Modeling Latent Topics in Social Media using Dynamic Exploratory Graph Analysis: The Case of the Right-wing and Left-wing Trolls in the 2016 US Elections
The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian...
Gespeichert in:
| Veröffentlicht in: | Psychometrika Jg. 87; H. 1; S. 156 - 187 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.03.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0033-3123, 1860-0980, 1860-0980 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed
Dynamic Exploratory Graph Analysis
(DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data. |
|---|---|
| AbstractList | The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data. The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data.The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data. The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data. |
| Author | Golino, Hudson Boker, Steven M. Christensen, Alexander P. Moulder, Robert Kim, Seohyun |
| Author_xml | – sequence: 1 givenname: Hudson orcidid: 0000-0002-1601-1447 surname: Golino fullname: Golino, Hudson email: hfg9s@virginia.edu organization: University of Virginia – sequence: 2 givenname: Alexander P. surname: Christensen fullname: Christensen, Alexander P. organization: University of Pennsylvania – sequence: 3 givenname: Robert surname: Moulder fullname: Moulder, Robert organization: University of Virginia – sequence: 4 givenname: Seohyun surname: Kim fullname: Kim, Seohyun organization: University of Virginia – sequence: 5 givenname: Steven M. surname: Boker fullname: Boker, Steven M. organization: University of Virginia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34757581$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAUhS1URKeFF2CBLLHpJmDHieOwQKqGoSBNhUSna-vGcWZceezBToA8St-2TmfKTxdd2Vf-zr1Hx_cEHTnvNEKvKXlHCaneR0oZ4xnJaUZqkZNsfIZmVHAyleQIzQhhLGM0Z8foJMYbQkhNhXiBjllRlVUp6AzdXvpWW-PWeAm9dj1e-Z1RERuHr7wyYPGlbg3gIU7Mp9HB1ii8-L2zPkDvw4gvAuw2-NyBHaOJH_Bqo_Ecosa-w326fzfrTZ_9muTgWrzU3aFaBW_t_aQJywnl-PoKL6xWvfEuvkTPO7BRvzqcp-j682I1_5Itv118nZ8vM1VURZ8JUdO2hIK3jagb2rW1gKYCICovdEM4rTvaNp3uADqmBfCGs4bnohFCqZJodoo-7vvuhmarW5VCCGDlLpgthFF6MPL_F2c2cu1_yjoFTylPDc4ODYL_MejYy62JSlsLTvshyryseULrSiT07SP0xg8hRZcoXuYVYwUtEvXmX0d_rDz8WgLEHlDBxxh0J5XpYUotGTRWUiKnBZH7BZFpuLxfEDkmaf5I-tD9SRHbi2KC3VqHv7afUN0BxETPpw |
| CitedBy_id | crossref_primary_10_1080_00273171_2025_2454901 crossref_primary_10_1177_08902070251352590 crossref_primary_10_5964_meth_12877 crossref_primary_10_3390_fi14100291 crossref_primary_10_1002_dad2_70091 crossref_primary_10_1080_07481756_2022_2073894 crossref_primary_10_1155_2022_1229501 crossref_primary_10_1016_j_econlet_2024_111954 crossref_primary_10_1080_10400419_2023_2184558 crossref_primary_10_1093_pm_pnae131 crossref_primary_10_1111_bjop_12623 crossref_primary_10_3390_jintelligence11080160 crossref_primary_10_1007_s11336_022_09861_x crossref_primary_10_1007_s11336_022_09851_z crossref_primary_10_3758_s13423_024_02473_9 |
| Cites_doi | 10.1177/1088868318772990 10.1093/oso/9780198522195.001.0001 10.1080/10705510802154281 10.1145/3308560.3316495 10.1057/s41311-017-0113-1 10.1111/j.2517-6161.1996.tb02080.x 10.3390/s18051380 10.1108/eb046814 10.1016/j.intell.2017.02.007 10.2307/1968482 10.1038/s41598-017-05048-y 10.1207/s15327906mbr2803_1 10.1126/science.1227079 10.1145/3197026.3203876 10.1007/s00127-016-1319-z 10.1016/0167-2789(93)90009-P 10.1002/9781119170174.epcn518 10.1093/biostatistics/kxm045 10.1080/00273171.2020.1779642 10.1080/01621459.1981.10477720 10.1146/annurev-clinpsy-050212-185608 10.4324/9781315695624-6 10.1145/1367497.1367510 10.1109/TSMC.1985.6313441 10.3758/s13428-017-0862-1 10.3758/s13428-020-01500-6 10.1007/978-3-319-05579-4_19 10.1016/j.neucom.2008.06.011 10.1016/j.chb.2019.05.027 10.1037/met0000167 10.1007/BF02293557 10.1002/per.2115 10.1080/11038128.2018.1455896 10.3390/jintelligence5020016 10.4324/9781315160542-7 10.1080/00273171.2018.1454823 10.1371/journal.pone.0174035 10.21236/ADA328193 10.3166/dn.17.1.61-84 10.1007/11569596_31 10.1007/BFb0091924 10.1093/biomet/asn034 10.1037/a0030005 10.1177/0270467610380011 10.1016/j.ijhm.2005.10.002 10.3758/s13428-018-1032-9 10.1037/a0016622 10.1007/s11336-017-9557-x 10.1007/978-3-642-13657-3_43 10.1016/j.techfore.2018.09.009 10.3389/fninf.2016.00045 10.1017/S0140525X09991567 10.1007/s11023-017-9436-3 10.1080/00273171.2019.1640103 10.1111/bmsp.12173 10.1007/BF02289264 10.18637/jss.v025.i05 10.1002/jclp.20503 10.32614/CRAN.package.EGAnet 10.1007/978-3-319-77219-6_10 10.1002/9781118489772.ch30 10.1145/3292522.3326016 10.1037/met0000255 10.1037/0033-295X.113.4.842 10.1890/14-1479.1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 7TK 7WY 7WZ 7X7 7XB 87Z 88B 88E 88G 8AO 8FI 8FJ 8FK 8FL ABUWG AFKRA ALSLI AZQEC BENPR BEZIV CCPQU CJNVE DWQXO FRNLG FYUFA F~G GHDGH GNUQQ K60 K6~ K9. L.- M0C M0P M0S M1P M2M PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEDU PQEST PQQKQ PQUKI PSYQQ Q9U 7X8 5PM |
| DOI | 10.1007/s11336-021-09820-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Neurosciences Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Education Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College Education Collection ProQuest Central Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Education Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database (Proquest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Education ProQuest Business Collection (Alumni Edition) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials ABI/INFORM Complete Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection Social Science Premium Collection ABI/INFORM Global Education Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Education Journals ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest One Business (Alumni) ProQuest Education Journals (Alumni Edition) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Education CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Law |
| EISSN | 1860-0980 |
| EndPage | 187 |
| ExternalDocumentID | PMC9021116 34757581 10_1007_s11336_021_09820_y |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: University of Virginia Democracy Initiative – fundername: ; |
| GroupedDBID | --Z -4V -55 -5G -BR -EM -W8 -Y2 -~C -~X .86 .GO .VR 0-V 06D 09C 0R~ 0VY 123 186 199 1N0 1SB 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABGDZ ABGFU ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUC ACDLN ACGFS ACHQT ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMHG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IRVIT ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM LPU M0C M0P M1P M2M M4Y MA- MVM N2Q N9A NB0 NDZJH NEJ NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P19 P2P P9L PF- PQBIZ PQBZA PQEDU PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RCA RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBS SBU SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UAP UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WHG WIP WK6 WK8 XOL YLTOR YYQ Z45 Z81 Z83 Z8U Z92 ZCG ZGI ZMTXR ZOVNA ZXP ~EX AAPKM AAXMD AAYXX ABFSG ABUFD ABXHF ACSTC ADHKG ADXHL AETEA AEZWR AFFHD AFHIU AFOHR AGQPQ AGTDA AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION IPYYG PHGZM PHGZT PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK K9. L.- PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c474t-8891d5a46db89b1fd98ab7aa0c24eb0619f1dbfefaaf3e8a6b63b628b88cc50e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716860500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0033-3123 1860-0980 |
| IngestDate | Tue Nov 04 01:55:16 EST 2025 Thu Oct 02 14:29:19 EDT 2025 Mon Oct 06 18:40:16 EDT 2025 Wed Feb 19 02:23:38 EST 2025 Sat Nov 29 03:24:46 EST 2025 Tue Nov 18 21:32:49 EST 2025 Fri Feb 21 02:46:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | latent topic analysis time embedding network models dynamics text mining |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-8891d5a46db89b1fd98ab7aa0c24eb0619f1dbfefaaf3e8a6b63b628b88cc50e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1601-1447 |
| OpenAccessLink | https://link.springer.com/10.1007/s11336-021-09820-y |
| PMID | 34757581 |
| PQID | 2652733414 |
| PQPubID | 47416 |
| PageCount | 32 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9021116 proquest_miscellaneous_2596021978 proquest_journals_2652733414 pubmed_primary_34757581 crossref_citationtrail_10_1007_s11336_021_09820_y crossref_primary_10_1007_s11336_021_09820_y springer_journals_10_1007_s11336_021_09820_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
| PublicationTitle | Psychometrika |
| PublicationTitleAbbrev | Psychometrika |
| PublicationTitleAlternate | Psychometrika |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Zannettou, S., Caulfield, T., De Cristofaro, E., Sirivianos, M., Stringhini, G., & Blackburn, J. (2019). Disinformation warfare: Understanding state-sponsored trolls on twitter and their influence on the web. In Companion proceedings of the 2019 world wide web conference (pp. 218–226). Nikita, M. (2019). Ldatuning: Tuning of the latent dirichlet allocation models parameters. Retrieved from https://CRAN.R-project.org/package=ldatuning Takens, F. (1981). Detecting strange attractors in turbulence. In Lecture notes in mathematics (vol. 898, pp. 366–381). Springer. https://doi.org/10.1007/BFb0091924 Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at horn’s parallel analysis with ordinal variables. Psychological Methods,18(4), 454–74. https://doi.org/10.1037/a0030005 HornikKGrünBTopicmodels: an r package for fitting topic modelsJournal of Statistical Software20114013130 R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org Boker, S. M., Tiberio, S. S., & Moulder, R. G. (2018). Robustness of time delay embedding to sampling interval misspecification. In Continuous time modeling in the behavioral and related sciences (pp. 239–258). Springer. Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in r. Journal of Statistical Software, 25(5), 1–54. Retrieved from http://www.jstatsoft.org/v25/i05 WidamanKFCommon factor analysis versus principal component analysis: differential bias in representing model parameters?Multivariate Behavioral Research199328326331110.1207/s15327906mbr2803_1 EngleRWatsonMA one-factor multivariate time series model of metropolitan wage ratesJournal of the American Statistical Association19817637677478110.1080/01621459.1981.10477720 GolinoHFDemetriouAEstimating the dimensionality of intelligence like data using exploratory graph analysisIntelligence201762547010.1016/j.intell.2017.02.007 Roeder, O. (2018). Why we’re sharing 3 million russian troll tweets. FiveThirtyEight, Retrieved from https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets/. Retrieved from https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets Christensen, A. P., & Golino, H. (2021). On the equivalency of factor and network loadings. Behavior research methods, pp. 1–18,. https://doi.org/10.3758/s13428-020-01500-6 Hallquist, M. N., Wright, A. G., & Molenaar, P. C. (2019). Problems with centrality measures in psychopathology symptom networks: why network psychometrics cannot escape psychometric theory. Multivariate Behavioral Research, pp. 1–25,. https://doi.org/10.1080/00273171.2019.1640103 ZhangZHamakerELNesselroadeJRComparisons of four methods for estimating a dynamic factor modelStructural Equation Modeling: A Multidisciplinary Journal200815337740210.1080/10705510802154281 ChristensenAPTowards a network psychometrics approach to assessment: simulations for redundancy, dimensionality, and loadings (Unpublished doctoral dissertation)2020Greensboro, NC, USAUniversity of North Carolina at Greensboro EpskampSWaldorpLJMõttusRBorsboomDThe gaussian graphical model in cross-sectional and time-series dataMultivariate Behavioral Research201853445348010.1080/00273171.2018.1454823 BaumertASchmittMPeruginiMJohnsonWBlumGBorkenauPWrzusCIntegrating personality structure, personality process, and personality developmentEuropean Journal of Personality20173150352810.1002/per.2115 DeboeckPRMontpetitMABergemanCBokerSMUsing derivative estimates to describe intraindividual variability at multiple time scalesPsychological Methods200914436738610.1037/a0016622 Chen, J., & Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771. Retrieved from https://www.jstor.org/stable/20441500 Szafranski, R. (1995). A theory of information warfare: Preparing for 2020. Air University Maxwell Airforce Base. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a328193.pdf Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: a simulation and tutorial. Psychological Methods,25(3), 292–230. https://doi.org/10.1037/met0000255 WhitneyHDifferentiable manifoldsThe Annals of Mathematics193637364568010.2307/1968482 EpskampMSIrwing PaulBNetwork psychometricsThe wiley handbook of psychometric testing. A multidisciplinary reference on survey, scale and test development2018New YorkWiley95398610.1002/9781118489772.ch30 KjellströmSGolinoHMining concepts of health responsibility using text mining and exploratory graph analysisScandinavian Journal of Occupational Therapy201926639541010.1080/11038128.2018.1455896 Phan, X.-H., Nguyen, L.-M., & Horiguchi, S. (2008). Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In Proceedings of the 17th international conference on world wide web (pp. 91–100). Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Multivariate applications book series. Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235–265). Lawrence Erlbaum Associates Publishers. Rajadesingan, A., & Liu, H. (2014). Identifying users with opposing opinions in twitter debates. In International conference on social computing, behavioral-cultural modeling, and prediction (pp. 153–160). Springer. Hernandez-SuarezASanchez-PerezGToscano-MedinaKMartinez-HernandezVPerez-MeanaHOlivares-MercadoJSanchezVSocial sentiment sensor in twitter for predicting cyber-attacks using l1 regularizationSensors2018185138010.3390/s18051380 TaddeoMCyber conflicts and political power in information societiesMinds and Machines201727226526810.1007/s11023-017-9436-3 LauritzenSLGraphical models1996OxfordClarendon Press Van Der MaasHLKanK-JMarsmanMStevensonCENetwork models for cognitive development and intelligenceJournal of Intelligence2017521610.3390/jintelligence5020016 Anderson, H., T. W. & Rubin. (1958). Statistical inference in factor analysis. In Proceedings of the 3rd berkeley symposium on mathematics, statistics, and probability (Vol. 5, pp. 111–150). DalegeJBorsboomDHarreveldFWaldorpLJMaasHLNetwork structure explains the impact of attitudes on voting decisionsScientific Reports201771490910.1038/s41598-017-05048-y Linvill, D. L., Boatwright, B. C., Grant, W. J., & Warren, P. L. (2019). “THE russians are hacking my brain!” Investigating russia’s internet research agency twitter tactics during the 2016 united states presidential campaign. Computers in Human Behavior,99, 292–300. Fenton, N. (2016). The internet of radical politics and social change. In Misunderstanding the internet (pp. 173–202). Routledge. MassaraGPDi MatteoTAsteTNetwork filtering for big data: triangulated maximally filtered graphJournal of Complex Networks20165216117810.1093/comnet/cnw015 Williams, D. R., & Rast, P. (2019). Back to the basics: Rethinking partial correlation network methodology. British Journal of Mathematical and Statistical Psychology, 1–25. https://doi.org/10.1111/bmsp.12173 PorterMFAn algorithm for suffix strippingProgram198014313013710.1108/eb046814 DeveaudRSanJuanEBellotPAccurate and effective latent concept modeling for ad hoc information retrievalDocument Numérique2014171618410.3166/dn.17.1.61-84 EpskampSFriedEA tutorial on regularized partial correlation networksPsychological Methods201823461763410.1037/met0000167 BokerSMDeboekPREdlerCKeelPChowSMFerrerEHsiehFGeneralized local linear approximation of derivatives from time seriesThe notre dame series on quantitative methodology. Statistical methods for modeling human dynamics: An interdisciplinary dialogue2010UKRoutledge/Taylor & Francis Group161178 HoribeYEntropy and correlationIEEE Transactions on Systems, Man, and Cybernetics1985564164210.1109/TSMC.1985.6313441 ZieglerCEInternational dimensions of electoral processes: Russia, the usa, and the 2016 electionsInternational Politics201855555757410.1057/s41311-017-0113-1 ComreyALLeeHBA first course in factor analysis2016New YorkRoutledge RosensteinMTCollinsJJDe LucaCJA practical method for calculating largest lyapunov exponents from small data setsPhysica D: Nonlinear Phenomena1993651–211713410.1016/0167-2789(93)90009-P Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. In P. Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and information sciences - iscis 2005 (pp. 284–293). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11569596_31 Golino, H., & Christensen, A. P. (2019). EGAnet: Exploratory graph analysis: A framework for estimating the number of dimensions in multivariate data using network psychometrics. Retrieved from https://CRAN.R-project.org/package=EGAnet BleidornWHopwoodCJUsing machine learning to advance personality assessment and theoryPersonality and Social Psychology Review20192319020310.1177/1088868318772990 FriedmanJHastieTTibshiraniRSparse inverse covariance estimation with the graphical lassoBiostatistics20089343244110.1093/biostatistics/kxm045 BleiDMNgAYJordanMILatent dirichlet allocationJournal of Machine Learning Research20033Jan9931022 Libicki, M. C. (1995). What is information warfare? The Center for Advanced Command Concepts; Technology, National Defense University. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a367662.pdf EpskampSRhemtullaMBorsboomDGeneralized network pschometrics: combining network and latent variable modelsPsychometrika201782490492710.1007/s11336-017-9557-x Linvill, D. L., & Warren, P. L. (2018). Troll factories: The internet research agency and state-sponsored agenda building. Clemson University. Retrieved from https://pwarren S0033312300007547_CR28 S0033312300007547_CR27 S0033312300007547_CR29 Hornik (S0033312300007547_CR49) 2011; 40 S0033312300007547_CR3 S0033312300007547_CR4 S0033312300007547_CR6 S0033312300007547_CR71 S0033312300007547_CR7 S0033312300007547_CR70 S0033312300007547_CR73 S0033312300007547_CR9 S0033312300007547_CR72 S0033312300007547_CR31 S0033312300007547_CR75 S0033312300007547_CR30 S0033312300007547_CR74 S0033312300007547_CR33 S0033312300007547_CR77 S0033312300007547_CR76 S0033312300007547_CR32 S0033312300007547_CR35 S0033312300007547_CR79 S0033312300007547_CR34 S0033312300007547_CR78 S0033312300007547_CR37 S0033312300007547_CR2 S0033312300007547_CR36 S0033312300007547_CR39 S0033312300007547_CR38 Massara (S0033312300007547_CR57) 2016; 5 S0033312300007547_CR80 S0033312300007547_CR82 S0033312300007547_CR81 S0033312300007547_CR40 S0033312300007547_CR84 S0033312300007547_CR83 S0033312300007547_CR42 S0033312300007547_CR86 S0033312300007547_CR85 S0033312300007547_CR41 S0033312300007547_CR44 S0033312300007547_CR43 S0033312300007547_CR46 S0033312300007547_CR45 S0033312300007547_CR48 S0033312300007547_CR47 S0033312300007547_CR51 S0033312300007547_CR50 S0033312300007547_CR53 S0033312300007547_CR52 Ananiadou (S0033312300007547_CR1) 2006 S0033312300007547_CR55 S0033312300007547_CR11 S0033312300007547_CR54 S0033312300007547_CR10 S0033312300007547_CR13 S0033312300007547_CR12 S0033312300007547_CR56 S0033312300007547_CR59 S0033312300007547_CR15 S0033312300007547_CR14 S0033312300007547_CR58 S0033312300007547_CR17 S0033312300007547_CR19 S0033312300007547_CR18 Christensen (S0033312300007547_CR16) 2020 Comrey (S0033312300007547_CR20) 2016 Boker (S0033312300007547_CR8) 2010 S0033312300007547_CR60 S0033312300007547_CR62 S0033312300007547_CR61 Blei (S0033312300007547_CR5) 2003; 3 S0033312300007547_CR64 S0033312300007547_CR63 S0033312300007547_CR22 S0033312300007547_CR66 S0033312300007547_CR65 S0033312300007547_CR21 S0033312300007547_CR24 S0033312300007547_CR68 S0033312300007547_CR23 S0033312300007547_CR67 S0033312300007547_CR26 S0033312300007547_CR25 S0033312300007547_CR69 |
| References_xml | – reference: ComreyALLeeHBA first course in factor analysis2016New YorkRoutledge – reference: BleidornWHopwoodCJUsing machine learning to advance personality assessment and theoryPersonality and Social Psychology Review20192319020310.1177/1088868318772990 – reference: Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in r. Journal of Statistical Software, 25(5), 1–54. Retrieved from http://www.jstatsoft.org/v25/i05/ – reference: Linvill, D. L., & Warren, P. L. (2018). Troll factories: The internet research agency and state-sponsored agenda building. Clemson University. Retrieved from https://pwarren.people.clemson.edu/Linvill_Warren_TrollFactory.pdf – reference: ZhangZHamakerELNesselroadeJRComparisons of four methods for estimating a dynamic factor modelStructural Equation Modeling: A Multidisciplinary Journal200815337740210.1080/10705510802154281 – reference: BorsboomDCramerAONetwork analysis: an integrative approach to the structure of psychopathologyAnnual Review of Clinical Psychology201399112110.1146/annurev-clinpsy-050212-185608 – reference: FriedEvan BorkuloCDCramerAOJBoschlooLSchoeversRABorsboomDMental disorders as networks of problems: a review of recent insightsSocial Psychiatry and Psychiatric Epidemiology201752111010.1007/s00127-016-1319-z – reference: DeboeckPRMontpetitMABergemanCBokerSMUsing derivative estimates to describe intraindividual variability at multiple time scalesPsychological Methods200914436738610.1037/a0016622 – reference: Boker, S. M., Tiberio, S. S., & Moulder, R. G. (2018). Robustness of time delay embedding to sampling interval misspecification. In Continuous time modeling in the behavioral and related sciences (pp. 239–258). Springer. – reference: FriedmanJHastieTTibshiraniRSparse inverse covariance estimation with the graphical lassoBiostatistics20089343244110.1093/biostatistics/kxm045 – reference: BorsboomDPsychometric perspectives on diagnostic systemsJournal of Clinical Psychology20086491089110810.1002/jclp.20503 – reference: VelicerWFDetermining the number of components from the matrix of partial correlationsPsychometrika197641332132710.1007/BF02293557 – reference: EpskampSBorsboomDFriedEIEstimating psychological networks and their accuracy: a tutorial paperBehavior Research Methods201850119521210.3758/s13428-017-0862-1 – reference: Libicki, M. C. (1995). What is information warfare? The Center for Advanced Command Concepts; Technology, National Defense University. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a367662.pdf – reference: Hou-Liu, J. (2018). Benchmarking and improving recovery of number of topics in latent dirichlet allocation models. viXra. Retrieved from https://vixra.org/abs/1801.0045 – reference: Chaney, A. J. B., & Blei, D. M. (2012). Visualizing topic models. In Proceedings of the sixth international aaai conference on weblogs and social media. – reference: KjellströmSGolinoHMining concepts of health responsibility using text mining and exploratory graph analysisScandinavian Journal of Occupational Therapy201926639541010.1080/11038128.2018.1455896 – reference: Nikita, M. (2019). Ldatuning: Tuning of the latent dirichlet allocation models parameters. Retrieved from https://CRAN.R-project.org/package=ldatuning – reference: Van Der MaasHLDolanCVGrasmanRPWichertsJMHuizengaHMRaijmakersMEA dynamical model of general intelligence: the positive manifold of intelligence by mutualismPsychological Review2006113484286110.1037/0033-295X.113.4.842 – reference: Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R. (2018). Network structure of the wisconsin schizotypy scales–short forms: Examining psychometric network filtering approaches. Behavior Research Methods, 50(6), 2531–2550. https://doi.org/10.3758/s13428-018-1032-9 – reference: Llewellyn, C., Cram, L., Favero, A., & Hill, R. L. (2018). Russian troll hunting in a brexit twitter archive. In Proceedings of the 18th acm/ieee on joint conference on digital libraries (pp. 361–362). – reference: WhitneyHDifferentiable manifoldsThe Annals of Mathematics193637364568010.2307/1968482 – reference: BleiDMNgAYJordanMILatent dirichlet allocationJournal of Machine Learning Research20033Jan9931022 – reference: Christensen, A. P., & Golino, H. (2021). On the equivalency of factor and network loadings. Behavior research methods, pp. 1–18,. https://doi.org/10.3758/s13428-020-01500-6 – reference: EpskampMSIrwing PaulBNetwork psychometricsThe wiley handbook of psychometric testing. A multidisciplinary reference on survey, scale and test development2018New YorkWiley95398610.1002/9781118489772.ch30 – reference: DeveaudRSanJuanEBellotPAccurate and effective latent concept modeling for ad hoc information retrievalDocument Numérique2014171618410.3166/dn.17.1.61-84 – reference: Golino, H., Moulder, R., Shi, D., Christensen, A., Garrido, L., Neto, M., Boker, & S. (2020a). Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2020.1779642 – reference: Hernandez-SuarezASanchez-PerezGToscano-MedinaKMartinez-HernandezVPerez-MeanaHOlivares-MercadoJSanchezVSocial sentiment sensor in twitter for predicting cyber-attacks using l1 regularizationSensors2018185138010.3390/s18051380 – reference: TaddeoMCyber conflicts and political power in information societiesMinds and Machines201727226526810.1007/s11023-017-9436-3 – reference: EpskampSWaldorpLJMõttusRBorsboomDThe gaussian graphical model in cross-sectional and time-series dataMultivariate Behavioral Research201853445348010.1080/00273171.2018.1454823 – reference: ZieglerCEInternational dimensions of electoral processes: Russia, the usa, and the 2016 electionsInternational Politics201855555757410.1057/s41311-017-0113-1 – reference: DalegeJBorsboomDHarreveldFWaldorpLJMaasHLNetwork structure explains the impact of attitudes on voting decisionsScientific Reports201771490910.1038/s41598-017-05048-y – reference: Cattell, R. B. (1965). Studies in psychology. In C. Banks & P. L. Broadhurst (Eds.) (pp. 223–266). University of London Press London. – reference: Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: a simulation and tutorial. Psychological Methods,25(3), 292–230. https://doi.org/10.1037/met0000255 – reference: HornikKGrünBTopicmodels: an r package for fitting topic modelsJournal of Statistical Software20114013130 – reference: van Bork, R., van Borkulo, C. D., Waldorp, L. J., Cramer, A. O., & Borsboom, D. (2018). Network models for clinical psychology. Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience,5, 1–35. – reference: Van Der MaasHLKanK-JMarsmanMStevensonCENetwork models for cognitive development and intelligenceJournal of Intelligence2017521610.3390/jintelligence5020016 – reference: Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at horn’s parallel analysis with ordinal variables. Psychological Methods,18(4), 454–74. https://doi.org/10.1037/a0030005 – reference: CramerAWaldorpLJVan Der MaasHLBorsboomDComorbidity: a network perspectiveBehavioral and Brain Sciences2010332–313715010.1017/S0140525X09991567 – reference: Hallquist, M. N., Wright, A. G., & Molenaar, P. C. (2019). Problems with centrality measures in psychopathology symptom networks: why network psychometrics cannot escape psychometric theory. Multivariate Behavioral Research, pp. 1–25,. https://doi.org/10.1080/00273171.2019.1640103 – reference: Stewart, L. G., Arif, A., & Starbird, K. (2018). Examining trolls and polarization with a retweet network. In Proc: ACM wsdm, workshop on misinformation and misbehavior mining on the web. – reference: Zannettou, S., Caulfield, T., De Cristofaro, E., Sirivianos, M., Stringhini, G., & Blackburn, J. (2019). Disinformation warfare: Understanding state-sponsored trolls on twitter and their influence on the web. In Companion proceedings of the 2019 world wide web conference (pp. 218–226). – reference: Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. In P. Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and information sciences - iscis 2005 (pp. 284–293). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11569596_31 – reference: Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Multivariate applications book series. Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235–265). Lawrence Erlbaum Associates Publishers. – reference: BaumertASchmittMPeruginiMJohnsonWBlumGBorkenauPWrzusCIntegrating personality structure, personality process, and personality developmentEuropean Journal of Personality20173150352810.1002/per.2115 – reference: PorterMFAn algorithm for suffix strippingProgram198014313013710.1108/eb046814 – reference: Linvill, D. L., Boatwright, B. C., Grant, W. J., & Warren, P. L. (2019). “THE russians are hacking my brain!” Investigating russia’s internet research agency twitter tactics during the 2016 united states presidential campaign. Computers in Human Behavior,99, 292–300. – reference: Takens, F. (1981). Detecting strange attractors in turbulence. In Lecture notes in mathematics (vol. 898, pp. 366–381). Springer. https://doi.org/10.1007/BFb0091924 – reference: Fenton, N. (2016). The internet of radical politics and social change. In Misunderstanding the internet (pp. 173–202). Routledge. – reference: EpskampSRhemtullaMBorsboomDGeneralized network pschometrics: combining network and latent variable modelsPsychometrika201782490492710.1007/s11336-017-9557-x – reference: YardiSBoydDDynamic debates: an analysis of group polarization over time on twitterBulletin of Science, Technology & Society201030531632710.1177/0270467610380011 – reference: BokerSMDeboekPREdlerCKeelPChowSMFerrerEHsiehFGeneralized local linear approximation of derivatives from time seriesThe notre dame series on quantitative methodology. Statistical methods for modeling human dynamics: An interdisciplinary dialogue2010UKRoutledge/Taylor & Francis Group161178 – reference: MassaraGPDi MatteoTAsteTNetwork filtering for big data: triangulated maximally filtered graphJournal of Complex Networks20165216117810.1093/comnet/cnw015 – reference: ClarkATYeHIsbellFDeyleERCowlesJTilmanGDSugiharaGSpatial convergent cross mapping to detect causal relationships from short time seriesEcology20159651174118110.1890/14-1479.1 – reference: WidamanKFCommon factor analysis versus principal component analysis: differential bias in representing model parameters?Multivariate Behavioral Research199328326331110.1207/s15327906mbr2803_1 – reference: Boker, S. M. (2018). Longitudinal multivariate psychology. In E. Ferrer, S. M. Boker, & K. J. Grimm (Eds.) (pp. 126–141). Routledge. – reference: GolinoHFDemetriouAEstimating the dimensionality of intelligence like data using exploratory graph analysisIntelligence201762547010.1016/j.intell.2017.02.007 – reference: EpskampSFriedEA tutorial on regularized partial correlation networksPsychological Methods201823461763410.1037/met0000167 – reference: HoribeYEntropy and correlationIEEE Transactions on Systems, Man, and Cybernetics1985564164210.1109/TSMC.1985.6313441 – reference: Anderson, H., T. W. & Rubin. (1958). Statistical inference in factor analysis. In Proceedings of the 3rd berkeley symposium on mathematics, statistics, and probability (Vol. 5, pp. 111–150). – reference: GroverPKarAKDwivediYKJanssenMPolarization and acculturation in us election 2016 outcomes-can twitter analytics predict changes in voting preferencesTechnological Forecasting and Social Change201914543846010.1016/j.techfore.2018.09.009 – reference: ChristensenAPTowards a network psychometrics approach to assessment: simulations for redundancy, dimensionality, and loadings (Unpublished doctoral dissertation)2020Greensboro, NC, USAUniversity of North Carolina at Greensboro – reference: GuttmanLImage theory for the structure of quantitative variatesPsychometrika195318427729610.1007/BF02289264 – reference: Phan, X.-H., Nguyen, L.-M., & Horiguchi, S. (2008). Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In Proceedings of the 17th international conference on world wide web (pp. 91–100). – reference: GatesKMHenryTSteinleyDFairDAA monte carlo evaluation of weighted community detection algorithmsFrontiers in Neuroinformatics2016104510.3389/fninf.2016.00045 – reference: SugiharaGMayRYeHHsiehC-HDeyleEFogartyMMunchSDetecting causality in complex ecosystemsScience2012338610649650010.1126/science.1227079 – reference: Ghanem, B., Buscaldi, D., & Rosso, P. (2019). TexTrolls: Identifying russian trolls on twitter from a textual perspective. arXiv, (1910.01340). Retrieved from arXiv:1910.01340 – reference: Golino, H., & Christensen, A. P. (2019). EGAnet: Exploratory graph analysis: A framework for estimating the number of dimensions in multivariate data using network psychometrics. Retrieved from https://CRAN.R-project.org/package=EGAnet – reference: Roeder, O. (2018). Why we’re sharing 3 million russian troll tweets. FiveThirtyEight, Retrieved from https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets/. Retrieved from https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets/ – reference: Williams, D. R., & Rast, P. (2019). Back to the basics: Rethinking partial correlation network methodology. British Journal of Mathematical and Statistical Psychology, 1–25. https://doi.org/10.1111/bmsp.12173 – reference: LauritzenSLGraphical models1996OxfordClarendon Press – reference: R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ – reference: AnaniadouSMcNaughtJText mining for biology and biomedicine2006BostonArtech House Publishers – reference: Rajadesingan, A., & Liu, H. (2014). Identifying users with opposing opinions in twitter debates. In International conference on social computing, behavioral-cultural modeling, and prediction (pp. 153–160). Springer. – reference: EngleRWatsonMA one-factor multivariate time series model of metropolitan wage ratesJournal of the American Statistical Association19817637677478110.1080/01621459.1981.10477720 – reference: Szafranski, R. (1995). A theory of information warfare: Preparing for 2020. Air University Maxwell Airforce Base. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a328193.pdf – reference: Arun, R., Suresh, V., Veni Madhavan, C. E., & Narasimha Murthy, M. N. (2010). On finding the natural number of topics with latent dirichlet allocation: Some observations. In R. B. Zaki M. J. Yu J. X. (Eds.), Advances in knowledge discovery and data mining. (Vol. 6118, pp. 391–402). Springer, Berlin. https://doi.org/10.1007/978-3-642-13657-3_43 – reference: Nikita, M. (2016). Ldatuning: Tuning of the latent dirichlet allocation models parameters (R package version 1.0.0). https://CRAN.%20R-project.%20org/package=%20ldatuning – reference: Foygel, R., & Drton, M. (2010). Extended bayesian information criteria for gaussian graphical models. In Proceedings of the 23rd international conference on neural information processing systems - volume 1 (Vol. 1, pp. 604–612). Vancouver, Canada. – reference: CaoJXiaTLiJZhangYTangSA density-based method for adaptive lda model selectionNeurocomputing2009727–91775178110.1016/j.neucom.2008.06.011 – reference: GolinoHFEpskampSExploratory graph analysis: a new approach for estimating the number of dimensions in psychological researchPloS One2017126e017403510.1371/journal.pone.0174035 – reference: SinghNHuCRoehlWSText mining a decade of progress in hospitality human resource management research: identifying emerging thematic developmentInternational Journal of Hospitality Management200726113114710.1016/j.ijhm.2005.10.002 – reference: RosensteinMTCollinsJJDe LucaCJA practical method for calculating largest lyapunov exponents from small data setsPhysica D: Nonlinear Phenomena1993651–211713410.1016/0167-2789(93)90009-P – reference: Chen, J., & Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771. Retrieved from https://www.jstor.org/stable/20441500 – reference: TibshiraniRRegression shrinkage and selection via the lassoJournal of the Royal Statistical Society: Series B (Methodological)199658126728810.1111/j.2517-6161.1996.tb02080.x – reference: Zannettou, S., Caulfield, T., Setzer, W., Sirivianos, M., Stringhini, G., & Blackburn, J. (2019). Who let the trolls out? Towards understanding state-sponsored trolls. In Proceedings of the 10th acm conference on web science (pp. 353–362). – ident: S0033312300007547_CR60 – ident: S0033312300007547_CR58 – ident: S0033312300007547_CR6 doi: 10.1177/1088868318772990 – ident: S0033312300007547_CR52 doi: 10.1093/oso/9780198522195.001.0001 – ident: S0033312300007547_CR85 doi: 10.1080/10705510802154281 – ident: S0033312300007547_CR83 doi: 10.1145/3308560.3316495 – ident: S0033312300007547_CR86 doi: 10.1057/s41311-017-0113-1 – ident: S0033312300007547_CR74 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: S0033312300007547_CR47 doi: 10.3390/s18051380 – ident: S0033312300007547_CR63 doi: 10.1108/eb046814 – ident: S0033312300007547_CR40 doi: 10.1016/j.intell.2017.02.007 – ident: S0033312300007547_CR79 doi: 10.2307/1968482 – ident: S0033312300007547_CR22 doi: 10.1038/s41598-017-05048-y – ident: S0033312300007547_CR80 doi: 10.1207/s15327906mbr2803_1 – start-page: 161 volume-title: The notre dame series on quantitative methodology. Statistical methods for modeling human dynamics: An interdisciplinary dialogue year: 2010 ident: S0033312300007547_CR8 – ident: S0033312300007547_CR70 doi: 10.1126/science.1227079 – ident: S0033312300007547_CR56 doi: 10.1145/3197026.3203876 – ident: S0033312300007547_CR50 – ident: S0033312300007547_CR34 doi: 10.1007/s00127-016-1319-z – ident: S0033312300007547_CR67 doi: 10.1016/0167-2789(93)90009-P – ident: S0033312300007547_CR75 doi: 10.1002/9781119170174.epcn518 – ident: S0033312300007547_CR35 doi: 10.1093/biostatistics/kxm045 – ident: S0033312300007547_CR42 doi: 10.1080/00273171.2020.1779642 – volume: 3 start-page: 993 year: 2003 ident: S0033312300007547_CR5 article-title: Latent dirichlet allocation publication-title: Journal of Machine Learning Research – ident: S0033312300007547_CR25 doi: 10.1080/01621459.1981.10477720 – ident: S0033312300007547_CR11 doi: 10.1146/annurev-clinpsy-050212-185608 – ident: S0033312300007547_CR32 doi: 10.4324/9781315695624-6 – ident: S0033312300007547_CR61 doi: 10.1145/1367497.1367510 – ident: S0033312300007547_CR48 doi: 10.1109/TSMC.1985.6313441 – ident: S0033312300007547_CR27 doi: 10.3758/s13428-017-0862-1 – ident: S0033312300007547_CR17 doi: 10.3758/s13428-020-01500-6 – ident: S0033312300007547_CR64 doi: 10.1007/978-3-319-05579-4_19 – ident: S0033312300007547_CR53 – ident: S0033312300007547_CR12 doi: 10.1016/j.neucom.2008.06.011 – ident: S0033312300007547_CR54 doi: 10.1016/j.chb.2019.05.027 – ident: S0033312300007547_CR28 doi: 10.1037/met0000167 – ident: S0033312300007547_CR78 doi: 10.1007/BF02293557 – ident: S0033312300007547_CR4 doi: 10.1002/per.2115 – ident: S0033312300007547_CR51 doi: 10.1080/11038128.2018.1455896 – ident: S0033312300007547_CR77 doi: 10.3390/jintelligence5020016 – ident: S0033312300007547_CR66 – ident: S0033312300007547_CR7 doi: 10.4324/9781315160542-7 – ident: S0033312300007547_CR30 doi: 10.1080/00273171.2018.1454823 – ident: S0033312300007547_CR41 doi: 10.1371/journal.pone.0174035 – ident: S0033312300007547_CR71 doi: 10.21236/ADA328193 – volume-title: Towards a network psychometrics approach to assessment: simulations for redundancy, dimensionality, and loadings (Unpublished doctoral dissertation) year: 2020 ident: S0033312300007547_CR16 – volume: 5 start-page: 161 year: 2016 ident: S0033312300007547_CR57 article-title: Network filtering for big data: triangulated maximally filtered graph publication-title: Journal of Complex Networks – ident: S0033312300007547_CR24 doi: 10.3166/dn.17.1.61-84 – volume-title: A first course in factor analysis year: 2016 ident: S0033312300007547_CR20 – ident: S0033312300007547_CR62 doi: 10.1007/11569596_31 – ident: S0033312300007547_CR73 doi: 10.1007/BFb0091924 – ident: S0033312300007547_CR15 doi: 10.1093/biomet/asn034 – ident: S0033312300007547_CR36 doi: 10.1037/a0030005 – ident: S0033312300007547_CR82 doi: 10.1177/0270467610380011 – ident: S0033312300007547_CR68 doi: 10.1016/j.ijhm.2005.10.002 – ident: S0033312300007547_CR18 doi: 10.3758/s13428-018-1032-9 – ident: S0033312300007547_CR23 doi: 10.1037/a0016622 – ident: S0033312300007547_CR29 doi: 10.1007/s11336-017-9557-x – ident: S0033312300007547_CR14 – ident: S0033312300007547_CR3 doi: 10.1007/978-3-642-13657-3_43 – ident: S0033312300007547_CR33 – ident: S0033312300007547_CR59 – ident: S0033312300007547_CR44 doi: 10.1016/j.techfore.2018.09.009 – ident: S0033312300007547_CR37 doi: 10.3389/fninf.2016.00045 – ident: S0033312300007547_CR13 – ident: S0033312300007547_CR21 doi: 10.1017/S0140525X09991567 – ident: S0033312300007547_CR72 doi: 10.1007/s11023-017-9436-3 – ident: S0033312300007547_CR65 – volume-title: Text mining for biology and biomedicine year: 2006 ident: S0033312300007547_CR1 – ident: S0033312300007547_CR46 doi: 10.1080/00273171.2019.1640103 – ident: S0033312300007547_CR81 doi: 10.1111/bmsp.12173 – ident: S0033312300007547_CR45 doi: 10.1007/BF02289264 – ident: S0033312300007547_CR2 – ident: S0033312300007547_CR31 doi: 10.18637/jss.v025.i05 – ident: S0033312300007547_CR69 – ident: S0033312300007547_CR10 doi: 10.1002/jclp.20503 – ident: S0033312300007547_CR39 doi: 10.32614/CRAN.package.EGAnet – ident: S0033312300007547_CR9 doi: 10.1007/978-3-319-77219-6_10 – ident: S0033312300007547_CR26 doi: 10.1002/9781118489772.ch30 – volume: 40 start-page: 1 year: 2011 ident: S0033312300007547_CR49 article-title: Topicmodels: an r package for fitting topic models publication-title: Journal of Statistical Software – ident: S0033312300007547_CR84 doi: 10.1145/3292522.3326016 – ident: S0033312300007547_CR43 doi: 10.1037/met0000255 – ident: S0033312300007547_CR76 doi: 10.1037/0033-295X.113.4.842 – ident: S0033312300007547_CR38 – ident: S0033312300007547_CR55 – ident: S0033312300007547_CR19 doi: 10.1890/14-1479.1 |
| SSID | ssj0009188 |
| Score | 2.434885 |
| Snippet | The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 156 |
| SubjectTerms | Algorithms Animals Application Reviews and Case Studies Assessment Behavioral Science and Psychology Female Humanities Humans Law Monte Carlo Methods Monte Carlo simulation Network Psychometrics in Action - Applications and Case Studies Psychology Psychometrics Social Media Social networks Statistical Theory and Methods Statistics for Social Sciences Swine Testing and Evaluation |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOiF9yNQ0CBxg4g4D9vhglBp4VBVCLbS3iLbsWGlKlk2W9D-FP4tM85jtVT0gpRLZDuONeOZsWfmG8Ze2sSlOk2KmGyFOLfSxMbgfrQSlYfOSm6TOhSbkKenaj4vPw8Xbt0QVjnKxCCo69bSHfmbVBBUGMrc_N3yR0xVo8i7OpTQuM5uUNls4nM5l1vQXa56SZxRDlmaDUkzfeocHs4o_BYP0yVqwXizq5guWZuXgyb_8pwGhXR8-3-XcofdGkxReN_zzl12zTX32P4kETf32W-qlEb56nCCJmmzhlm7XNgOFg30ab1Afh4NFDz_DT70xe2hD-sL3nv4SHjYMCKfvAXkSjhExQmtBzQ94UvAMflFw3VTw4nzw9tshQwaZqJuaD8IOPsKR-chcqzpHrCz46PZ4ad4qOUQ21zm61ipkteFzkVtVGm4r0uljdQ6sWnuDPJF6XltvPNa-8wpLYzIjEiVUcraInHZQ7bXtI17zEBx74UiWJrE5LX2pbBG-LpA08pafCLGR0JWdgA6p3ob59UWopmIXyHxq0D8ahOxV9OYZQ_zcWXvg5Gw1bDlu2pL1Yi9mJpxs5IHRjeuvcA-BR4YUUdIFbFHPTtN02W5RNNZ8YjJHUabOhAQ-G5Ls_geAMFL_CbnImKvR5bc_ta_V_Hk6lU8ZfsppXqEeLsDtrdeXbhn7Kb9uV50q-dho_0B5SIwNA priority: 102 providerName: ProQuest |
| Title | Modeling Latent Topics in Social Media using Dynamic Exploratory Graph Analysis: The Case of the Right-wing and Left-wing Trolls in the 2016 US Elections |
| URI | https://link.springer.com/article/10.1007/s11336-021-09820-y https://www.ncbi.nlm.nih.gov/pubmed/34757581 https://www.proquest.com/docview/2652733414 https://www.proquest.com/docview/2596021978 https://pubmed.ncbi.nlm.nih.gov/PMC9021116 |
| Volume | 87 |
| WOSCitedRecordID | wos000716860500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1860-0980 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: 7WY dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1860-0980 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: M0C dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1860-0980 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: 7X7 dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1860-0980 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: BENPR dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Education Database customDbUrl: eissn: 1860-0980 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: M0P dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/education providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database (Proquest) customDbUrl: eissn: 1860-0980 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: M2M dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1860-0980 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0009188 issn: 0033-3123 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_RjYe98DG-AqMyEm8QKd92eIPSwUNXVVsH5SmyHRsqTenUdkz9U_hvuXM-qjJAAimyFOUSJ87Z97Pu7ncAL3VgIhkFqU9YwU80V75SOB81R-Mh4zzUQemKTfDxWMxm-aRJClu10e6tS9Kt1NtkN9xOUcAsbn9ztFv-pgf7KbHN0B797NOWajcU9fobU-ZYFDepMr9_xq45uoExb4ZK_uIvdWbo-O7_fcA9uNPATva21pP7cMtUh9AbyetDOOjWwM0D-EG10ShDnY0QhFZrNl1czvWKzStWJ_Iy8uxIRuHyX9n7upw9qwP5nL-efSAGbNZynbxhqIdsgKaSLSxDsMlOHXPJNd0uq5KNjG3OpktUSdcTiSFiyNj5GRteuFixavUQzo-H08FHv6ne4OuEJ2tfiDwsU5lkpRK5Cm2ZC6m4lIGOEqNQE3IblsoaK6WNjZCZymKVRUIJoXUamPgR7FWLyjwBJkJrM0FENIFKSmnzTKvMlimCKa3x8CBsf2KhG2pzqrBxUWxJmWnsCxz7wo19sfHgVXfPZU3s8Vfpo1Y3imaSr4ooI_Y6hAGJBy-6yzg9yeciK7O4QpkUt4hoFbjw4HGtSl13ccIRLIvQA76jZJ0AUX_vXqnm3xwFeI7PDMPMg9etqm1f689f8fTfxJ_BQUTJHi7i7gj21ssr8xxu6-_r-WrZhx7__IXaGXet6MP-u-F4copnJ8HAtRNqo5O-m6A_AQaaL30 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQvvB-GAoMEJ7DwK_YaCSHUB62aRAhSqTd3d70LkYoTkpQqP4U_wW9kZm0nChW99YDki-W1vba_eXlnvgF4oQMTySjo-Owr-InOlK8UyaPOyHjIOA91ULpmE1m_L46O8k9r8LutheG0ylYnOkVdjjT_I38TpUwVRjo3eT_-4XPXKF5dbVto1LA4MPMzCtmm7_a36fu-jKLdncHWnt90FfB1kiUzX4g8LDsySUslchXaMhdSZVIGOkqMohnmNiyVNVZKGxshU5XGKo2EEkLrTmBiuu4VuJqQJeSOCb2otyT5DUWt-WOuWYvipkinLtWjYJDTfSl4z8nq-vNVQ3jOuz2fpPnXSq0zgLs3_7dXdwtuNK42fqhl4zasmeoObCw0_vwu_OJOcFyPj11yuasZDkbjoZ7isMK6bBl5HUsiFwd8xe15Jb8PNdZpiy47AT8y3ze2zC5vkaQOt8gxwJFFcq3xs-NpOePTZVVi19hmbzAhAXR34mHkH6V4-AV3TlxmXDW9B4eX8mruw3o1qsxDQBFamwqm3QlUUkqbp1qltuyQ66g1bR6ELXAK3RC5cz-Rk2JJQc1gKwhshQNbMffg1eKccU1jcuHozRZIRaPSpsUSRR48XxwmZcQrTLIyo1Ma06GAmGxgJjx4UMN3cbs4ySg0EKEH2QqwFwOY6Hz1SDX85gjPc7pmGKYevG5FYDmtfz_Fo4uf4hlc3xv0ukV3v3_wGDYiLmtxuYWbsD6bnJoncE3_nA2nk6dOyBGOL1s0_gB9TpDg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFqG-cB-GAoMET2DVV-w1EkLQJFA1iqKSSn1zd9e7EKk4IUmp8lP4K_w6ZnwkChV96wOSXyyvj7W_ubwz3wC81J4JZOC1XPYV3EgnylWK5FEnZDxkmPray8tmE0m_L46P08EG_G5qYTitstGJpaLOx5r_ke8GMVOFkc6Ndm2dFjFod99PfrjcQYpXWpt2GhVEDszinMK32bv9Nn3rV0HQ7Qz3Prt1hwFXR0k0d4VI_bwlozhXIlW-zVMhVSKlp4PIKHra1Pq5ssZKaUMjZKziUMWBUEJo3fJMSNe9BlsJzYkCv62Pnf7gcEX564vKDoRcwRaEdclOVbhHoSEn_1Ion5INdhfrZvGCr3sxZfOvddvSHHZv_c8v8jbcrJ1w_FBJzR3YMMVd2F7agsU9-MU94rhSH3vkjBdzHI4nIz3DUYFVQTPyCpdELhv4iu1FIb-PNFYJjWXeAn5iJnBsOF_eIskj7pHLgGOL5HTjYcngcs6nyyLHnrH13nBKolneiYeR5xTj0RfsnJY5c8XsPhxdyat5AJvFuDCPAIVvbSyYkMdTUS5tGmsV27xFTqXWtDngNyDKdE3xzp1GTrMVOTUDLyPgZSXwsoUDr5fnTCqCk0tH7zSgymplN8tWiHLgxfIwqSlee5KFGZ_RmBaFymQdE-HAwwrKy9uFUUJBg_AdSNZAvhzAFOjrR4rRt5IKPaVr-n7swJtGHFaP9e9ZPL58Fs_hBklE1tvvHzyB7YDrXcqkwx3YnE_PzFO4rn_OR7Pps1riEU6uWjb-AHhTmwM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Latent+Topics+in+Social+Media+using+Dynamic+Exploratory+Graph+Analysis%3A+The+Case+of+the+Right-wing+and+Left-wing+Trolls+in+the+2016+US+Elections&rft.jtitle=Psychometrika&rft.au=Golino%2C+Hudson&rft.au=Christensen%2C+Alexander+P.&rft.au=Moulder%2C+Robert&rft.au=Kim%2C+Seohyun&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=87&rft.issue=1&rft.spage=156&rft.epage=187&rft_id=info:doi/10.1007%2Fs11336-021-09820-y&rft.externalDocID=10_1007_s11336_021_09820_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon |