Unified Algorithm Framework for Nonconvex Stochastic Optimization in Deep Neural Networks

This paper presents a unified algorithmic framework for nonconvex stochastic optimization, which is needed to train deep neural networks. The unified algorithm includes the existing adaptive-learning-rate optimization algorithms, such as Adaptive Moment Estimation (Adam), Adaptive Mean Square Gradie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 143807 - 143823
Hlavní autoři: Zhu, Yini, Iiduka, Hideaki
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.