Detecting Web-Based Attacks with SHAP and Tree Ensemble Machine Learning Methods
Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to perpetrate malicious activities on the Internet are rampant and continuously evolving. Methods such as blocklisting, client honeypots, domain reputation inspection, and heuristic and signature-based systems are...
Saved in:
| Published in: | Applied sciences Vol. 12; no. 1; p. 60 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.01.2022
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to perpetrate malicious activities on the Internet are rampant and continuously evolving. Methods such as blocklisting, client honeypots, domain reputation inspection, and heuristic and signature-based systems are used to detect these malicious activities. Recently, machine learning approaches have been proposed; however, challenges still exist. First, blocklist systems are easily evaded by new URLs and JS code content, obfuscation, fast-flux, cloaking, and URL shortening. Second, heuristic and signature-based systems do not generalize well to zero-day attacks. Third, the Domain Name System allows cybercriminals to easily migrate their malicious servers to hide their Internet protocol addresses behind domain names. Finally, crafting fully representative features is challenging, even for domain experts. This study proposes a feature selection and classification approach for malicious JS code content using Shapley additive explanations and tree ensemble methods. The JS code features are obtained from the Abstract Syntax Tree form of the JS code, sample JS attack codes, and association rule mining. The malicious and benign JS code datasets obtained from Hynek Petrak and the Majestic Million Service were used for performance evaluation. We compared the performance of the proposed method to those of other feature selection methods in the task of malicious JS code content detection. With a recall of 0.9989, our experimental results show that the proposed approach is a better prediction model. |
|---|---|
| AbstractList | Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to perpetrate malicious activities on the Internet are rampant and continuously evolving. Methods such as blocklisting, client honeypots, domain reputation inspection, and heuristic and signature-based systems are used to detect these malicious activities. Recently, machine learning approaches have been proposed; however, challenges still exist. First, blocklist systems are easily evaded by new URLs and JS code content, obfuscation, fast-flux, cloaking, and URL shortening. Second, heuristic and signature-based systems do not generalize well to zero-day attacks. Third, the Domain Name System allows cybercriminals to easily migrate their malicious servers to hide their Internet protocol addresses behind domain names. Finally, crafting fully representative features is challenging, even for domain experts. This study proposes a feature selection and classification approach for malicious JS code content using Shapley additive explanations and tree ensemble methods. The JS code features are obtained from the Abstract Syntax Tree form of the JS code, sample JS attack codes, and association rule mining. The malicious and benign JS code datasets obtained from Hynek Petrak and the Majestic Million Service were used for performance evaluation. We compared the performance of the proposed method to those of other feature selection methods in the task of malicious JS code content detection. With a recall of 0.9989, our experimental results show that the proposed approach is a better prediction model. |
| Author | Takahashi, Takeshi Ndichu, Samuel Ozawa, Seiichi Ban, Tao Kim, Sangwook Inoue, Daisuke |
| Author_xml | – sequence: 1 givenname: Samuel orcidid: 0000-0001-9632-2407 surname: Ndichu fullname: Ndichu, Samuel – sequence: 2 givenname: Sangwook surname: Kim fullname: Kim, Sangwook – sequence: 3 givenname: Seiichi surname: Ozawa fullname: Ozawa, Seiichi – sequence: 4 givenname: Tao surname: Ban fullname: Ban, Tao – sequence: 5 givenname: Takeshi surname: Takahashi fullname: Takahashi, Takeshi – sequence: 6 givenname: Daisuke surname: Inoue fullname: Inoue, Daisuke |
| BookMark | eNptkVFLXDEQhUOxUGt96h8I9LHcmkmyyc3jarcqrFSopY8hN5nrZl2TbRIp_ffedRWkdF5mGM755sC8JwcpJyTkI7AvQhh24rZb4AwYU-wNOeRMq05I0Aev5nfkuNY1m8qA6IEdkuuv2NC3mG7pLxy6U1cx0Hlrzt9V-ie2Ff1xMb-mLgV6UxDpIlW8HzZIr5xfxYR0ia6knf0K2yqH-oG8Hd2m4vFzPyI_vy1uzi665ffzy7P5svNSy9b1XHmvWJBomBykV8MgjOcYRj_rYTAKJdOGmV7PeNB89MIZZ4zgIwSjlBRH5HLPDdmt7bbEe1f-2uyifVrkcmtdadFv0AIHxtEoaeRMqlkYpiNKjzDhNR-4nlif9qxtyb8fsDa7zg8lTfEtV9BzEAA7FexVvuRaC47Wx-ZazKkVFzcWmN39wb76w-T5_I_nJen_1I-g-4dE |
| CitedBy_id | crossref_primary_10_3390_fi16050168 crossref_primary_10_3390_atmos13122104 crossref_primary_10_1177_0739456X241268464 crossref_primary_10_3390_urbansci7030091 |
| Cites_doi | 10.1007/978-3-319-67837-5_17 10.1145/2382196.2382267 10.1109/ICPR.2018.8546262 10.1109/IJCNN.2018.8489414 10.1145/1651309.1651317 10.1016/j.asoc.2019.105721 10.21105/joss.00638 10.1038/s41551-018-0304-0 10.1049/trit.2020.0026 10.18637/jss.v036.i11 10.1007/s11235-017-0414-0 10.1145/2939672.2939785 10.1145/1553374.1553462 10.1109/ACSAC.2009.41 10.1016/j.cose.2017.01.003 10.1145/2584679 10.1109/TNSM.2014.2377295 10.1109/SPIN.2015.7095337 10.1007/978-3-319-11212-1_24 10.1023/B:DAMI.0000005258.31418.83 10.1038/s42256-019-0138-9 10.1109/IACS.2017.7921994 10.1145/3231053.3231082 10.1109/BigData.2018.8622547 10.1016/j.eswa.2016.01.028 10.17781/P002212 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app12010060 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest: Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_12102e964945465dbdfc67f190972b27 10_3390_app12010060 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c474t-826cc60d4e904b4c6bb39c2edfc581b96e4079098752d72fc3a9a9932f1d96643 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751036600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:50:55 EDT 2025 Mon Jun 30 07:29:01 EDT 2025 Sat Nov 29 07:18:36 EST 2025 Tue Nov 18 21:31:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-826cc60d4e904b4c6bb39c2edfc581b96e4079098752d72fc3a9a9932f1d96643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9632-2407 |
| OpenAccessLink | https://doaj.org/article/12102e964945465dbdfc67f190972b27 |
| PQID | 2618213117 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_12102e964945465dbdfc67f190972b27 proquest_journals_2618213117 crossref_citationtrail_10_3390_app12010060 crossref_primary_10_3390_app12010060 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Ndichu (ref_16) 2019; 84 ref_14 ref_13 ref_11 ref_10 Oentaryo (ref_33) 2014; 15 ref_51 ref_19 ref_18 ref_15 ref_23 ref_22 Bilge (ref_3) 2014; 16 ref_21 ref_20 ref_29 ref_28 ref_26 Marchal (ref_25) 2014; 11 Ma (ref_12) 2011; 2 ref_35 ref_34 ref_32 ref_31 Lundberg (ref_44) 2020; 2 Pedregosa (ref_47) 2011; 12 Moghimi (ref_27) 2016; 53 Akiyama (ref_36) 2017; 69 ref_39 ref_38 ref_37 Jain (ref_30) 2018; 68 Raschka (ref_43) 2018; 3 Lundberg (ref_45) 2018; 2 ref_46 Ndichu (ref_17) 2020; 5 Kuyama (ref_24) 2016; 5 ref_41 ref_40 ref_1 ref_2 Kursa (ref_52) 2010; 36 ref_49 Han (ref_42) 2004; 8 ref_48 ref_9 ref_8 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_9 – ident: ref_21 doi: 10.1007/978-3-319-67837-5_17 – ident: ref_49 – ident: ref_26 – ident: ref_51 – ident: ref_39 – ident: ref_32 doi: 10.1145/2382196.2382267 – ident: ref_28 doi: 10.1109/ICPR.2018.8546262 – ident: ref_35 – ident: ref_15 doi: 10.1109/IJCNN.2018.8489414 – ident: ref_18 doi: 10.1145/1651309.1651317 – ident: ref_23 – ident: ref_8 – ident: ref_48 – ident: ref_10 – volume: 84 start-page: 1 year: 2019 ident: ref_16 article-title: A machine learning approach to detection of JavaScript-based attacks using AST features and paragraph vectors publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.105721 – volume: 3 start-page: 638 year: 2018 ident: ref_43 article-title: MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack publication-title: J. Open Source Softw. doi: 10.21105/joss.00638 – volume: 2 start-page: 749 year: 2018 ident: ref_45 article-title: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0304-0 – volume: 2 start-page: 1 year: 2011 ident: ref_12 article-title: Learning to Detect Malicious URLs publication-title: ACM Trans. Intell. Syst. Technol. – ident: ref_41 – volume: 5 start-page: 184 year: 2020 ident: ref_17 article-title: Deobfuscation, Unpacking, and Decoding of Obfuscated Malicious JavaScript for Machine Learning Models Detection Performance Improvement publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2020.0026 – ident: ref_13 – volume: 36 start-page: 1 year: 2010 ident: ref_52 article-title: Feature Selection with the Boruta Package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 – volume: 15 start-page: 99 year: 2014 ident: ref_33 article-title: Detecting click fraud in online advertising: A data mining approach publication-title: J. Mach. Learn. Res. – ident: ref_38 – volume: 68 start-page: 687 year: 2018 ident: ref_30 article-title: Towards detection of phishing websites on client-side using machine learning based approach publication-title: Telecommun. Syst. doi: 10.1007/s11235-017-0414-0 – ident: ref_50 doi: 10.1145/2939672.2939785 – ident: ref_14 doi: 10.1145/1553374.1553462 – ident: ref_20 – ident: ref_7 – ident: ref_31 doi: 10.1109/ACSAC.2009.41 – volume: 69 start-page: 155 year: 2017 ident: ref_36 article-title: Analyzing the ecosystem of malicious URL redirection through longitudinal observation from honeypots publication-title: Comput. Secur. doi: 10.1016/j.cose.2017.01.003 – ident: ref_11 – volume: 16 start-page: 1 year: 2014 ident: ref_3 article-title: Exposure: A Passive DNS Analysis Service to Detect and Report Malicious Domains publication-title: Assoc. Comput. Mach. Trans. Inf. Syst. Secur. doi: 10.1145/2584679 – ident: ref_40 – ident: ref_37 – volume: 11 start-page: 458 year: 2014 ident: ref_25 article-title: Phishstorm: Detecting phishing with streaming analytics publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2014.2377295 – ident: ref_4 doi: 10.1109/SPIN.2015.7095337 – ident: ref_34 doi: 10.1007/978-3-319-11212-1_24 – volume: 8 start-page: 53 year: 2004 ident: ref_42 article-title: Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach publication-title: Data Min. Knowl. Discov. doi: 10.1023/B:DAMI.0000005258.31418.83 – ident: ref_6 – ident: ref_2 – ident: ref_46 – volume: 2 start-page: 2522 year: 2020 ident: ref_44 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 12 start-page: 2825 year: 2011 ident: ref_47 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_1 doi: 10.1109/IACS.2017.7921994 – ident: ref_5 doi: 10.1145/3231053.3231082 – ident: ref_29 doi: 10.1109/BigData.2018.8622547 – volume: 53 start-page: 231 year: 2016 ident: ref_27 article-title: New rule-based phishing detection method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.01.028 – volume: 5 start-page: 166 year: 2016 ident: ref_24 article-title: Method for detecting a malicious domain by using only well known information publication-title: Int. J. Cyber-Secur. Digit. Forensics doi: 10.17781/P002212 – ident: ref_19 – ident: ref_22 |
| SSID | ssj0000913810 |
| Score | 2.2394226 |
| Snippet | Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to perpetrate malicious activities on the Internet are rampant and... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 60 |
| SubjectTerms | Decision trees Feature selection Machine learning Shapley additive explanations Subject specialists tree ensemble methods URLs web-based attacks Websites |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5B6KEcKNBWhJf2wIFWsmpvJrb3hJISxIUoAqpys7wPIyTqQGz4_cxsNgGpVS9c7TmsPTvv3e8DOCL7cknZjyMKvXmEiY7J5rSKSpVoHafW5jgnm8jG4_zmRk1Cw60JxyoXPtE7ajs13CP_QZl-LhkbJjt5eIyYNYqnq4FCYxXWGKkMO7A2HI0nl8suC6Ne5kk8v5jXo_qe58IJT4BjD0r5Goo8Yv9fDtlHmbNP713fJmyE_FIM5htiC1ZcvQ3rb1AHt2Er2HMjjgPo9LfPMDl1PE4gAfHb6WhIwc2KQdvyFXzBzVpxdT6YiLK24nrmnBjVjfuj75248KcxnQhArbfiwnNSN1_g19no-ud5FNgWIoMZthHVGcaksUWnYtRoUq17ykhnK9On3Faljmo_FSsqcKTNZGV6pSopu5FVYqlmwt5X6NTT2u2AwNSSWInsaZF2Qo5YSZNSdWn6Ep3swvfFjy9MgCJnRoz7gkoS1lLxRktdOFoKP8wROP4tNmQNLkUYNts_mM5ui2CFhUdLcypFhUwCbzV9XJpVlBSpTGqZdWF_odwi2HJTvGp29_-v9-Cj5MsRvkGzD5129uQO4IN5bu-a2WHYmi_WHulz priority: 102 providerName: ProQuest |
| Title | Detecting Web-Based Attacks with SHAP and Tree Ensemble Machine Learning Methods |
| URI | https://www.proquest.com/docview/2618213117 https://doaj.org/article/12102e964945465dbdfc67f190972b27 |
| Volume | 12 |
| WOSCitedRecordID | wos000751036600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6ketCD2KpYrWUPPagQTLbbJHtstaUeWoJWrKeQfUSEGqWJ_n5nN7EWFLx4TBhImMfOfLs73wB0ML60l_RcB1Nv6DBPuBhzgjsJ94RwfaVCVg6bCKbTcD7n0dqoL3MnrKQHLhV3aQmuNPcZZ2ZutxIqlX6QYh7jARXU9pFj1bMGpuwazD1DXVU25HUR15vzYM-c_LqWjPI7BVmm_h8Lsc0uoz3YrcpC0i9_pw4bOmvAzhpZYAPqVRjm5Kziij7fh-ham1MAFCAPWjgDzEmK9IvCdM4Ts8dK7sb9iCSZIrOl1mSY5fpFLDSZ2EuUmlT8qk9kYkdJ5wdwPxrOrsZONSTBkSxghYPwQErfVUxzlwkmfSG6XFKNauphScp9jZANlYW4hKqAprKb8ASLEpp6CqEO6x5CLXvN9BEQ5isUS5hZIBkaMGQspdJHA8geZZo24eJLb7GsGMTNIItFjEjCKDleU3ITOivht5I443exgTHASsSwXdsX6ANx5QPxXz7QhNaX-eIqBPMYoWFIDZlQcPwf3ziBbWo6H-zuSwtqxfJdn8KW_Cie82UbNgfDaXTbtl6IT9HNJHr8BAlb3CE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFH_UVlAPaqvS1apzqKBCcDKZTTIHkV27ZUu7y6Ir9pZmPlIKNVs3UfGf8m_0vWSyLSjeevCaPAKT-b3vmd8D2EX9cmHe5wG63jSQoeaoc1oFuQq15rG1qWyHTSTTaXp8rGZr8Ku7C0PHKjub2BhquzBUI3-DkX4qiBsmeXfxNaCpUdRd7UZotLA4dD9_YMpWvT3Yw_19IcT-aP5-HPipAoGRiawDjKeNibmVTnGppYm1jpQRzhamjzGcih3mOIpjLt4XNhGFiXKVoxcXRWgxN5ARfvcGbMhIJqhXG8PRdPZhVdUhls005O1FwChSnPrQIXWceUOCeen6mgkBfziAxqvt3_vf_sd9uOvjZzZoAb8Ja67cgjtXWBW3YNPbq4q99KTarx7AbM9RuwQF2GengyE6b8sGdU0UA4yK0ezjeDBjeWnZfOkcG5WV-6LPHZs0p00d80S0p2zSzNyuHsKna1nnI1gvF6XbBiZji2K5JE8iEemplIUwMWbPpi-kEz143W10ZjzVOk38OM8w5SJUZFdQ0YPdlfBFyzDyd7EhIWYlQrTgzYPF8jTzViZr2OCciqWSNOTealxcnBQY9KlEaJH0YKcDU-ZtVZVdIunxv18_h1vj-eQoOzqYHj6B24IugjTFqB1Yr5ff3FO4ab7XZ9XymVcLBifXjbzf1fJFXw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFH_UVkQPaqviatU5VFAhdDKZTDIHka3bpUvdJWDF9hQzHylCzdZNtPRf61_XN8lkW1C89eA1eQQm83vfM78HsIX6ZcMipgG63jTgoaKoc0oGhQyVosKYlHfDJpLZLD08lNkKXPR3Ydyxyt4mtobazLWrkW9jpJ8yxw2TbJf-WEQ2Gn84_Rm4CVKu09qP0-ggsm_PzzB9q99PRrjXrxkb7x583Av8hIFA84Q3AcbWWgtquJWUK66FUpHUzJpSxxjPSWEx35EU8_KYmYSVOipkgR6dlaHBPIFH-N1bsIYhOUcdW8sm0-xoWeFxjJtpSLtLgVEkqetJh677TFtCzCs32E4L-MMZtB5u_OB__jcP4b6Pq8mwU4R1WLHVBty7xra4AevejtXkjSfbfvsIspF1bRQUIF-tCnbQqRsybBpHPUBckZp83htmpKgMOVhYS3ar2v5QJ5ZM21OolniC2mMybWdx14_hy42s8wmsVvPKPgXChUGxgjsPw1EDUs5LpgVm1Tpm3LIBvOs3Pdeegt1NAjnJMRVzCMmvIWQAW0vh04555O9iOw49SxFHF94-mC-Oc2998pYlzkrBJY-5iI3CxYmkxGBQJkyxZACbPbByb8Pq_ApVz_79-hXcQbjlnyaz_edwl7n7IW2NahNWm8Uv-wJu69_N93rx0msIgW83DbxLbrJOUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Web-Based+Attacks+with+SHAP+and+Tree+Ensemble+Machine+Learning+Methods&rft.jtitle=Applied+sciences&rft.au=Samuel+Ndichu&rft.au=Sangwook+Kim&rft.au=Seiichi+Ozawa&rft.au=Tao+Ban&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=1&rft.spage=60&rft_id=info:doi/10.3390%2Fapp12010060&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_12102e964945465dbdfc67f190972b27 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |