_primary_10_3390_rs14205154 crossref_primary_10_3390_rs16010091 crossref_primary_10_3390_rs17030356 crossref_primary_10_3390_rs15020342 crossref_primary_10_3390_rs16142677 crossref_primary_10_1109_JSTARS_2024_3391332 crossref_primary_10_3390_agriculture13020388 crossref_primary_10_3390_su13168848 crossref_primary_10_1016_j_jhazmat_2024_134072 crossref_primary_10_1080_01431161_2024_2339192 crossref_primary_10_3390_rs15235456 crossref_primary_10_1016_j_engappai_2025_110057 crossref_primary_10_1016_j_atech_2023_100193 crossref_primary_10_3390_land14030649 crossref_primary_10_1109_TGRS_2025_3528411 crossref_primary_10_1080_10106049_2022_2060330 crossref_primary_10_1109_JSTARS_2024_3457791 crossref_primary_10_1016_j_culher_2023_11_005 crossref_primary_10_3390_f13050677 crossref_primary_10_1002_esp_5950 crossref_primary_10_1088_1755_1315_1051_1_012024 crossref_primary_10_1109_ACCESS_2022_3141595 crossref_primary_10_1080_07038992_2021_1901562 crossref_primary_10_3390_land13091427 crossref_primary_10_3390_rs13193899 crossref_primary_10_1016_j_jenvman_2025_125614 crossref_primary_10_1038_s41598_025_12689_x crossref_primary_10_3390_rs15030658 crossref_primary_10_3390_rs17071274 crossref_primary_10_3390_s21061994 crossref_primary_10_1016_j_isprsjprs_2022_03_011 crossref_primary_10_3390_rs14246376 crossref_primary_10_3390_rs14246254 crossref_primary_10_3390_ijerph192215108 crossref_primary_10_1007_s43069_023_00278_5 crossref_primary_10_1109_TGRS_2025_3535749 crossref_primary_10_3390_rs16040686 crossref_primary_10_1016_j_jsse_2023_08_003 crossref_primary_10_1038_s41598_024_55570_z crossref_primary_10_7235_HORT_20240022 crossref_primary_10_1109_ACCESS_2024_3438617 crossref_primary_10_3390_jmse12050800 crossref_primary_10_3390_math11040920 crossref_primary_10_1109_JSEN_2021_3130199 crossref_primary_10_1007_s12665_025_12377_z crossref_primary_10_1007_s12517_021_07293_y crossref_primary_10_3390_cli9040058 crossref_primary_10_3390_rs15164033 crossref_primary_10_3390_rs14143486 crossref_primary_10_1016_j_cj_2023_03_003 crossref_primary_10_3390_land11112028 crossref_primary_10_3390_rs17173074 crossref_primary_10_3390_s22051948 crossref_primary_10_3390_f15020288 crossref_primary_10_7780_kjrs_2025_41_2_1_1 crossref_primary_10_1111_csp2_70151 crossref_primary_10_1109_TGRS_2024_3370584 crossref_primary_10_3390_s21134408 crossref_primary_10_3390_w15142557 crossref_primary_10_1016_j_ecoleng_2024_107408 crossref_primary_10_1016_j_jnca_2024_103903 crossref_primary_10_1016_j_catena_2025_108889 crossref_primary_10_3390_rs15051388 crossref_primary_10_1007_s11760_024_03424_6 crossref_primary_10_3390_rs13214347 crossref_primary_10_1109_JSTARS_2020_3043836 crossref_primary_10_3390_land13101566 crossref_primary_10_1080_22797254_2023_2289616 crossref_primary_10_3389_fmed_2025_1574514 crossref_primary_10_1007_s11042_025_20919_7 crossref_primary_10_1016_j_csbj_2025_05_011 crossref_primary_10_1016_j_mfglet_2024_09_158 crossref_primary_10_1080_01431161_2022_2133579 crossref_primary_10_3390_app12178654 crossref_primary_10_3390_rs15143457 crossref_primary_10_1109_JSTARS_2025_3532816 crossref_primary_10_1109_JSTARS_2024_3357141 crossref_primary_10_1080_10106049_2023_2204099 crossref_primary_10_3390_s25175489 crossref_primary_10_1016_j_foreco_2024_121920 crossref_primary_10_1515_geo_2022_0745 crossref_primary_10_3390_computers13020034 crossref_primary_10_3390_w15050880 crossref_primary_10_3390_rs16173187 crossref_primary_10_1016_j_ecolind_2025_113874 crossref_primary_10_1016_j_heliyon_2024_e34710 crossref_primary_10_1016_j_ufug_2025_128953 crossref_primary_10_3390_rs16224194 crossref_primary_10_1016_j_compbiomed_2024_109032 crossref_primary_10_1088_1755_1315_1240_1_012017 crossref_primary_10_3390_rs16050798 crossref_primary_10_3390_rs15215113 crossref_primary_10_1109_ACCESS_2021_3105796 crossref_primary_10_1016_j_rsase_2025_101591 crossref_primary_10_1007_s11042_022_14122_1 crossref_primary_10_3390_rs13193863 crossref_primary_10_1007_s10661_024_12677_0 crossref_primary_10_1080_01431161_2024_2391588 crossref_primary_10_1049_cth2_12410 crossref_primary_10_1080_01431161_2024_2371618 crossref_primary_10_1016_j_watres_2025_123350 crossref_primary_10_3390_earth6030107 crossref_primary_10_1117_1_JRS_19_028505 crossref_primary_10_1186_s40537_023_00829_x crossref_primary_10_3390_rs15225271 crossref_primary_10_1016_j_psj_2024_103739 crossref_primary_10_1002_htj_70053 crossref_primary_10_1007_s10044_024_01318_4 crossref_primary_10_3390_drones7110668 crossref_primary_10_3390_s25185697 crossref_primary_10_1111_exsy_70126 crossref_primary_10_3390_rs16030541 crossref_primary_10_1007_s12145_024_01318_2 crossref_primary_10_3390_hydrology12080214 crossref_primary_10_1109_JSTARS_2024_3370159 crossref_primary_10_3390_rs15030750 crossref_primary_10_3390_s23156821 crossref_primary_10_1080_10095020_2025_2514180 crossref_primary_10_2174_0126662558312821240804183436 crossref_primary_10_1007_s10515_023_00388_8 crossref_primary_10_1016_j_resconrec_2024_107751 crossref_primary_10_1007_s00217_023_04377_9 crossref_primary_10_3390_rs14133104 crossref_primary_10_1088_1361_6501_addf66 crossref_primary_10_1109_ACCESS_2023_3305473 crossref_primary_10_34288_jri_v7i3_375 crossref_primary_10_3390_app15189894 crossref_primary_10_3390_agronomy11081554 crossref_primary_10_3390_f14071509 crossref_primary_10_1016_j_biombioe_2024_107527 crossref_primary_10_3390_rs17132208 crossref_primary_10_1016_j_patcog_2025_111606 crossref_primary_10_1109_TETCI_2023_3300303 crossref_primary_10_1109_JSTARS_2023_3347571 crossref_primary_10_3390_f13091457 crossref_primary_10_3390_f14010032 crossref_primary_10_1016_j_compeleceng_2024_109255 crossref_primary_10_1109_TIP_2024_3522809 crossref_primary_10_1016_j_isprsjprs_2023_05_003 crossref_primary_10_3390_rs14143272 crossref_primary_10_1016_j_rsma_2024_103790 crossref_primary_10_3390_rs14205202 crossref_primary_10_1177_18724981251334507 crossref_primary_10_3390_land14051038 crossref_primary_10_1109_ACCESS_2023_3321800 crossref_primary_10_3390_geomatics5030042 crossref_primary_10_1080_01431161_2024_2370504 crossref_primary_10_3390_land11112039 crossref_primary_10_1007_s12517_020_06347_x crossref_primary_10_1109_ACCESS_2023_3291451 crossref_primary_10_3390_rs14215478 crossref_primary_10_1016_j_vibspec_2024_103693 crossref_primary_10_1007_s41064_024_00329_4 crossref_primary_10_1016_j_rsase_2022_100824 crossref_primary_10_1016_j_jag_2022_102746 crossref_primary_10_1016_j_jag_2024_104286 crossref_primary_10_1016_j_isprsjprs_2023_12_012 crossref_primary_10_1038_s41598_024_80286_5 crossref_primary_10_3390_drones6050100 crossref_primary_10_1016_j_compag_2025_110115 crossref_primary_10_1016_j_apor_2023_103511 crossref_primary_10_3390_rs17132224 crossref_primary_10_3389_fpls_2025_1533855 crossref_primary_10_3390_rs14112661 crossref_primary_10_3390_rs14112663 crossref_primary_10_1007_s42835_024_01901_z crossref_primary_10_1007_s12524_021_01444_0 crossref_primary_10_1007_s41651_025_00220_9 crossref_primary_10_3390_rs14030541 crossref_primary_10_3390_su16135748 crossref_primary_10_4018_IJITSA_351218 crossref_primary_10_3390_rs16203781 crossref_primary_10_1371_journal_pone_0312739 crossref_primary_10_3390_rs14163937 crossref_primary_10_3390_su17135957 crossref_primary_10_3390_s22114070 crossref_primary_10_3390_rs16224247 crossref_primary_10_1109_JSTARS_2022_3203145 crossref_primary_10_1016_j_rineng_2025_104769 crossref_primary_10_1088_1755_1315_1217_1_012032 crossref_primary_10_1016_j_pdpdt_2023_103708 crossref_primary_10_1016_j_oregeorev_2024_106391 crossref_primary_10_1117_1_JRS_18_014531 crossref_primary_10_1007_s41748_024_00393_1 crossref_primary_10_1016_j_prime_2022_100090 crossref_primary_10_1109_JSTARS_2025_3593138 crossref_primary_10_1007_s10661_022_09850_8 crossref_primary_10_1016_j_atmosenv_2023_119724 crossref_primary_10_3390_s24061982 crossref_primary_10_1016_j_specom_2023_102986 crossref_primary_10_3390_rs14020378 crossref_primary_10_1016_j_rsase_2022_100728 crossref_primary_10_1111_1752_1688_13160 crossref_primary_10_3390_rs16030580 crossref_primary_10_1016_j_sajb_2024_08_021 crossref_primary_10_1016_j_acags_2025_100273 crossref_primary_10_3390_bioengineering10030281 crossref_primary_10_1007_s00253_021_11375_y crossref_primary_10_3390_app15137528 crossref_primary_10_1007_s10705_022_10233_1 crossref_primary_10_3390_ijgi11080424 crossref_primary_10_1016_j_rsma_2023_103240 crossref_primary_10_1007_s41748_025_00761_5 crossref_primary_10_1007_s10661_025_14438_z crossref_primary_10_1016_j_rse_2025_114941 crossref_primary_10_1088_1755_1315_1195_1_012056 crossref_primary_10_1080_07038992_2021_2011180 crossref_primary_10_3390_rs13245007 crossref_primary_10_1080_07038992_2024_2384883 crossref_primary_10_3390_rs14133027 crossref_primary_10_1109_TGRS_2024_3505539 crossref_primary_10_3390_f13020340 crossref_primary_10_3390_su13094814 crossref_primary_10_1109_JSTARS_2024_3522662 crossref_primary_10_3390_en17174485 crossref_primary_10_1017_asb_2022_12 crossref_primary_10_1109_TIM_2025_3541807 crossref_primary_10_1088_1755_1315_1418_1_012001 crossref_primary_10_1016_j_rsase_2024_101257 crossref_primary_10_1080_01431161_2022_2161856 crossref_primary_10_1038_s41598_025_07883_w crossref_primary_10_1007_s10661_023_11968_2 crossref_primary_10_1016_j_hazadv_2024_100576 crossref_primary_10_3390_agronomy15051106 crossref_primary_10_1016_j_asr_2025_07_100 crossref_primary_10_1007_s12145_025_01860_7 crossref_primary_10_1109_TGRS_2024_3377009 crossref_primary_10_1029_2021EA001742 crossref_primary_10_1007_s00267_023_01842_9 crossref_primary_10_1016_j_jag_2023_103418 crossref_primary_10_1007_s10531_024_02800_5 crossref_primary_10_14358_PERS_24_00026R2 crossref_primary_10_3390_rs15030608 crossref_primary_10_3390_min12111453 crossref_primary_10_1109_TGRS_2022_3208165 crossref_primary_10_3390_rs17050931 crossref_primary_10_3390_rs16193738 crossref_primary_10_7717_peerj_cs_2576 crossref_primary_10_1080_10106049_2025_2491640 crossref_primary_10_3390_land13030335 crossref_primary_10_1109_LGRS_2025_3537104 crossref_primary_10_3390_app122412774 crossref_primary_10_3390_drones8010013 crossref_primary_10_1109_JSTARS_2025_3595365 crossref_primary_10_1007_s12040_024_02305_3 crossref_primary_10_1016_j_rsase_2022_100898 crossref_primary_10_3390_rs13132581 crossref_primary_10_3390_rs17091597 crossref_primary_10_4018_JOEUC_384397 crossref_primary_10_1109_TGRS_2024_3378529 crossref_primary_10_3390_su132413752 crossref_primary_10_1117_1_JEI_32_6_063016 crossref_primary_10_3390_rs15215196 crossref_primary_10_1016_j_ecoinf_2023_102324 crossref_primary_10_1016_j_vibspec_2025_103826 crossref_primary_10_3390_rs17152686 crossref_primary_10_1016_j_msea_2024_146390 crossref_primary_10_3390_land11122154 crossref_primary_10_3390_math12091312 crossref_primary_10_1007_s11665_024_10167_5 crossref_primary_10_1016_j_scitotenv_2024_173537 crossref_primary_10_1109_ACCESS_2025_3602003 crossref_primary_10_3390_rs16193561 crossref_primary_10_1007_s11356_023_31022_5 crossref_primary_10_1109_JSTARS_2022_3201273 crossref_primary_10_3390_rs14215531 crossref_primary_10_3390_rs16020338 crossref_primary_10_3390_ijgi10040226 crossref_primary_10_3390_rs16234494 crossref_primary_10_1016_j_jenvrad_2025_107710 crossref_primary_10_3390_rs14041014 crossref_primary_10_1109_TVT_2024_3396691 crossref_primary_10_3390_electronics10202482 crossref_primary_10_46481_jnsps_2025_2938 crossref_primary_10_3390_rs13040777 crossref_primary_10_1109_ACCESS_2024_3415350 crossref_primary_10_3390_rs17152670 crossref_primary_10_3390_agronomy14010075 crossref_primary_10_3390_rs15164112 crossref_primary_10_1016_j_jestch_2025_102133 crossref_primary_10_1109_TGRS_2024_3370919 crossref_primary_10_1109_TII_2022_3201011 crossref_primary_10_1080_01431161_2023_2165421 crossref_primary_10_14358_PERS_24_00110R1 crossref_primary_10_1016_j_rsase_2024_101223 crossref_primary_10_1016_j_egyai_2025_100557 crossref_primary_10_1016_j_foreco_2024_122231 crossref_primary_10_1109_JSEN_2023_3329490 crossref_primary_10_1109_ACCESS_2023_3320792 crossref_primary_10_26848_rbgf_v17_5_p3715_3735 crossref_primary_10_3390_agronomy14040719 crossref_primary_10_3390_f16091376 crossref_primary_10_3390_rs15174140 crossref_primary_10_1016_j_srs_2025_100214 crossref_primary_10_1016_j_envsoft_2024_105956 crossref_primary_10_1016_j_asr_2022_10_012 crossref_primary_10_3390_rs17050742 crossref_primary_10_1109_JSTARS_2021_3065569 crossref_primary_10_3389_fmed_2025_1627617 crossref_primary_10_1109_JSTARS_2023_3308046 crossref_primary_10_3390_rs13214422 crossref_primary_10_1007_s13042_024_02415_w crossref_primary_10_3390_rs14091977 crossref_primary_10_1016_j_foodchem_2025_144882 crossref_primary_10_3390_rs15092373 crossref_primary_10_3390_diagnostics13203245 crossref_primary_10_3390_rs14020359 crossref_primary_10_1080_02626667_2025_2456209 crossref_primary_10_3390_rs17173126 crossref_primary_10_1016_j_cpsurg_2025_101743 crossref_primary_10_1051_bioconf_202516705001 crossref_primary_10_3390_rs16030488 crossref_primary_10_3390_land12010036 crossref_primary_10_1016_j_cviu_2025_104382 crossref_primary_10_1016_j_ecoinf_2024_102847 crossref_primary_10_52326_jes_utm_2025_32_1__06 crossref_primary_10_1109_JSTARS_2021_3110763 crossref_primary_10_3390_rs16193657 crossref_primary_10_3390_rs14051066 crossref_primary_10_1007_s10661_023_11202_z crossref_primary_10_1080_01431161_2023_2197131 crossref_primary_10_1109_LGRS_2022_3197764 crossref_primary_10_1109_MGRS_2021_3087445 crossref_primary_10_3390_make4040054 crossref_primary_10_1007_s12040_024_02345_9 crossref_primary_10_1002_esp_6009 crossref_primary_10_1109_ACCESS_2023_3243203 crossref_primary_10_1016_j_neucom_2025_130101 crossref_primary_10_1016_j_foreco_2025_122977 crossref_primary_10_1109_ACCESS_2022_3223094 crossref_primary_10_1002_widm_1522 crossref_primary_10_3390_rs15092350 crossref_primary_10_1016_j_catena_2023_107537 crossref_primary_10_3390_rs13050876 crossref_primary_10_1186_s13717_024_00555_z crossref_primary_10_3390_rs15123168 crossref_primary_10_1002_cpe_7733 crossref_primary_10_1109_TIM_2023_3284941 crossref_primary_10_3390_w13243627 crossref_primary_10_3390_s23042180 crossref_primary_10_1186_s13717_024_00520_w crossref_primary_10_1007_s12518_023_00530_x crossref_primary_10_3390_rs13163322 crossref_primary_10_3390_electronics12040946 crossref_primary_10_1016_j_foodcont_2024_110527 crossref_primary_10_3390_bioengineering12070755 crossref_primary_10_3390_rs17030385 crossref_primary_10_1016_j_rsase_2024_101407 crossref_primary_10_3390_rs16050818 crossref_primary_10_1021_acsami_5c16395 crossref_primary_10_1109_JSEN_2024_3453909 crossref_primary_10_3390_rs13224704 crossref_primary_10_1016_j_measen_2023_100771 crossref_primary_10_1109_ACCESS_2024_3442205 crossref_primary_10_3390_land12071269 crossref_primary_10_3390_rs16091566 crossref_primary_10_3390_s23239328 crossref_primary_10_3390_app13042261 crossref_primary_10_1080_2150704X_2023_2185110 crossref_primary_10_1016_j_eswa_2025_129176 crossref_primary_10_1177_09544062241246862 crossref_primary_10_3390_s24227244 crossref_primary_10_1007_s12145_023_01008_5 crossref_primary_10_1007_s41060_023_00448_y crossref_primary_10_1109_ACCESS_2023_3314819 crossref_primary_10_1109_JSTARS_2024_3473937 crossref_primary_10_3390_w17192796 crossref_primary_10_15446_esrj_v28n2_105296 crossref_primary_10_1007_s11540_024_09721_4 crossref_primary_10_3389_fnins_2024_1380886 crossref_primary_10_26848_rbgf_v17_4_p2582_2605 crossref_primary_10_3390_f16050794 crossref_primary_10_1002_jocb_1524 crossref_primary_10_1080_10106049_2024_2347935 crossref_primary_10_1111_jfpe_14664 crossref_primary_10_1016_j_bios_2024_116782 crossref_primary_10_3390_rs17162848 crossref_primary_10_1080_10643389_2023_2285691 crossref_primary_10_1016_j_jag_2023_103202 crossref_primary_10_1016_j_inffus_2024_102673 crossref_primary_10_3390_rs17091639 crossref_primary_10_3390_diagnostics12040957 crossref_primary_10_1016_j_ijpharm_2023_123458 crossref_primary_10_1080_07038992_2024_2430496 crossref_primary_10_3390_rs17020289 crossref_primary_10_1016_j_jag_2025_104809 crossref_primary_10_1016_j_asr_2024_09_010 crossref_primary_10_3390_rs15153859 crossref_primary_10_1117_1_JRS_17_036509 crossref_primary_10_1016_j_kjs_2025_100453 crossref_primary_10_3390_f16040570 crossref_primary_10_1016_j_eswa_2024_124583 crossref_primary_10_1109_JSTARS_2023_3296505 crossref_primary_10_3390_rs16244691 crossref_primary_10_3390_rs15092412 crossref_primary_10_1080_01431161_2024_2329529 crossref_primary_10_1016_j_patcog_2025_111378 crossref_primary_10_1007_s13762_022_04467_3 crossref_primary_10_3390_f15122247 crossref_primary_10_3390_rs16010039 crossref_primary_10_1080_07038992_2025_2551528 crossref_primary_10_3390_ani11123438 crossref_primary_10_3390_su14095700 crossref_primary_10_1016_j_gecco_2024_e03357 crossref_primary_10_1007_s11273_023_09971_y crossref_primary_10_1080_01431161_2023_2195573 crossref_primary_10_3390_electronics14020377 crossref_primary_10_1016_j_compag_2023_108131 crossref_primary_10_1007_s11069_025_07345_6 crossref_primary_10_1007_s40435_023_01250_1 crossref_primary_10_1109_ACCESS_2022_3205337 crossref_primary_10_3390_rs14184436 crossref_primary_10_1109_ACCESS_2024_3485214 crossref_primary_10_1109_JSTARS_2024_3435372 crossref_primary_10_3390_f16040668 crossref_primary_10_1080_17538947_2025_2470851 crossref_primary_10_3390_app12105106 crossref_primary_10_3390_foods13172656 crossref_primary_10_3390_drones9040296 crossref_primary_10_1016_j_biosystems_2024_105360 crossref_primary_10_1371_journal_pone_0284316 crossref_primary_10_3390_s25020431 crossref_primary_10_1016_j_ecoinf_2021_101495 crossref_primary_10_3390_rs17020267 crossref_primary_10_3390_biomimetics9070440 crossref_primary_10_3390_rs14184585 crossref_primary_10_31677_2072_6724_2024_71_2_37_47 crossref_primary_10_1016_j_jag_2022_103154 crossref_primary_10_3390_rs15153853 crossref_primary_10_1016_j_ecoinf_2025_103152 crossref_primary_10_1016_j_jag_2022_103152 crossref_primary_10_1061__ASCE_HE_1943_5584_0002176 crossref_primary_10_1016_j_atmosenv_2025_121360 crossref_primary_10_3390_w14233809 crossref_primary_10_1016_j_algal_2024_103812 crossref_primary_10_1557_s43577_022_00342_1 crossref_primary_10_1016_j_measen_2023_100962 crossref_primary_10_1080_15325008_2023_2295963 crossref_primary_10_1117_1_JRS_18_046510 crossref_primary_10_3390_rs16060945 crossref_primary_10_1016_j_landusepol_2024_107402 crossref_primary_10_1109_TGRS_2023_3281511 crossref_primary_10_1186_s42492_022_00108_1 |
| Cites_doi | 10.1016/j.rse.2011.11.020 10.1016/j.isprsjprs.2012.04.001 10.1016/j.jag.2012.11.007 10.3390/rs70708489 10.1080/01431161.2018.1512769 10.1109/TGRS.2010.2048116 10.1109/JSTARS.2013.2243112 10.1109/MGRS.2016.2616418 10.1109/JSTARS.2013.2262926 10.1109/TGRS.2017.2686450 10.1016/j.isprsjprs.2019.04.016 10.1016/j.geoderma.2013.09.016 10.1007/s00500-016-2247-2 10.1007/3-540-59119-2_166 10.1007/s10462-017-9555-5 10.1016/j.rse.2016.08.013 10.1080/2150704X.2015.1019015 10.1109/TPAMI.2014.2382106 10.1080/01431160701395203 10.1080/01431160412331269698 10.1109/TGRS.2006.880628 10.1023/A:1010933404324 10.1109/TGRS.2008.2007128 10.1109/MGRS.2018.2854840 10.1109/JPROC.2012.2197589 10.3390/rs8110888 10.1007/s11590-008-0092-7 10.1109/TGRS.2004.827257 10.1109/LGRS.2009.2026656 10.1016/j.isprsjprs.2016.01.011 10.1016/j.isprsjprs.2014.11.007 10.1007/BF00994018 10.1109/LGRS.2012.2227297 10.1162/neco.1997.9.7.1545 10.1080/01431161.2018.1471542 10.5589/m12-022 10.1109/34.709601 10.1016/j.rse.2017.11.003 10.1117/1.JRS.10.035021 10.1117/1.JRS.10.015017 10.1109/TGRS.2009.2014688 10.3390/rs5073212 10.1117/1.JRS.10.025004 10.1109/TGRS.2019.2907932 10.3390/rs11111351 10.1016/j.isprsjprs.2019.11.023 10.1109/TGRS.2008.2010404 10.1016/j.isprsjprs.2009.02.002 10.1016/S0893-6080(03)00169-2 10.1016/j.isprsjprs.2019.04.015 10.1016/j.rse.2008.02.011 10.1109/TGRS.2006.877950 10.1080/01431161.2014.951740 10.1016/j.jag.2009.06.002 10.18637/jss.v077.i01 10.1016/j.rse.2017.09.035 10.21105/joss.01903 10.1016/j.geoderma.2020.114552 10.3390/rs10071119 10.1109/TGRS.2018.2805829 10.1109/LGRS.2012.2236818 10.3390/rs11131600 10.1186/1471-2105-9-307 10.1016/j.isprsjprs.2010.11.001 10.3390/rs11131525 10.1016/j.jag.2018.06.014 10.3390/rs8100792 10.3390/rs8110954 10.1016/j.isprsjprs.2015.10.004 10.1080/01431161.2013.845317 10.1109/LGRS.2017.2669304 10.1016/j.isprsjprs.2017.06.001 10.1109/36.905239 10.1080/01431161.2014.995276 10.1080/01431160802546837 10.1016/j.isprsjprs.2015.03.002 10.1109/TGRS.2004.842481 10.1016/j.patrec.2005.08.011 10.1109/TGRS.2008.922034 10.1016/j.patrec.2010.03.014 10.1080/07038992.2019.1711366 10.1016/j.jag.2018.01.004 10.1109/LGRS.2009.2020306 10.1080/01431161.2014.930206 10.1109/LGRS.2015.2504449 10.1109/JSTARS.2014.2307356 10.1109/ICDAR.1995.598994 10.1080/01431161.2013.788261 10.1002/widm.1301 10.3390/rs11101174 10.3390/rs11010043 10.3390/rs11060670 10.1109/JSTARS.2012.2183857 10.1109/LGRS.2017.2745049 10.1186/1471-2105-8-25 10.3390/rs9111180 10.1109/LGRS.2008.915597 10.3390/rs10040580 10.1080/01431161.2014.903435 10.1007/BF00058655 10.1080/21642583.2014.956265 10.1109/TGRS.2011.2141143 10.1109/TGRS.2008.916643 10.7551/mitpress/4175.001.0001 10.1016/j.isprsjprs.2013.11.013 10.1080/01431161.2018.1430399 10.1016/j.patcog.2010.08.011 10.1007/b95439 10.1109/LGRS.2008.915600 10.1109/TGRS.2007.894550 10.1109/3468.618255 10.3390/rs11060734 10.1016/S0034-4257(01)00295-4 10.1145/1656274.1656278 10.1016/j.isprsjprs.2015.03.014 10.1109/TGRS.2010.2047863 10.1109/TGRS.2008.2011983 10.1080/01431161.2017.1381355 10.1109/JSTARS.2016.2539282 10.3390/rs9111193 10.3390/rs11121442 10.3390/rs9111106 10.1109/TGRS.2012.2202912 10.1016/j.rse.2004.06.017 10.1016/j.neucom.2012.07.017 10.1016/j.neucom.2006.03.004 10.1016/j.isprsjprs.2017.05.010 10.1016/j.aca.2014.03.039 10.1201/9781420090741 10.1016/j.rse.2014.11.001 10.1080/01431160110040323 10.7326/0003-4819-151-4-200908180-00135 10.1016/j.rse.2006.04.001 10.21105/joss.01686 10.3390/rs11141713 10.1186/1471-2105-9-319 10.3390/rs9111163 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2020.3026724 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 6325 |
| ExternalDocumentID | oai_doaj_org_article_8cfa189466d14ab4a2b9ae18db871f80 10_1109_JSTARS_2020_3026724 9206124 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Union's the Innovation and Networks Executive Agency grantid: 2018-EU-IA-0095 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c474t-90a5adec9b7b0f7e06c3fbb78626e770c476950ea5707240fca1c3645314e0093 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 677 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583704200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:46:28 EDT 2025 Fri Jul 25 20:40:51 EDT 2025 Sat Nov 29 04:51:06 EST 2025 Tue Nov 18 21:38:55 EST 2025 Wed Aug 27 02:50:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-90a5adec9b7b0f7e06c3fbb78626e770c476950ea5707240fca1c3645314e0093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3673-7544 0000-0002-7234-959X 0000-0002-0214-5356 0000-0003-1203-741X 0000-0002-9557-495X |
| OpenAccessLink | https://doaj.org/article/8cfa189466d14ab4a2b9ae18db871f80 |
| PQID | 2456527629 |
| PQPubID | 75722 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1109_JSTARS_2020_3026724 crossref_citationtrail_10_1109_JSTARS_2020_3026724 doaj_primary_oai_doaj_org_article_8cfa189466d14ab4a2b9ae18db871f80 ieee_primary_9206124 proquest_journals_2456527629 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 kranj?i? (ref47) 2019; 11 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref40 milgram (ref92) 0 ref35 ref34 ref37 ref36 ref31 ref148 ref30 pedregosa (ref149) 2011; 12 ref33 ref146 klusowski (ref113) 2018; 13 ref32 ref147 ref39 ref38 ref153 ref152 ref150 meyer (ref142) 2019 ref24 ref23 ref25 ref20 ref22 ref21 ref28 scholkopf (ref72) 2001 ref27 ref29 ref13 ref12 ref128 ref15 ref129 ref14 ref126 ref127 ref96 ref124 kuhn (ref141) 2015 ref99 ref11 ref125 ho (ref110) 1995; 1 ref98 ref10 ref17 ref16 ref19 ref18 ref133 ref93 ref134 ref131 ref95 ref132 ref94 ref130 ref91 ref90 ref89 ref139 bo (ref101) 2016; 13 ref137 ref86 ref138 ref85 ref135 ref88 ref136 ref87 fernández-delgado (ref69) 2014; 15 ref144 ref145 ref81 ref84 ref143 ref83 ref140 shahzad (ref107) 2013; 4 ref80 kuo (ref75) 2014; 7 ref79 ref108 ref78 ref109 ref106 sun (ref97) 2009; 47 ref104 ref74 ref105 ref77 ref102 ho (ref111) 1998; 20 ref76 ref103 ref2 ref1 ref71 ref70 ref112 ref73 ref68 ref119 ref67 ref117 ref118 sun (ref82) 2013; 10 ref64 ref115 ref63 ref116 blaom (ref151) 2019 ref66 ref65 ref114 ref60 ref122 boulesteix (ref26) 2012; 22 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref28 doi: 10.1016/j.rse.2011.11.020 – ident: ref27 doi: 10.1016/j.isprsjprs.2012.04.001 – ident: ref23 doi: 10.1016/j.jag.2012.11.007 – ident: ref25 doi: 10.3390/rs70708489 – ident: ref41 doi: 10.1080/01431161.2018.1512769 – ident: ref145 doi: 10.1109/TGRS.2010.2048116 – ident: ref87 doi: 10.1109/JSTARS.2013.2243112 – ident: ref7 doi: 10.1109/MGRS.2016.2616418 – volume: 7 start-page: 317 year: 2014 ident: ref75 article-title: A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification publication-title: IEEE J Sel Topics Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2013.2262926 – ident: ref147 doi: 10.1109/TGRS.2017.2686450 – ident: ref140 doi: 10.1016/j.isprsjprs.2019.04.016 – ident: ref15 doi: 10.1016/j.geoderma.2013.09.016 – volume: 12 start-page: 2825 year: 2011 ident: ref149 article-title: Scikit-learn: Machine Learning in Python publication-title: JMLR – ident: ref57 doi: 10.1007/s00500-016-2247-2 – ident: ref108 doi: 10.1007/3-540-59119-2_166 – ident: ref94 doi: 10.1007/s10462-017-9555-5 – ident: ref53 doi: 10.1016/j.rse.2016.08.013 – ident: ref30 doi: 10.1080/2150704X.2015.1019015 – ident: ref132 doi: 10.1109/TPAMI.2014.2382106 – ident: ref24 doi: 10.1080/01431160701395203 – ident: ref130 doi: 10.1080/01431160412331269698 – ident: ref74 doi: 10.1109/TGRS.2006.880628 – ident: ref114 doi: 10.1023/A:1010933404324 – ident: ref89 doi: 10.1109/TGRS.2008.2007128 – ident: ref143 doi: 10.1109/MGRS.2018.2854840 – volume: 22 start-page: 323 year: 2012 ident: ref26 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics publication-title: Biologie in unserer Zeit – ident: ref102 doi: 10.1023/A:1010933404324 – ident: ref144 doi: 10.1109/JPROC.2012.2197589 – ident: ref3 doi: 10.3390/rs8110888 – ident: ref83 doi: 10.1007/s11590-008-0092-7 – year: 2019 ident: ref151 – ident: ref73 doi: 10.1109/TGRS.2004.827257 – ident: ref35 doi: 10.1109/LGRS.2009.2026656 – ident: ref67 doi: 10.1016/j.isprsjprs.2016.01.011 – ident: ref11 doi: 10.1016/j.isprsjprs.2014.11.007 – ident: ref78 doi: 10.1007/BF00994018 – ident: ref120 doi: 10.1109/LGRS.2012.2227297 – ident: ref112 doi: 10.1162/neco.1997.9.7.1545 – ident: ref16 doi: 10.1080/01431161.2018.1471542 – ident: ref86 doi: 10.5589/m12-022 – volume: 20 start-page: 832 year: 1998 ident: ref111 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – ident: ref119 doi: 10.1016/j.rse.2017.11.003 – ident: ref90 doi: 10.1117/1.JRS.10.035021 – ident: ref105 doi: 10.1117/1.JRS.10.015017 – year: 2019 ident: ref142 article-title: Package 'e1071' publication-title: R Journal – volume: 47 start-page: 2957 year: 2009 ident: ref97 article-title: A unified model for remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral data publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2009.2014688 – ident: ref44 doi: 10.3390/rs5073212 – ident: ref43 doi: 10.1117/1.JRS.10.025004 – ident: ref58 doi: 10.1109/TGRS.2019.2907932 – ident: ref21 doi: 10.3390/rs11111351 – ident: ref6 doi: 10.1016/j.isprsjprs.2019.11.023 – ident: ref13 doi: 10.1109/TGRS.2008.2010404 – ident: ref85 doi: 10.1016/j.isprsjprs.2009.02.002 – ident: ref80 doi: 10.1016/S0893-6080(03)00169-2 – ident: ref56 doi: 10.1016/j.isprsjprs.2019.04.015 – year: 2015 ident: ref141 article-title: Caret: Classification and regression training publication-title: ascl – ident: ref129 doi: 10.1016/j.rse.2008.02.011 – ident: ref95 doi: 10.1109/TGRS.2006.877950 – ident: ref18 doi: 10.1080/01431161.2014.951740 – ident: ref79 doi: 10.1016/j.jag.2009.06.002 – ident: ref134 doi: 10.18637/jss.v077.i01 – ident: ref62 doi: 10.1016/j.rse.2017.09.035 – ident: ref153 doi: 10.21105/joss.01903 – ident: ref49 doi: 10.1016/j.geoderma.2020.114552 – ident: ref48 doi: 10.3390/rs10071119 – ident: ref76 doi: 10.1109/TGRS.2018.2805829 – volume: 10 start-page: 1224 year: 2013 ident: ref82 article-title: Learn multiple-kernel SVMs for domain adaptation in hyperspectral data publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2236818 – ident: ref51 doi: 10.3390/rs11131600 – ident: ref115 doi: 10.1016/j.isprsjprs.2016.01.011 – ident: ref121 doi: 10.1186/1471-2105-9-307 – ident: ref66 doi: 10.1016/j.isprsjprs.2010.11.001 – ident: ref19 doi: 10.3390/rs11131525 – ident: ref42 doi: 10.1016/j.jag.2018.06.014 – ident: ref2 doi: 10.3390/rs8100792 – ident: ref32 doi: 10.3390/rs8110954 – ident: ref1 doi: 10.1016/j.isprsjprs.2015.10.004 – ident: ref46 doi: 10.1080/01431161.2013.845317 – ident: ref148 doi: 10.1109/LGRS.2017.2669304 – ident: ref52 doi: 10.1016/j.isprsjprs.2017.06.001 – ident: ref146 doi: 10.1109/36.905239 – volume: 15 start-page: 3133 year: 2014 ident: ref69 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Mach Learn Res – ident: ref117 doi: 10.1080/01431161.2014.995276 – ident: ref39 doi: 10.1080/01431160802546837 – ident: ref38 doi: 10.1016/j.isprsjprs.2015.03.002 – ident: ref135 doi: 10.1109/TGRS.2004.842481 – ident: ref137 doi: 10.1016/j.patrec.2005.08.011 – ident: ref96 doi: 10.1109/TGRS.2008.922034 – ident: ref116 doi: 10.1016/j.patrec.2010.03.014 – ident: ref133 doi: 10.1080/07038992.2019.1711366 – volume: 11 year: 2019 ident: ref47 article-title: Support vector machine accuracy assessment for extracting green urban areas in towns publication-title: Remote Sens – ident: ref31 doi: 10.1016/j.jag.2018.01.004 – ident: ref60 doi: 10.1109/LGRS.2009.2020306 – volume: 13 start-page: 1063 year: 2018 ident: ref113 article-title: Complete analysis of a random forest model – ident: ref71 doi: 10.1080/01431161.2014.930206 – volume: 13 start-page: 177 year: 2016 ident: ref101 article-title: Hyperspectral image classification via JCR and SVM models with decision fusion publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2015.2504449 – ident: ref98 doi: 10.1109/JSTARS.2014.2307356 – volume: 1 start-page: 278 year: 1995 ident: ref110 article-title: Random decision forests publication-title: Proc 3rd Int Conf Document Anal Recognition doi: 10.1109/ICDAR.1995.598994 – ident: ref127 doi: 10.1080/01431161.2013.788261 – ident: ref128 doi: 10.1002/widm.1301 – ident: ref65 doi: 10.3390/rs11101174 – ident: ref12 doi: 10.3390/rs11010043 – ident: ref104 doi: 10.3390/rs11060670 – ident: ref22 doi: 10.1109/JSTARS.2012.2183857 – ident: ref123 doi: 10.1109/LGRS.2017.2745049 – ident: ref131 doi: 10.1186/1471-2105-8-25 – ident: ref124 doi: 10.3390/rs9111180 – ident: ref37 doi: 10.1109/LGRS.2008.915597 – ident: ref126 doi: 10.3390/rs10040580 – ident: ref10 doi: 10.1080/01431161.2014.903435 – ident: ref109 doi: 10.1007/BF00058655 – ident: ref103 doi: 10.1080/21642583.2014.956265 – ident: ref59 doi: 10.1109/TGRS.2011.2141143 – ident: ref17 doi: 10.1109/TGRS.2008.916643 – year: 2001 ident: ref72 publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond doi: 10.7551/mitpress/4175.001.0001 – ident: ref136 doi: 10.1016/j.patrec.2005.08.011 – ident: ref45 doi: 10.1016/j.isprsjprs.2013.11.013 – ident: ref55 doi: 10.1080/01431161.2018.1430399 – ident: ref122 doi: 10.1016/j.patcog.2010.08.011 – year: 0 ident: ref92 article-title: 'One against one' or 'one against all': Which one is better for handwriting recognition with SVMs? publication-title: Proc Int'l Workshop Frontiers in Handwriting Recognition – ident: ref77 doi: 10.1007/b95439 – ident: ref63 doi: 10.1016/j.isprsjprs.2019.04.016 – ident: ref88 doi: 10.1109/LGRS.2008.915600 – ident: ref99 doi: 10.1109/TGRS.2007.894550 – ident: ref106 doi: 10.1109/3468.618255 – ident: ref84 doi: 10.3390/rs11060734 – ident: ref50 doi: 10.1016/S0034-4257(01)00295-4 – ident: ref150 doi: 10.1145/1656274.1656278 – ident: ref33 doi: 10.1016/j.isprsjprs.2015.03.014 – ident: ref61 doi: 10.1109/TGRS.2010.2047863 – ident: ref34 doi: 10.1109/TGRS.2008.2011983 – ident: ref93 doi: 10.1109/LGRS.2008.915597 – ident: ref20 doi: 10.1080/01431161.2017.1381355 – ident: ref100 doi: 10.1109/JSTARS.2016.2539282 – ident: ref14 doi: 10.3390/rs9111193 – ident: ref4 doi: 10.3390/rs11121442 – ident: ref64 doi: 10.3390/rs9111106 – ident: ref40 doi: 10.1109/TGRS.2012.2202912 – ident: ref9 doi: 10.1016/j.rse.2004.06.017 – ident: ref91 doi: 10.1016/j.neucom.2012.07.017 – ident: ref81 doi: 10.1016/j.neucom.2006.03.004 – ident: ref8 doi: 10.1016/j.isprsjprs.2017.05.010 – ident: ref125 doi: 10.1016/j.aca.2014.03.039 – ident: ref68 doi: 10.1201/9781420090741 – ident: ref54 doi: 10.1016/j.rse.2014.11.001 – ident: ref139 doi: 10.1080/01431160110040323 – ident: ref138 doi: 10.7326/0003-4819-151-4-200908180-00135 – ident: ref118 doi: 10.1016/j.patrec.2010.03.014 – ident: ref36 doi: 10.1016/j.rse.2006.04.001 – ident: ref152 doi: 10.21105/joss.01686 – volume: 4 start-page: 98 year: 2013 ident: ref107 article-title: Comparative analysis of voting schemes for ensemble-based malware detection publication-title: J Wireless Mobile Netw Ubiquitous Comput Dependable Appl – ident: ref29 doi: 10.3390/rs11141713 – ident: ref70 doi: 10.1186/1471-2105-9-319 – ident: ref5 doi: 10.3390/rs9111163 |
| SSID | ssj0062793 |
| Score | 2.6823225 |
| SecondaryResourceType | review_article |
| Snippet | Several machine-learning algorithms have been proposed for remote sensing image classification during the past two decades. Among these machine learning... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6308 |
| SubjectTerms | Algorithms Analysis Classification Classification algorithms Comparative analysis Deep learning Feature extraction Geographical distribution Hyperspectral sensors Image classification Image processing Learning algorithms Machine learning Meta-analysis Qualitative analysis Radio frequency random forest (RF) Remote sensing remote sensing (RS) Spatial discrimination Spatial resolution support vector machine (SVM) Support vector machines |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD60RcEXb1VcrZIHHxubyc5MEt9WsepDi-yq9C3kcqYIdla6s4L-enMy2QFRBN-GIQkhX5JzSfJ9AM_nKFsSwOHRBc_roBtu0DdcBud0Sz64CllsQp2f64sL82EPjqe3MIiYL5_hC_rMZ_lxHbaUKjsxkgxyvQ_7SqnxrdZu122lygS7yR8xnChjCsNQJcxJmuKL5SrFgjKFqKS4JOvfrFAm6y_qKn9sydnOnN75vx7ehdvFn2SLcQLcgz3s78PNt1mv98ch_CTVzuRhs885O8_O8t1JZJQm227Y0vVxfcVIn3MzsOS_siUm7JCt6F57f8neX6X9hmXlTLpTlGF8yRbsDAfHd4QmLLXCVhMlNBvPGx7Ap9M3H1-_40VugYda1QM3wjUuYjBeedEpFG2Yd94rinlQKZFKtaYR6Bol0hCKLrgq0CnmvKqRMiMP4aBf9_gIWGxUnMeu8SKFd1qh9qIKyVULySRr5aoZyN3w21C4yEkS46vNMYkwdsTMEma2YDaD46nSt5GK49_FXxGuU1Hi0c4_EmC2LEurQ-cqTRz7saqdr530xmGlo0-BZKfFDA4J5KmRgu8MjnazxJY1v7H5CFkm42Ie_73WE7hFHRwTOEdwMFxv8SncCN-HL5vrZ3k6_wKVGfGD priority: 102 providerName: IEEE |
| Title | Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review |
| URI | https://ieeexplore.ieee.org/document/9206124 https://www.proquest.com/docview/2456527629 https://doaj.org/article/8cfa189466d14ab4a2b9ae18db871f80 |
| Volume | 13 |
| WOSCitedRecordID | wos000583704200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iCl5k1RVHx-EdPFpMM22T7G0Ufx0UmXHFW0jSVBbWKk5dWP9630s7gyLoxeuQSdt8r3k_8vp9jO0NgyhIACcprXdJ5lWe6ODyRHhrVUExuPRRbEJeXqrbW331RuqLesJaeuB24Q6Ur2yqiAW9TDPrMiuctiFVpcNQv1IxW8eoZ5ZMtXtwIdDsOo6hlOsDNPLReILZoMAklTSXRPbOD0W6_k5f5cOmHD3NyQ-22oWIMGpvbY0thHqdLZ9GCd7_G-yFhDgxaIabWHCHi9gOGYAqX89TGNu6fLgHktycNoAhKYwDwhFgQq3q9R2c3-MWAlEMk9qEIjK_YAQXobHJjKMEcBaYzFmeoT1C-Ml-nxxfH50lnYJC4jOZNYnmNrdl8NpJxysZeOGHlXOS0pggJcdRhc55sLnkuCa88jb1dDA5TLNAxY5Ntlg_1GGLQZnLclhWueOYsSkZlOOpx-jLo5dV0qY9JmbraXxHL04qF39NTDO4Ni0IhkAwHQg9tj__02PLrvH58EMCaj6UqLHjD2gwpjMY85XB9NgGwTyfRAuK8nDu_gx2073GUxNPhQX6C739HZfeYSv0OG0Fp88Wm6fnsMuW_L_mz_RpEC14EL9AfAXmPfQi |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1daxQxFL3UquhL_WjFtVXz4GPHZrKZSeLbKtYWu4vsVulbSDJ3RLCz0p0t1F9vbmZ2QBTBt2FIQshJcj-SnAPwaoyiJAGcrHLBZzLoIjPoi0wE53RJPrgKSWxCzWb64sJ82oLD4S0MIqbLZ_iaPtNZfrUMa0qVHRlBBlnegtuFlCLvXmtt9t1SqESxGz0SkxFpTM8xlHNzFCf5ZL6I0aCIQSppLgn5mx1KdP29vsofm3KyNMcP_q-PD2Gn9yjZpJsCj2ALm8dw90NS7L3ZhZ-k2xl9bPYl5efZNN2eREaJsvWKzV1TLS8ZKXSuWhY9WDbHiB6yBd1sb76y08u447CknUm3ihKQb9iETbF12YbShMVW2GIghWbdicMefD5-f_7uJOsFF7IglWwzw13hKgzGK89rhbwM49p7RVEPKsVjqdIUHF2heBxCXgeXBzrHHOcSKTfyBLabZYNPgVWFqsZVXXgeAzytUHueh-ishWiUtXL5CMRm-G3o2chJFOO7TVEJN7bDzBJmtsdsBIdDpR8dGce_i78lXIeixKSdfkTAbL8wrQ61yzWx7Fe5dF464Y3DXFc-hpK15iPYJZCHRnp8R3CwmSW2X_Urmw6RRTQv5tnfa72Eeyfn0zN7djr7uA_3qbNdOucAtturNT6HO-G6_ba6epGm9i9HnfTK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+Vector+Machine+Versus+Random+Forest+for+Remote+Sensing+Image+Classification%3A+A+Meta-Analysis+and+Systematic+Review&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Sheykhmousa%2C+Mohammadreza&rft.au=Mahdianpari%2C+Masoud&rft.au=Ghanbari%2C+Hamid&rft.au=Mohammadimanesh%2C+Fariba&rft.date=2020&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=13&rft.spage=6308&rft.epage=6325&rft_id=info:doi/10.1109%2FJSTARS.2020.3026724&rft.externalDocID=9206124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |