Modeling Latent Topics in Social Media using Dynamic Exploratory Graph Analysis: The Case of the Right-wing and Left-wing Trolls in the 2016 US Elections

The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika Jg. 87; H. 1; S. 156 - 187
Hauptverfasser: Golino, Hudson, Christensen, Alexander P., Moulder, Robert, Kim, Seohyun, Boker, Steven M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2022
Springer Nature B.V
Schlagworte:
ISSN:0033-3123, 1860-0980, 1860-0980
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data.
AbstractList The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data.
The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data.The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data.
The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow discord, and question the legitimacy of democratic institutions in the US and Western Europe. In 2016, the US congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues. Previous research used latent Dirichlet allocation (LDA) to estimate latent topics in data extracted from these accounts. However, LDA has characteristics that may limit the effectiveness of its use on data from social media: The number of latent topics must be specified by the user, interpretability of the topics can be difficult to achieve, and it does not model short-term temporal dynamics. In the current paper, we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph Analysis (DynEGA). In a Monte Carlo simulation, we compared the ability of DynEGA and LDA to estimate the number of simulated latent topics. The results show that DynEGA is substantially more accurate than several different LDA algorithms when estimating the number of simulated topics. In an applied example, we performed DynEGA on a large dataset with Twitter posts from state-sponsored right- and left-wing trolls during the 2016 US presidential election. DynEGA revealed topics that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing on current events in the USA. This example demonstrates the potential power of our approach for revealing temporally relevant information from qualitative text data.
Author Golino, Hudson
Boker, Steven M.
Christensen, Alexander P.
Moulder, Robert
Kim, Seohyun
Author_xml – sequence: 1
  givenname: Hudson
  orcidid: 0000-0002-1601-1447
  surname: Golino
  fullname: Golino, Hudson
  email: hfg9s@virginia.edu
  organization: University of Virginia
– sequence: 2
  givenname: Alexander P.
  surname: Christensen
  fullname: Christensen, Alexander P.
  organization: University of Pennsylvania
– sequence: 3
  givenname: Robert
  surname: Moulder
  fullname: Moulder, Robert
  organization: University of Virginia
– sequence: 4
  givenname: Seohyun
  surname: Kim
  fullname: Kim, Seohyun
  organization: University of Virginia
– sequence: 5
  givenname: Steven M.
  surname: Boker
  fullname: Boker, Steven M.
  organization: University of Virginia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34757581$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1URKeFF2CBLLHpJmDHieOwQKqGoSBNhUSna-vGcWZceezBToA8St-2TmfKTxdd2Vf-zr1Hx_cEHTnvNEKvKXlHCaneR0oZ4xnJaUZqkZNsfIZmVHAyleQIzQhhLGM0Z8foJMYbQkhNhXiBjllRlVUp6AzdXvpWW-PWeAm9dj1e-Z1RERuHr7wyYPGlbg3gIU7Mp9HB1ii8-L2zPkDvw4gvAuw2-NyBHaOJH_Bqo_Ecosa-w326fzfrTZ_9muTgWrzU3aFaBW_t_aQJywnl-PoKL6xWvfEuvkTPO7BRvzqcp-j682I1_5Itv118nZ8vM1VURZ8JUdO2hIK3jagb2rW1gKYCICovdEM4rTvaNp3uADqmBfCGs4bnohFCqZJodoo-7vvuhmarW5VCCGDlLpgthFF6MPL_F2c2cu1_yjoFTylPDc4ODYL_MejYy62JSlsLTvshyryseULrSiT07SP0xg8hRZcoXuYVYwUtEvXmX0d_rDz8WgLEHlDBxxh0J5XpYUotGTRWUiKnBZH7BZFpuLxfEDkmaf5I-tD9SRHbi2KC3VqHv7afUN0BxETPpw
CitedBy_id crossref_primary_10_1080_00273171_2025_2454901
crossref_primary_10_1177_08902070251352590
crossref_primary_10_5964_meth_12877
crossref_primary_10_3390_fi14100291
crossref_primary_10_1002_dad2_70091
crossref_primary_10_1080_07481756_2022_2073894
crossref_primary_10_1155_2022_1229501
crossref_primary_10_1016_j_econlet_2024_111954
crossref_primary_10_1080_10400419_2023_2184558
crossref_primary_10_1093_pm_pnae131
crossref_primary_10_1111_bjop_12623
crossref_primary_10_3390_jintelligence11080160
crossref_primary_10_1007_s11336_022_09861_x
crossref_primary_10_1007_s11336_022_09851_z
crossref_primary_10_3758_s13423_024_02473_9
Cites_doi 10.1177/1088868318772990
10.1093/oso/9780198522195.001.0001
10.1080/10705510802154281
10.1145/3308560.3316495
10.1057/s41311-017-0113-1
10.1111/j.2517-6161.1996.tb02080.x
10.3390/s18051380
10.1108/eb046814
10.1016/j.intell.2017.02.007
10.2307/1968482
10.1038/s41598-017-05048-y
10.1207/s15327906mbr2803_1
10.1126/science.1227079
10.1145/3197026.3203876
10.1007/s00127-016-1319-z
10.1016/0167-2789(93)90009-P
10.1002/9781119170174.epcn518
10.1093/biostatistics/kxm045
10.1080/00273171.2020.1779642
10.1080/01621459.1981.10477720
10.1146/annurev-clinpsy-050212-185608
10.4324/9781315695624-6
10.1145/1367497.1367510
10.1109/TSMC.1985.6313441
10.3758/s13428-017-0862-1
10.3758/s13428-020-01500-6
10.1007/978-3-319-05579-4_19
10.1016/j.neucom.2008.06.011
10.1016/j.chb.2019.05.027
10.1037/met0000167
10.1007/BF02293557
10.1002/per.2115
10.1080/11038128.2018.1455896
10.3390/jintelligence5020016
10.4324/9781315160542-7
10.1080/00273171.2018.1454823
10.1371/journal.pone.0174035
10.21236/ADA328193
10.3166/dn.17.1.61-84
10.1007/11569596_31
10.1007/BFb0091924
10.1093/biomet/asn034
10.1037/a0030005
10.1177/0270467610380011
10.1016/j.ijhm.2005.10.002
10.3758/s13428-018-1032-9
10.1037/a0016622
10.1007/s11336-017-9557-x
10.1007/978-3-642-13657-3_43
10.1016/j.techfore.2018.09.009
10.3389/fninf.2016.00045
10.1017/S0140525X09991567
10.1007/s11023-017-9436-3
10.1080/00273171.2019.1640103
10.1111/bmsp.12173
10.1007/BF02289264
10.18637/jss.v025.i05
10.1002/jclp.20503
10.32614/CRAN.package.EGAnet
10.1007/978-3-319-77219-6_10
10.1002/9781118489772.ch30
10.1145/3292522.3326016
10.1037/met0000255
10.1037/0033-295X.113.4.842
10.1890/14-1479.1
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7TK
7WY
7WZ
7X7
7XB
87Z
88B
88E
88G
8AO
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
BEZIV
CCPQU
CJNVE
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
K60
K6~
K9.
L.-
M0C
M0P
M0S
M1P
M2M
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEDU
PQEST
PQQKQ
PQUKI
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s11336-021-09820-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Neurosciences Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Education Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
Education Collection
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Education Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database (Proquest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Education
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
ABI/INFORM Complete
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
Education Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Business (Alumni)
ProQuest Education Journals (Alumni Edition)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


ProQuest One Education
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Law
EISSN 1860-0980
EndPage 187
ExternalDocumentID PMC9021116
34757581
10_1007_s11336_021_09820_y
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: University of Virginia Democracy Initiative
– fundername: ;
GroupedDBID --Z
-4V
-55
-5G
-BR
-EM
-W8
-Y2
-~C
-~X
.86
.GO
.VR
0-V
06D
09C
0R~
0VY
123
186
199
1N0
1SB
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABGDZ
ABGFU
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUC
ACDLN
ACGFS
ACHQT
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMHG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IRVIT
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
LPU
M0C
M0P
M1P
M2M
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NEJ
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P19
P2P
P9L
PF-
PQBIZ
PQBZA
PQEDU
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RCA
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBS
SBU
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UAP
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WHG
WIP
WK6
WK8
XOL
YLTOR
YYQ
Z45
Z81
Z83
Z8U
Z92
ZCG
ZGI
ZMTXR
ZOVNA
ZXP
~EX
AAPKM
AAXMD
AAYXX
ABFSG
ABUFD
ABXHF
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFFHD
AFHIU
AFOHR
AGQPQ
AGTDA
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IPYYG
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
K9.
L.-
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-8891d5a46db89b1fd98ab7aa0c24eb0619f1dbfefaaf3e8a6b63b628b88cc50e3
IEDL.DBID RSV
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716860500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0033-3123
1860-0980
IngestDate Tue Nov 04 01:55:16 EST 2025
Thu Oct 02 14:29:19 EDT 2025
Mon Oct 06 18:40:16 EDT 2025
Wed Feb 19 02:23:38 EST 2025
Sat Nov 29 03:24:46 EST 2025
Tue Nov 18 21:32:49 EST 2025
Fri Feb 21 02:46:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords latent topic analysis
time embedding
network models
dynamics
text mining
Language English
License http://creativecommons.org/licenses/by/4.0
2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-8891d5a46db89b1fd98ab7aa0c24eb0619f1dbfefaaf3e8a6b63b628b88cc50e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1601-1447
OpenAccessLink https://link.springer.com/10.1007/s11336-021-09820-y
PMID 34757581
PQID 2652733414
PQPubID 47416
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9021116
proquest_miscellaneous_2596021978
proquest_journals_2652733414
pubmed_primary_34757581
crossref_citationtrail_10_1007_s11336_021_09820_y
crossref_primary_10_1007_s11336_021_09820_y
springer_journals_10_1007_s11336_021_09820_y
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Psychometrika
PublicationTitleAbbrev Psychometrika
PublicationTitleAlternate Psychometrika
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zannettou, S., Caulfield, T., De Cristofaro, E., Sirivianos, M., Stringhini, G., & Blackburn, J. (2019). Disinformation warfare: Understanding state-sponsored trolls on twitter and their influence on the web. In Companion proceedings of the 2019 world wide web conference (pp. 218–226).
Nikita, M. (2019). Ldatuning: Tuning of the latent dirichlet allocation models parameters. Retrieved from https://CRAN.R-project.org/package=ldatuning
Takens, F. (1981). Detecting strange attractors in turbulence. In Lecture notes in mathematics (vol. 898, pp. 366–381). Springer. https://doi.org/10.1007/BFb0091924
Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at horn’s parallel analysis with ordinal variables. Psychological Methods,18(4), 454–74. https://doi.org/10.1037/a0030005
HornikKGrünBTopicmodels: an r package for fitting topic modelsJournal of Statistical Software20114013130
R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org
Boker, S. M., Tiberio, S. S., & Moulder, R. G. (2018). Robustness of time delay embedding to sampling interval misspecification. In Continuous time modeling in the behavioral and related sciences (pp. 239–258). Springer.
Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in r. Journal of Statistical Software, 25(5), 1–54. Retrieved from http://www.jstatsoft.org/v25/i05
WidamanKFCommon factor analysis versus principal component analysis: differential bias in representing model parameters?Multivariate Behavioral Research199328326331110.1207/s15327906mbr2803_1
EngleRWatsonMA one-factor multivariate time series model of metropolitan wage ratesJournal of the American Statistical Association19817637677478110.1080/01621459.1981.10477720
GolinoHFDemetriouAEstimating the dimensionality of intelligence like data using exploratory graph analysisIntelligence201762547010.1016/j.intell.2017.02.007
Roeder, O. (2018). Why we’re sharing 3 million russian troll tweets. FiveThirtyEight, Retrieved from https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets/. Retrieved from https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets
Christensen, A. P., & Golino, H. (2021). On the equivalency of factor and network loadings. Behavior research methods, pp. 1–18,. https://doi.org/10.3758/s13428-020-01500-6
Hallquist, M. N., Wright, A. G., & Molenaar, P. C. (2019). Problems with centrality measures in psychopathology symptom networks: why network psychometrics cannot escape psychometric theory. Multivariate Behavioral Research, pp. 1–25,. https://doi.org/10.1080/00273171.2019.1640103
ZhangZHamakerELNesselroadeJRComparisons of four methods for estimating a dynamic factor modelStructural Equation Modeling: A Multidisciplinary Journal200815337740210.1080/10705510802154281
ChristensenAPTowards a network psychometrics approach to assessment: simulations for redundancy, dimensionality, and loadings (Unpublished doctoral dissertation)2020Greensboro, NC, USAUniversity of North Carolina at Greensboro
EpskampSWaldorpLJMõttusRBorsboomDThe gaussian graphical model in cross-sectional and time-series dataMultivariate Behavioral Research201853445348010.1080/00273171.2018.1454823
BaumertASchmittMPeruginiMJohnsonWBlumGBorkenauPWrzusCIntegrating personality structure, personality process, and personality developmentEuropean Journal of Personality20173150352810.1002/per.2115
DeboeckPRMontpetitMABergemanCBokerSMUsing derivative estimates to describe intraindividual variability at multiple time scalesPsychological Methods200914436738610.1037/a0016622
Chen, J., & Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771. Retrieved from https://www.jstor.org/stable/20441500
Szafranski, R. (1995). A theory of information warfare: Preparing for 2020. Air University Maxwell Airforce Base. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a328193.pdf
Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: a simulation and tutorial. Psychological Methods,25(3), 292–230. https://doi.org/10.1037/met0000255
WhitneyHDifferentiable manifoldsThe Annals of Mathematics193637364568010.2307/1968482
EpskampMSIrwing PaulBNetwork psychometricsThe wiley handbook of psychometric testing. A multidisciplinary reference on survey, scale and test development2018New YorkWiley95398610.1002/9781118489772.ch30
KjellströmSGolinoHMining concepts of health responsibility using text mining and exploratory graph analysisScandinavian Journal of Occupational Therapy201926639541010.1080/11038128.2018.1455896
Phan, X.-H., Nguyen, L.-M., & Horiguchi, S. (2008). Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In Proceedings of the 17th international conference on world wide web (pp. 91–100).
Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Multivariate applications book series. Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235–265). Lawrence Erlbaum Associates Publishers.
Rajadesingan, A., & Liu, H. (2014). Identifying users with opposing opinions in twitter debates. In International conference on social computing, behavioral-cultural modeling, and prediction (pp. 153–160). Springer.
Hernandez-SuarezASanchez-PerezGToscano-MedinaKMartinez-HernandezVPerez-MeanaHOlivares-MercadoJSanchezVSocial sentiment sensor in twitter for predicting cyber-attacks using l1 regularizationSensors2018185138010.3390/s18051380
TaddeoMCyber conflicts and political power in information societiesMinds and Machines201727226526810.1007/s11023-017-9436-3
LauritzenSLGraphical models1996OxfordClarendon Press
Van Der MaasHLKanK-JMarsmanMStevensonCENetwork models for cognitive development and intelligenceJournal of Intelligence2017521610.3390/jintelligence5020016
Anderson, H., T. W. & Rubin. (1958). Statistical inference in factor analysis. In Proceedings of the 3rd berkeley symposium on mathematics, statistics, and probability (Vol. 5, pp. 111–150).
DalegeJBorsboomDHarreveldFWaldorpLJMaasHLNetwork structure explains the impact of attitudes on voting decisionsScientific Reports201771490910.1038/s41598-017-05048-y
Linvill, D. L., Boatwright, B. C., Grant, W. J., & Warren, P. L. (2019). “THE russians are hacking my brain!” Investigating russia’s internet research agency twitter tactics during the 2016 united states presidential campaign. Computers in Human Behavior,99, 292–300.
Fenton, N. (2016). The internet of radical politics and social change. In Misunderstanding the internet (pp. 173–202). Routledge.
MassaraGPDi MatteoTAsteTNetwork filtering for big data: triangulated maximally filtered graphJournal of Complex Networks20165216117810.1093/comnet/cnw015
Williams, D. R., & Rast, P. (2019). Back to the basics: Rethinking partial correlation network methodology. British Journal of Mathematical and Statistical Psychology, 1–25. https://doi.org/10.1111/bmsp.12173
PorterMFAn algorithm for suffix strippingProgram198014313013710.1108/eb046814
DeveaudRSanJuanEBellotPAccurate and effective latent concept modeling for ad hoc information retrievalDocument Numérique2014171618410.3166/dn.17.1.61-84
EpskampSFriedEA tutorial on regularized partial correlation networksPsychological Methods201823461763410.1037/met0000167
BokerSMDeboekPREdlerCKeelPChowSMFerrerEHsiehFGeneralized local linear approximation of derivatives from time seriesThe notre dame series on quantitative methodology. Statistical methods for modeling human dynamics: An interdisciplinary dialogue2010UKRoutledge/Taylor & Francis Group161178
HoribeYEntropy and correlationIEEE Transactions on Systems, Man, and Cybernetics1985564164210.1109/TSMC.1985.6313441
ZieglerCEInternational dimensions of electoral processes: Russia, the usa, and the 2016 electionsInternational Politics201855555757410.1057/s41311-017-0113-1
ComreyALLeeHBA first course in factor analysis2016New YorkRoutledge
RosensteinMTCollinsJJDe LucaCJA practical method for calculating largest lyapunov exponents from small data setsPhysica D: Nonlinear Phenomena1993651–211713410.1016/0167-2789(93)90009-P
Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. In P. Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and information sciences - iscis 2005 (pp. 284–293). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11569596_31
Golino, H., & Christensen, A. P. (2019). EGAnet: Exploratory graph analysis: A framework for estimating the number of dimensions in multivariate data using network psychometrics. Retrieved from https://CRAN.R-project.org/package=EGAnet
BleidornWHopwoodCJUsing machine learning to advance personality assessment and theoryPersonality and Social Psychology Review20192319020310.1177/1088868318772990
FriedmanJHastieTTibshiraniRSparse inverse covariance estimation with the graphical lassoBiostatistics20089343244110.1093/biostatistics/kxm045
BleiDMNgAYJordanMILatent dirichlet allocationJournal of Machine Learning Research20033Jan9931022
Libicki, M. C. (1995). What is information warfare? The Center for Advanced Command Concepts; Technology, National Defense University. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a367662.pdf
EpskampSRhemtullaMBorsboomDGeneralized network pschometrics: combining network and latent variable modelsPsychometrika201782490492710.1007/s11336-017-9557-x
Linvill, D. L., & Warren, P. L. (2018). Troll factories: The internet research agency and state-sponsored agenda building. Clemson University. Retrieved from https://pwarren
S0033312300007547_CR28
S0033312300007547_CR27
S0033312300007547_CR29
Hornik (S0033312300007547_CR49) 2011; 40
S0033312300007547_CR3
S0033312300007547_CR4
S0033312300007547_CR6
S0033312300007547_CR71
S0033312300007547_CR7
S0033312300007547_CR70
S0033312300007547_CR73
S0033312300007547_CR9
S0033312300007547_CR72
S0033312300007547_CR31
S0033312300007547_CR75
S0033312300007547_CR30
S0033312300007547_CR74
S0033312300007547_CR33
S0033312300007547_CR77
S0033312300007547_CR76
S0033312300007547_CR32
S0033312300007547_CR35
S0033312300007547_CR79
S0033312300007547_CR34
S0033312300007547_CR78
S0033312300007547_CR37
S0033312300007547_CR2
S0033312300007547_CR36
S0033312300007547_CR39
S0033312300007547_CR38
Massara (S0033312300007547_CR57) 2016; 5
S0033312300007547_CR80
S0033312300007547_CR82
S0033312300007547_CR81
S0033312300007547_CR40
S0033312300007547_CR84
S0033312300007547_CR83
S0033312300007547_CR42
S0033312300007547_CR86
S0033312300007547_CR85
S0033312300007547_CR41
S0033312300007547_CR44
S0033312300007547_CR43
S0033312300007547_CR46
S0033312300007547_CR45
S0033312300007547_CR48
S0033312300007547_CR47
S0033312300007547_CR51
S0033312300007547_CR50
S0033312300007547_CR53
S0033312300007547_CR52
Ananiadou (S0033312300007547_CR1) 2006
S0033312300007547_CR55
S0033312300007547_CR11
S0033312300007547_CR54
S0033312300007547_CR10
S0033312300007547_CR13
S0033312300007547_CR12
S0033312300007547_CR56
S0033312300007547_CR59
S0033312300007547_CR15
S0033312300007547_CR14
S0033312300007547_CR58
S0033312300007547_CR17
S0033312300007547_CR19
S0033312300007547_CR18
Christensen (S0033312300007547_CR16) 2020
Comrey (S0033312300007547_CR20) 2016
Boker (S0033312300007547_CR8) 2010
S0033312300007547_CR60
S0033312300007547_CR62
S0033312300007547_CR61
Blei (S0033312300007547_CR5) 2003; 3
S0033312300007547_CR64
S0033312300007547_CR63
S0033312300007547_CR22
S0033312300007547_CR66
S0033312300007547_CR65
S0033312300007547_CR21
S0033312300007547_CR24
S0033312300007547_CR68
S0033312300007547_CR23
S0033312300007547_CR67
S0033312300007547_CR26
S0033312300007547_CR25
S0033312300007547_CR69
References_xml – reference: ComreyALLeeHBA first course in factor analysis2016New YorkRoutledge
– reference: BleidornWHopwoodCJUsing machine learning to advance personality assessment and theoryPersonality and Social Psychology Review20192319020310.1177/1088868318772990
– reference: Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in r. Journal of Statistical Software, 25(5), 1–54. Retrieved from http://www.jstatsoft.org/v25/i05/
– reference: Linvill, D. L., & Warren, P. L. (2018). Troll factories: The internet research agency and state-sponsored agenda building. Clemson University. Retrieved from https://pwarren.people.clemson.edu/Linvill_Warren_TrollFactory.pdf
– reference: ZhangZHamakerELNesselroadeJRComparisons of four methods for estimating a dynamic factor modelStructural Equation Modeling: A Multidisciplinary Journal200815337740210.1080/10705510802154281
– reference: BorsboomDCramerAONetwork analysis: an integrative approach to the structure of psychopathologyAnnual Review of Clinical Psychology201399112110.1146/annurev-clinpsy-050212-185608
– reference: FriedEvan BorkuloCDCramerAOJBoschlooLSchoeversRABorsboomDMental disorders as networks of problems: a review of recent insightsSocial Psychiatry and Psychiatric Epidemiology201752111010.1007/s00127-016-1319-z
– reference: DeboeckPRMontpetitMABergemanCBokerSMUsing derivative estimates to describe intraindividual variability at multiple time scalesPsychological Methods200914436738610.1037/a0016622
– reference: Boker, S. M., Tiberio, S. S., & Moulder, R. G. (2018). Robustness of time delay embedding to sampling interval misspecification. In Continuous time modeling in the behavioral and related sciences (pp. 239–258). Springer.
– reference: FriedmanJHastieTTibshiraniRSparse inverse covariance estimation with the graphical lassoBiostatistics20089343244110.1093/biostatistics/kxm045
– reference: BorsboomDPsychometric perspectives on diagnostic systemsJournal of Clinical Psychology20086491089110810.1002/jclp.20503
– reference: VelicerWFDetermining the number of components from the matrix of partial correlationsPsychometrika197641332132710.1007/BF02293557
– reference: EpskampSBorsboomDFriedEIEstimating psychological networks and their accuracy: a tutorial paperBehavior Research Methods201850119521210.3758/s13428-017-0862-1
– reference: Libicki, M. C. (1995). What is information warfare? The Center for Advanced Command Concepts; Technology, National Defense University. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a367662.pdf
– reference: Hou-Liu, J. (2018). Benchmarking and improving recovery of number of topics in latent dirichlet allocation models. viXra. Retrieved from https://vixra.org/abs/1801.0045
– reference: Chaney, A. J. B., & Blei, D. M. (2012). Visualizing topic models. In Proceedings of the sixth international aaai conference on weblogs and social media.
– reference: KjellströmSGolinoHMining concepts of health responsibility using text mining and exploratory graph analysisScandinavian Journal of Occupational Therapy201926639541010.1080/11038128.2018.1455896
– reference: Nikita, M. (2019). Ldatuning: Tuning of the latent dirichlet allocation models parameters. Retrieved from https://CRAN.R-project.org/package=ldatuning
– reference: Van Der MaasHLDolanCVGrasmanRPWichertsJMHuizengaHMRaijmakersMEA dynamical model of general intelligence: the positive manifold of intelligence by mutualismPsychological Review2006113484286110.1037/0033-295X.113.4.842
– reference: Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R. (2018). Network structure of the wisconsin schizotypy scales–short forms: Examining psychometric network filtering approaches. Behavior Research Methods, 50(6), 2531–2550. https://doi.org/10.3758/s13428-018-1032-9
– reference: Llewellyn, C., Cram, L., Favero, A., & Hill, R. L. (2018). Russian troll hunting in a brexit twitter archive. In Proceedings of the 18th acm/ieee on joint conference on digital libraries (pp. 361–362).
– reference: WhitneyHDifferentiable manifoldsThe Annals of Mathematics193637364568010.2307/1968482
– reference: BleiDMNgAYJordanMILatent dirichlet allocationJournal of Machine Learning Research20033Jan9931022
– reference: Christensen, A. P., & Golino, H. (2021). On the equivalency of factor and network loadings. Behavior research methods, pp. 1–18,. https://doi.org/10.3758/s13428-020-01500-6
– reference: EpskampMSIrwing PaulBNetwork psychometricsThe wiley handbook of psychometric testing. A multidisciplinary reference on survey, scale and test development2018New YorkWiley95398610.1002/9781118489772.ch30
– reference: DeveaudRSanJuanEBellotPAccurate and effective latent concept modeling for ad hoc information retrievalDocument Numérique2014171618410.3166/dn.17.1.61-84
– reference: Golino, H., Moulder, R., Shi, D., Christensen, A., Garrido, L., Neto, M., Boker, & S. (2020a). Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2020.1779642
– reference: Hernandez-SuarezASanchez-PerezGToscano-MedinaKMartinez-HernandezVPerez-MeanaHOlivares-MercadoJSanchezVSocial sentiment sensor in twitter for predicting cyber-attacks using l1 regularizationSensors2018185138010.3390/s18051380
– reference: TaddeoMCyber conflicts and political power in information societiesMinds and Machines201727226526810.1007/s11023-017-9436-3
– reference: EpskampSWaldorpLJMõttusRBorsboomDThe gaussian graphical model in cross-sectional and time-series dataMultivariate Behavioral Research201853445348010.1080/00273171.2018.1454823
– reference: ZieglerCEInternational dimensions of electoral processes: Russia, the usa, and the 2016 electionsInternational Politics201855555757410.1057/s41311-017-0113-1
– reference: DalegeJBorsboomDHarreveldFWaldorpLJMaasHLNetwork structure explains the impact of attitudes on voting decisionsScientific Reports201771490910.1038/s41598-017-05048-y
– reference: Cattell, R. B. (1965). Studies in psychology. In C. Banks & P. L. Broadhurst (Eds.) (pp. 223–266). University of London Press London.
– reference: Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: a simulation and tutorial. Psychological Methods,25(3), 292–230. https://doi.org/10.1037/met0000255
– reference: HornikKGrünBTopicmodels: an r package for fitting topic modelsJournal of Statistical Software20114013130
– reference: van Bork, R., van Borkulo, C. D., Waldorp, L. J., Cramer, A. O., & Borsboom, D. (2018). Network models for clinical psychology. Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience,5, 1–35.
– reference: Van Der MaasHLKanK-JMarsmanMStevensonCENetwork models for cognitive development and intelligenceJournal of Intelligence2017521610.3390/jintelligence5020016
– reference: Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at horn’s parallel analysis with ordinal variables. Psychological Methods,18(4), 454–74. https://doi.org/10.1037/a0030005
– reference: CramerAWaldorpLJVan Der MaasHLBorsboomDComorbidity: a network perspectiveBehavioral and Brain Sciences2010332–313715010.1017/S0140525X09991567
– reference: Hallquist, M. N., Wright, A. G., & Molenaar, P. C. (2019). Problems with centrality measures in psychopathology symptom networks: why network psychometrics cannot escape psychometric theory. Multivariate Behavioral Research, pp. 1–25,. https://doi.org/10.1080/00273171.2019.1640103
– reference: Stewart, L. G., Arif, A., & Starbird, K. (2018). Examining trolls and polarization with a retweet network. In Proc: ACM wsdm, workshop on misinformation and misbehavior mining on the web.
– reference: Zannettou, S., Caulfield, T., De Cristofaro, E., Sirivianos, M., Stringhini, G., & Blackburn, J. (2019). Disinformation warfare: Understanding state-sponsored trolls on twitter and their influence on the web. In Companion proceedings of the 2019 world wide web conference (pp. 218–226).
– reference: Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. In P. Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and information sciences - iscis 2005 (pp. 284–293). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11569596_31
– reference: Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Multivariate applications book series. Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235–265). Lawrence Erlbaum Associates Publishers.
– reference: BaumertASchmittMPeruginiMJohnsonWBlumGBorkenauPWrzusCIntegrating personality structure, personality process, and personality developmentEuropean Journal of Personality20173150352810.1002/per.2115
– reference: PorterMFAn algorithm for suffix strippingProgram198014313013710.1108/eb046814
– reference: Linvill, D. L., Boatwright, B. C., Grant, W. J., & Warren, P. L. (2019). “THE russians are hacking my brain!” Investigating russia’s internet research agency twitter tactics during the 2016 united states presidential campaign. Computers in Human Behavior,99, 292–300.
– reference: Takens, F. (1981). Detecting strange attractors in turbulence. In Lecture notes in mathematics (vol. 898, pp. 366–381). Springer. https://doi.org/10.1007/BFb0091924
– reference: Fenton, N. (2016). The internet of radical politics and social change. In Misunderstanding the internet (pp. 173–202). Routledge.
– reference: EpskampSRhemtullaMBorsboomDGeneralized network pschometrics: combining network and latent variable modelsPsychometrika201782490492710.1007/s11336-017-9557-x
– reference: YardiSBoydDDynamic debates: an analysis of group polarization over time on twitterBulletin of Science, Technology & Society201030531632710.1177/0270467610380011
– reference: BokerSMDeboekPREdlerCKeelPChowSMFerrerEHsiehFGeneralized local linear approximation of derivatives from time seriesThe notre dame series on quantitative methodology. Statistical methods for modeling human dynamics: An interdisciplinary dialogue2010UKRoutledge/Taylor & Francis Group161178
– reference: MassaraGPDi MatteoTAsteTNetwork filtering for big data: triangulated maximally filtered graphJournal of Complex Networks20165216117810.1093/comnet/cnw015
– reference: ClarkATYeHIsbellFDeyleERCowlesJTilmanGDSugiharaGSpatial convergent cross mapping to detect causal relationships from short time seriesEcology20159651174118110.1890/14-1479.1
– reference: WidamanKFCommon factor analysis versus principal component analysis: differential bias in representing model parameters?Multivariate Behavioral Research199328326331110.1207/s15327906mbr2803_1
– reference: Boker, S. M. (2018). Longitudinal multivariate psychology. In E. Ferrer, S. M. Boker, & K. J. Grimm (Eds.) (pp. 126–141). Routledge.
– reference: GolinoHFDemetriouAEstimating the dimensionality of intelligence like data using exploratory graph analysisIntelligence201762547010.1016/j.intell.2017.02.007
– reference: EpskampSFriedEA tutorial on regularized partial correlation networksPsychological Methods201823461763410.1037/met0000167
– reference: HoribeYEntropy and correlationIEEE Transactions on Systems, Man, and Cybernetics1985564164210.1109/TSMC.1985.6313441
– reference: Anderson, H., T. W. & Rubin. (1958). Statistical inference in factor analysis. In Proceedings of the 3rd berkeley symposium on mathematics, statistics, and probability (Vol. 5, pp. 111–150).
– reference: GroverPKarAKDwivediYKJanssenMPolarization and acculturation in us election 2016 outcomes-can twitter analytics predict changes in voting preferencesTechnological Forecasting and Social Change201914543846010.1016/j.techfore.2018.09.009
– reference: ChristensenAPTowards a network psychometrics approach to assessment: simulations for redundancy, dimensionality, and loadings (Unpublished doctoral dissertation)2020Greensboro, NC, USAUniversity of North Carolina at Greensboro
– reference: GuttmanLImage theory for the structure of quantitative variatesPsychometrika195318427729610.1007/BF02289264
– reference: Phan, X.-H., Nguyen, L.-M., & Horiguchi, S. (2008). Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In Proceedings of the 17th international conference on world wide web (pp. 91–100).
– reference: GatesKMHenryTSteinleyDFairDAA monte carlo evaluation of weighted community detection algorithmsFrontiers in Neuroinformatics2016104510.3389/fninf.2016.00045
– reference: SugiharaGMayRYeHHsiehC-HDeyleEFogartyMMunchSDetecting causality in complex ecosystemsScience2012338610649650010.1126/science.1227079
– reference: Ghanem, B., Buscaldi, D., & Rosso, P. (2019). TexTrolls: Identifying russian trolls on twitter from a textual perspective. arXiv, (1910.01340). Retrieved from arXiv:1910.01340
– reference: Golino, H., & Christensen, A. P. (2019). EGAnet: Exploratory graph analysis: A framework for estimating the number of dimensions in multivariate data using network psychometrics. Retrieved from https://CRAN.R-project.org/package=EGAnet
– reference: Roeder, O. (2018). Why we’re sharing 3 million russian troll tweets. FiveThirtyEight, Retrieved from https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets/. Retrieved from https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets/
– reference: Williams, D. R., & Rast, P. (2019). Back to the basics: Rethinking partial correlation network methodology. British Journal of Mathematical and Statistical Psychology, 1–25. https://doi.org/10.1111/bmsp.12173
– reference: LauritzenSLGraphical models1996OxfordClarendon Press
– reference: R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
– reference: AnaniadouSMcNaughtJText mining for biology and biomedicine2006BostonArtech House Publishers
– reference: Rajadesingan, A., & Liu, H. (2014). Identifying users with opposing opinions in twitter debates. In International conference on social computing, behavioral-cultural modeling, and prediction (pp. 153–160). Springer.
– reference: EngleRWatsonMA one-factor multivariate time series model of metropolitan wage ratesJournal of the American Statistical Association19817637677478110.1080/01621459.1981.10477720
– reference: Szafranski, R. (1995). A theory of information warfare: Preparing for 2020. Air University Maxwell Airforce Base. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a328193.pdf
– reference: Arun, R., Suresh, V., Veni Madhavan, C. E., & Narasimha Murthy, M. N. (2010). On finding the natural number of topics with latent dirichlet allocation: Some observations. In R. B. Zaki M. J. Yu J. X. (Eds.), Advances in knowledge discovery and data mining. (Vol. 6118, pp. 391–402). Springer, Berlin. https://doi.org/10.1007/978-3-642-13657-3_43
– reference: Nikita, M. (2016). Ldatuning: Tuning of the latent dirichlet allocation models parameters (R package version 1.0.0). https://CRAN.%20R-project.%20org/package=%20ldatuning
– reference: Foygel, R., & Drton, M. (2010). Extended bayesian information criteria for gaussian graphical models. In Proceedings of the 23rd international conference on neural information processing systems - volume 1 (Vol. 1, pp. 604–612). Vancouver, Canada.
– reference: CaoJXiaTLiJZhangYTangSA density-based method for adaptive lda model selectionNeurocomputing2009727–91775178110.1016/j.neucom.2008.06.011
– reference: GolinoHFEpskampSExploratory graph analysis: a new approach for estimating the number of dimensions in psychological researchPloS One2017126e017403510.1371/journal.pone.0174035
– reference: SinghNHuCRoehlWSText mining a decade of progress in hospitality human resource management research: identifying emerging thematic developmentInternational Journal of Hospitality Management200726113114710.1016/j.ijhm.2005.10.002
– reference: RosensteinMTCollinsJJDe LucaCJA practical method for calculating largest lyapunov exponents from small data setsPhysica D: Nonlinear Phenomena1993651–211713410.1016/0167-2789(93)90009-P
– reference: Chen, J., & Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771. Retrieved from https://www.jstor.org/stable/20441500
– reference: TibshiraniRRegression shrinkage and selection via the lassoJournal of the Royal Statistical Society: Series B (Methodological)199658126728810.1111/j.2517-6161.1996.tb02080.x
– reference: Zannettou, S., Caulfield, T., Setzer, W., Sirivianos, M., Stringhini, G., & Blackburn, J. (2019). Who let the trolls out? Towards understanding state-sponsored trolls. In Proceedings of the 10th acm conference on web science (pp. 353–362).
– ident: S0033312300007547_CR60
– ident: S0033312300007547_CR58
– ident: S0033312300007547_CR6
  doi: 10.1177/1088868318772990
– ident: S0033312300007547_CR52
  doi: 10.1093/oso/9780198522195.001.0001
– ident: S0033312300007547_CR85
  doi: 10.1080/10705510802154281
– ident: S0033312300007547_CR83
  doi: 10.1145/3308560.3316495
– ident: S0033312300007547_CR86
  doi: 10.1057/s41311-017-0113-1
– ident: S0033312300007547_CR74
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: S0033312300007547_CR47
  doi: 10.3390/s18051380
– ident: S0033312300007547_CR63
  doi: 10.1108/eb046814
– ident: S0033312300007547_CR40
  doi: 10.1016/j.intell.2017.02.007
– ident: S0033312300007547_CR79
  doi: 10.2307/1968482
– ident: S0033312300007547_CR22
  doi: 10.1038/s41598-017-05048-y
– ident: S0033312300007547_CR80
  doi: 10.1207/s15327906mbr2803_1
– start-page: 161
  volume-title: The notre dame series on quantitative methodology. Statistical methods for modeling human dynamics: An interdisciplinary dialogue
  year: 2010
  ident: S0033312300007547_CR8
– ident: S0033312300007547_CR70
  doi: 10.1126/science.1227079
– ident: S0033312300007547_CR56
  doi: 10.1145/3197026.3203876
– ident: S0033312300007547_CR50
– ident: S0033312300007547_CR34
  doi: 10.1007/s00127-016-1319-z
– ident: S0033312300007547_CR67
  doi: 10.1016/0167-2789(93)90009-P
– ident: S0033312300007547_CR75
  doi: 10.1002/9781119170174.epcn518
– ident: S0033312300007547_CR35
  doi: 10.1093/biostatistics/kxm045
– ident: S0033312300007547_CR42
  doi: 10.1080/00273171.2020.1779642
– volume: 3
  start-page: 993
  year: 2003
  ident: S0033312300007547_CR5
  article-title: Latent dirichlet allocation
  publication-title: Journal of Machine Learning Research
– ident: S0033312300007547_CR25
  doi: 10.1080/01621459.1981.10477720
– ident: S0033312300007547_CR11
  doi: 10.1146/annurev-clinpsy-050212-185608
– ident: S0033312300007547_CR32
  doi: 10.4324/9781315695624-6
– ident: S0033312300007547_CR61
  doi: 10.1145/1367497.1367510
– ident: S0033312300007547_CR48
  doi: 10.1109/TSMC.1985.6313441
– ident: S0033312300007547_CR27
  doi: 10.3758/s13428-017-0862-1
– ident: S0033312300007547_CR17
  doi: 10.3758/s13428-020-01500-6
– ident: S0033312300007547_CR64
  doi: 10.1007/978-3-319-05579-4_19
– ident: S0033312300007547_CR53
– ident: S0033312300007547_CR12
  doi: 10.1016/j.neucom.2008.06.011
– ident: S0033312300007547_CR54
  doi: 10.1016/j.chb.2019.05.027
– ident: S0033312300007547_CR28
  doi: 10.1037/met0000167
– ident: S0033312300007547_CR78
  doi: 10.1007/BF02293557
– ident: S0033312300007547_CR4
  doi: 10.1002/per.2115
– ident: S0033312300007547_CR51
  doi: 10.1080/11038128.2018.1455896
– ident: S0033312300007547_CR77
  doi: 10.3390/jintelligence5020016
– ident: S0033312300007547_CR66
– ident: S0033312300007547_CR7
  doi: 10.4324/9781315160542-7
– ident: S0033312300007547_CR30
  doi: 10.1080/00273171.2018.1454823
– ident: S0033312300007547_CR41
  doi: 10.1371/journal.pone.0174035
– ident: S0033312300007547_CR71
  doi: 10.21236/ADA328193
– volume-title: Towards a network psychometrics approach to assessment: simulations for redundancy, dimensionality, and loadings (Unpublished doctoral dissertation)
  year: 2020
  ident: S0033312300007547_CR16
– volume: 5
  start-page: 161
  year: 2016
  ident: S0033312300007547_CR57
  article-title: Network filtering for big data: triangulated maximally filtered graph
  publication-title: Journal of Complex Networks
– ident: S0033312300007547_CR24
  doi: 10.3166/dn.17.1.61-84
– volume-title: A first course in factor analysis
  year: 2016
  ident: S0033312300007547_CR20
– ident: S0033312300007547_CR62
  doi: 10.1007/11569596_31
– ident: S0033312300007547_CR73
  doi: 10.1007/BFb0091924
– ident: S0033312300007547_CR15
  doi: 10.1093/biomet/asn034
– ident: S0033312300007547_CR36
  doi: 10.1037/a0030005
– ident: S0033312300007547_CR82
  doi: 10.1177/0270467610380011
– ident: S0033312300007547_CR68
  doi: 10.1016/j.ijhm.2005.10.002
– ident: S0033312300007547_CR18
  doi: 10.3758/s13428-018-1032-9
– ident: S0033312300007547_CR23
  doi: 10.1037/a0016622
– ident: S0033312300007547_CR29
  doi: 10.1007/s11336-017-9557-x
– ident: S0033312300007547_CR14
– ident: S0033312300007547_CR3
  doi: 10.1007/978-3-642-13657-3_43
– ident: S0033312300007547_CR33
– ident: S0033312300007547_CR59
– ident: S0033312300007547_CR44
  doi: 10.1016/j.techfore.2018.09.009
– ident: S0033312300007547_CR37
  doi: 10.3389/fninf.2016.00045
– ident: S0033312300007547_CR13
– ident: S0033312300007547_CR21
  doi: 10.1017/S0140525X09991567
– ident: S0033312300007547_CR72
  doi: 10.1007/s11023-017-9436-3
– ident: S0033312300007547_CR65
– volume-title: Text mining for biology and biomedicine
  year: 2006
  ident: S0033312300007547_CR1
– ident: S0033312300007547_CR46
  doi: 10.1080/00273171.2019.1640103
– ident: S0033312300007547_CR81
  doi: 10.1111/bmsp.12173
– ident: S0033312300007547_CR45
  doi: 10.1007/BF02289264
– ident: S0033312300007547_CR2
– ident: S0033312300007547_CR31
  doi: 10.18637/jss.v025.i05
– ident: S0033312300007547_CR69
– ident: S0033312300007547_CR10
  doi: 10.1002/jclp.20503
– ident: S0033312300007547_CR39
  doi: 10.32614/CRAN.package.EGAnet
– ident: S0033312300007547_CR9
  doi: 10.1007/978-3-319-77219-6_10
– ident: S0033312300007547_CR26
  doi: 10.1002/9781118489772.ch30
– volume: 40
  start-page: 1
  year: 2011
  ident: S0033312300007547_CR49
  article-title: Topicmodels: an r package for fitting topic models
  publication-title: Journal of Statistical Software
– ident: S0033312300007547_CR84
  doi: 10.1145/3292522.3326016
– ident: S0033312300007547_CR43
  doi: 10.1037/met0000255
– ident: S0033312300007547_CR76
  doi: 10.1037/0033-295X.113.4.842
– ident: S0033312300007547_CR38
– ident: S0033312300007547_CR55
– ident: S0033312300007547_CR19
  doi: 10.1890/14-1479.1
SSID ssj0009188
Score 2.434885
Snippet The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their political agenda, sow...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 156
SubjectTerms Algorithms
Animals
Application Reviews and Case Studies
Assessment
Behavioral Science and Psychology
Female
Humanities
Humans
Law
Monte Carlo Methods
Monte Carlo simulation
Network Psychometrics in Action - Applications and Case Studies
Psychology
Psychometrics
Social Media
Social networks
Statistical Theory and Methods
Statistics for Social Sciences
Swine
Testing and Evaluation
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOiF9yNQ0CBxg4g4D9vhglBp4VBVCLbS3iLbsWGlKlk2W9D-FP4tM85jtVT0gpRLZDuONeOZsWfmG8Ze2sSlOk2KmGyFOLfSxMbgfrQSlYfOSm6TOhSbkKenaj4vPw8Xbt0QVjnKxCCo69bSHfmbVBBUGMrc_N3yR0xVo8i7OpTQuM5uUNls4nM5l1vQXa56SZxRDlmaDUkzfeocHs4o_BYP0yVqwXizq5guWZuXgyb_8pwGhXR8-3-XcofdGkxReN_zzl12zTX32P4kETf32W-qlEb56nCCJmmzhlm7XNgOFg30ab1Afh4NFDz_DT70xe2hD-sL3nv4SHjYMCKfvAXkSjhExQmtBzQ94UvAMflFw3VTw4nzw9tshQwaZqJuaD8IOPsKR-chcqzpHrCz46PZ4ad4qOUQ21zm61ipkteFzkVtVGm4r0uljdQ6sWnuDPJF6XltvPNa-8wpLYzIjEiVUcraInHZQ7bXtI17zEBx74UiWJrE5LX2pbBG-LpA08pafCLGR0JWdgA6p3ob59UWopmIXyHxq0D8ahOxV9OYZQ_zcWXvg5Gw1bDlu2pL1Yi9mJpxs5IHRjeuvcA-BR4YUUdIFbFHPTtN02W5RNNZ8YjJHUabOhAQ-G5Ls_geAMFL_CbnImKvR5bc_ta_V_Hk6lU8ZfsppXqEeLsDtrdeXbhn7Kb9uV50q-dho_0B5SIwNA
  priority: 102
  providerName: ProQuest
Title Modeling Latent Topics in Social Media using Dynamic Exploratory Graph Analysis: The Case of the Right-wing and Left-wing Trolls in the 2016 US Elections
URI https://link.springer.com/article/10.1007/s11336-021-09820-y
https://www.ncbi.nlm.nih.gov/pubmed/34757581
https://www.proquest.com/docview/2652733414
https://www.proquest.com/docview/2596021978
https://pubmed.ncbi.nlm.nih.gov/PMC9021116
Volume 87
WOSCitedRecordID wos000716860500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: 7WY
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: M0C
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: 7X7
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: BENPR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Education Database
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: M0P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/education
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database (Proquest)
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: M2M
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1860-0980
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0009188
  issn: 0033-3123
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_RjYe98DG-AqMyEm8QKd92eIPSwUNXVVsH5SmyHRsqTenUdkz9U_hvuXM-qjJAAimyFOUSJ87Z97Pu7ncAL3VgIhkFqU9YwU80V75SOB81R-Mh4zzUQemKTfDxWMxm-aRJClu10e6tS9Kt1NtkN9xOUcAsbn9ztFv-pgf7KbHN0B797NOWajcU9fobU-ZYFDepMr9_xq45uoExb4ZK_uIvdWbo-O7_fcA9uNPATva21pP7cMtUh9AbyetDOOjWwM0D-EG10ShDnY0QhFZrNl1czvWKzStWJ_Iy8uxIRuHyX9n7upw9qwP5nL-efSAGbNZynbxhqIdsgKaSLSxDsMlOHXPJNd0uq5KNjG3OpktUSdcTiSFiyNj5GRteuFixavUQzo-H08FHv6ne4OuEJ2tfiDwsU5lkpRK5Cm2ZC6m4lIGOEqNQE3IblsoaK6WNjZCZymKVRUIJoXUamPgR7FWLyjwBJkJrM0FENIFKSmnzTKvMlimCKa3x8CBsf2KhG2pzqrBxUWxJmWnsCxz7wo19sfHgVXfPZU3s8Vfpo1Y3imaSr4ooI_Y6hAGJBy-6yzg9yeciK7O4QpkUt4hoFbjw4HGtSl13ccIRLIvQA76jZJ0AUX_vXqnm3xwFeI7PDMPMg9etqm1f689f8fTfxJ_BQUTJHi7i7gj21ssr8xxu6-_r-WrZhx7__IXaGXet6MP-u-F4copnJ8HAtRNqo5O-m6A_AQaaL30
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQvvB-GAoMEJ7DwK_YaCSHUB62aRAhSqTd3d70LkYoTkpQqP4U_wW9kZm0nChW99YDki-W1vba_eXlnvgF4oQMTySjo-Owr-InOlK8UyaPOyHjIOA91ULpmE1m_L46O8k9r8LutheG0ylYnOkVdjjT_I38TpUwVRjo3eT_-4XPXKF5dbVto1LA4MPMzCtmm7_a36fu-jKLdncHWnt90FfB1kiUzX4g8LDsySUslchXaMhdSZVIGOkqMohnmNiyVNVZKGxshU5XGKo2EEkLrTmBiuu4VuJqQJeSOCb2otyT5DUWt-WOuWYvipkinLtWjYJDTfSl4z8nq-vNVQ3jOuz2fpPnXSq0zgLs3_7dXdwtuNK42fqhl4zasmeoObCw0_vwu_OJOcFyPj11yuasZDkbjoZ7isMK6bBl5HUsiFwd8xe15Jb8PNdZpiy47AT8y3ze2zC5vkaQOt8gxwJFFcq3xs-NpOePTZVVi19hmbzAhAXR34mHkH6V4-AV3TlxmXDW9B4eX8mruw3o1qsxDQBFamwqm3QlUUkqbp1qltuyQ66g1bR6ELXAK3RC5cz-Rk2JJQc1gKwhshQNbMffg1eKccU1jcuHozRZIRaPSpsUSRR48XxwmZcQrTLIyo1Ma06GAmGxgJjx4UMN3cbs4ySg0EKEH2QqwFwOY6Hz1SDX85gjPc7pmGKYevG5FYDmtfz_Fo4uf4hlc3xv0ukV3v3_wGDYiLmtxuYWbsD6bnJoncE3_nA2nk6dOyBGOL1s0_gB9TpDg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFqG-cB-GAoMET2DVV-w1EkLQJFA1iqKSSn1zd9e7EKk4IUmp8lP4K_w6ZnwkChV96wOSXyyvj7W_ubwz3wC81J4JZOC1XPYV3EgnylWK5FEnZDxkmPray8tmE0m_L46P08EG_G5qYTitstGJpaLOx5r_ke8GMVOFkc6Ndm2dFjFod99PfrjcQYpXWpt2GhVEDszinMK32bv9Nn3rV0HQ7Qz3Prt1hwFXR0k0d4VI_bwlozhXIlW-zVMhVSKlp4PIKHra1Pq5ssZKaUMjZKziUMWBUEJo3fJMSNe9BlsJzYkCv62Pnf7gcEX564vKDoRcwRaEdclOVbhHoSEn_1Ion5INdhfrZvGCr3sxZfOvddvSHHZv_c8v8jbcrJ1w_FBJzR3YMMVd2F7agsU9-MU94rhSH3vkjBdzHI4nIz3DUYFVQTPyCpdELhv4iu1FIb-PNFYJjWXeAn5iJnBsOF_eIskj7pHLgGOL5HTjYcngcs6nyyLHnrH13nBKolneiYeR5xTj0RfsnJY5c8XsPhxdyat5AJvFuDCPAIVvbSyYkMdTUS5tGmsV27xFTqXWtDngNyDKdE3xzp1GTrMVOTUDLyPgZSXwsoUDr5fnTCqCk0tH7zSgymplN8tWiHLgxfIwqSlee5KFGZ_RmBaFymQdE-HAwwrKy9uFUUJBg_AdSNZAvhzAFOjrR4rRt5IKPaVr-n7swJtGHFaP9e9ZPL58Fs_hBklE1tvvHzyB7YDrXcqkwx3YnE_PzFO4rn_OR7Pps1riEU6uWjb-AHhTmwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Latent+Topics+in+Social+Media+using+Dynamic+Exploratory+Graph+Analysis%3A+The+Case+of+the+Right-wing+and+Left-wing+Trolls+in+the+2016+US+Elections&rft.jtitle=Psychometrika&rft.au=Golino%2C+Hudson&rft.au=Christensen%2C+Alexander+P.&rft.au=Moulder%2C+Robert&rft.au=Kim%2C+Seohyun&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=87&rft.issue=1&rft.spage=156&rft.epage=187&rft_id=info:doi/10.1007%2Fs11336-021-09820-y&rft.externalDocID=10_1007_s11336_021_09820_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon