Detecting Web-Based Attacks with SHAP and Tree Ensemble Machine Learning Methods

Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to perpetrate malicious activities on the Internet are rampant and continuously evolving. Methods such as blocklisting, client honeypots, domain reputation inspection, and heuristic and signature-based systems are...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 12; no. 1; p. 60
Main Authors: Ndichu, Samuel, Kim, Sangwook, Ozawa, Seiichi, Ban, Tao, Takahashi, Takeshi, Inoue, Daisuke
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2022
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to perpetrate malicious activities on the Internet are rampant and continuously evolving. Methods such as blocklisting, client honeypots, domain reputation inspection, and heuristic and signature-based systems are used to detect these malicious activities. Recently, machine learning approaches have been proposed; however, challenges still exist. First, blocklist systems are easily evaded by new URLs and JS code content, obfuscation, fast-flux, cloaking, and URL shortening. Second, heuristic and signature-based systems do not generalize well to zero-day attacks. Third, the Domain Name System allows cybercriminals to easily migrate their malicious servers to hide their Internet protocol addresses behind domain names. Finally, crafting fully representative features is challenging, even for domain experts. This study proposes a feature selection and classification approach for malicious JS code content using Shapley additive explanations and tree ensemble methods. The JS code features are obtained from the Abstract Syntax Tree form of the JS code, sample JS attack codes, and association rule mining. The malicious and benign JS code datasets obtained from Hynek Petrak and the Majestic Million Service were used for performance evaluation. We compared the performance of the proposed method to those of other feature selection methods in the task of malicious JS code content detection. With a recall of 0.9989, our experimental results show that the proposed approach is a better prediction model.
AbstractList Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to perpetrate malicious activities on the Internet are rampant and continuously evolving. Methods such as blocklisting, client honeypots, domain reputation inspection, and heuristic and signature-based systems are used to detect these malicious activities. Recently, machine learning approaches have been proposed; however, challenges still exist. First, blocklist systems are easily evaded by new URLs and JS code content, obfuscation, fast-flux, cloaking, and URL shortening. Second, heuristic and signature-based systems do not generalize well to zero-day attacks. Third, the Domain Name System allows cybercriminals to easily migrate their malicious servers to hide their Internet protocol addresses behind domain names. Finally, crafting fully representative features is challenging, even for domain experts. This study proposes a feature selection and classification approach for malicious JS code content using Shapley additive explanations and tree ensemble methods. The JS code features are obtained from the Abstract Syntax Tree form of the JS code, sample JS attack codes, and association rule mining. The malicious and benign JS code datasets obtained from Hynek Petrak and the Majestic Million Service were used for performance evaluation. We compared the performance of the proposed method to those of other feature selection methods in the task of malicious JS code content detection. With a recall of 0.9989, our experimental results show that the proposed approach is a better prediction model.
Author Takahashi, Takeshi
Ndichu, Samuel
Ozawa, Seiichi
Ban, Tao
Kim, Sangwook
Inoue, Daisuke
Author_xml – sequence: 1
  givenname: Samuel
  orcidid: 0000-0001-9632-2407
  surname: Ndichu
  fullname: Ndichu, Samuel
– sequence: 2
  givenname: Sangwook
  surname: Kim
  fullname: Kim, Sangwook
– sequence: 3
  givenname: Seiichi
  surname: Ozawa
  fullname: Ozawa, Seiichi
– sequence: 4
  givenname: Tao
  surname: Ban
  fullname: Ban, Tao
– sequence: 5
  givenname: Takeshi
  surname: Takahashi
  fullname: Takahashi, Takeshi
– sequence: 6
  givenname: Daisuke
  surname: Inoue
  fullname: Inoue, Daisuke
BookMark eNptkVFLXDEQhUOxUGt96h8I9LHcmkmyyc3jarcqrFSopY8hN5nrZl2TbRIp_ffedRWkdF5mGM755sC8JwcpJyTkI7AvQhh24rZb4AwYU-wNOeRMq05I0Aev5nfkuNY1m8qA6IEdkuuv2NC3mG7pLxy6U1cx0Hlrzt9V-ie2Ff1xMb-mLgV6UxDpIlW8HzZIr5xfxYR0ia6knf0K2yqH-oG8Hd2m4vFzPyI_vy1uzi665ffzy7P5svNSy9b1XHmvWJBomBykV8MgjOcYRj_rYTAKJdOGmV7PeNB89MIZZ4zgIwSjlBRH5HLPDdmt7bbEe1f-2uyifVrkcmtdadFv0AIHxtEoaeRMqlkYpiNKjzDhNR-4nlif9qxtyb8fsDa7zg8lTfEtV9BzEAA7FexVvuRaC47Wx-ZazKkVFzcWmN39wb76w-T5_I_nJen_1I-g-4dE
CitedBy_id crossref_primary_10_3390_fi16050168
crossref_primary_10_3390_atmos13122104
crossref_primary_10_1177_0739456X241268464
crossref_primary_10_3390_urbansci7030091
Cites_doi 10.1007/978-3-319-67837-5_17
10.1145/2382196.2382267
10.1109/ICPR.2018.8546262
10.1109/IJCNN.2018.8489414
10.1145/1651309.1651317
10.1016/j.asoc.2019.105721
10.21105/joss.00638
10.1038/s41551-018-0304-0
10.1049/trit.2020.0026
10.18637/jss.v036.i11
10.1007/s11235-017-0414-0
10.1145/2939672.2939785
10.1145/1553374.1553462
10.1109/ACSAC.2009.41
10.1016/j.cose.2017.01.003
10.1145/2584679
10.1109/TNSM.2014.2377295
10.1109/SPIN.2015.7095337
10.1007/978-3-319-11212-1_24
10.1023/B:DAMI.0000005258.31418.83
10.1038/s42256-019-0138-9
10.1109/IACS.2017.7921994
10.1145/3231053.3231082
10.1109/BigData.2018.8622547
10.1016/j.eswa.2016.01.028
10.17781/P002212
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12010060
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest: Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_12102e964945465dbdfc67f190972b27
10_3390_app12010060
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c474t-826cc60d4e904b4c6bb39c2edfc581b96e4079098752d72fc3a9a9932f1d96643
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751036600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:50:55 EDT 2025
Mon Jun 30 07:29:01 EDT 2025
Sat Nov 29 07:18:36 EST 2025
Tue Nov 18 21:31:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-826cc60d4e904b4c6bb39c2edfc581b96e4079098752d72fc3a9a9932f1d96643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9632-2407
OpenAccessLink https://doaj.org/article/12102e964945465dbdfc67f190972b27
PQID 2618213117
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_12102e964945465dbdfc67f190972b27
proquest_journals_2618213117
crossref_citationtrail_10_3390_app12010060
crossref_primary_10_3390_app12010060
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Ndichu (ref_16) 2019; 84
ref_14
ref_13
ref_11
ref_10
Oentaryo (ref_33) 2014; 15
ref_51
ref_19
ref_18
ref_15
ref_23
ref_22
Bilge (ref_3) 2014; 16
ref_21
ref_20
ref_29
ref_28
ref_26
Marchal (ref_25) 2014; 11
Ma (ref_12) 2011; 2
ref_35
ref_34
ref_32
ref_31
Lundberg (ref_44) 2020; 2
Pedregosa (ref_47) 2011; 12
Moghimi (ref_27) 2016; 53
Akiyama (ref_36) 2017; 69
ref_39
ref_38
ref_37
Jain (ref_30) 2018; 68
Raschka (ref_43) 2018; 3
Lundberg (ref_45) 2018; 2
ref_46
Ndichu (ref_17) 2020; 5
Kuyama (ref_24) 2016; 5
ref_41
ref_40
ref_1
ref_2
Kursa (ref_52) 2010; 36
ref_49
Han (ref_42) 2004; 8
ref_48
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_9
– ident: ref_21
  doi: 10.1007/978-3-319-67837-5_17
– ident: ref_49
– ident: ref_26
– ident: ref_51
– ident: ref_39
– ident: ref_32
  doi: 10.1145/2382196.2382267
– ident: ref_28
  doi: 10.1109/ICPR.2018.8546262
– ident: ref_35
– ident: ref_15
  doi: 10.1109/IJCNN.2018.8489414
– ident: ref_18
  doi: 10.1145/1651309.1651317
– ident: ref_23
– ident: ref_8
– ident: ref_48
– ident: ref_10
– volume: 84
  start-page: 1
  year: 2019
  ident: ref_16
  article-title: A machine learning approach to detection of JavaScript-based attacks using AST features and paragraph vectors
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.105721
– volume: 3
  start-page: 638
  year: 2018
  ident: ref_43
  article-title: MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00638
– volume: 2
  start-page: 749
  year: 2018
  ident: ref_45
  article-title: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0304-0
– volume: 2
  start-page: 1
  year: 2011
  ident: ref_12
  article-title: Learning to Detect Malicious URLs
  publication-title: ACM Trans. Intell. Syst. Technol.
– ident: ref_41
– volume: 5
  start-page: 184
  year: 2020
  ident: ref_17
  article-title: Deobfuscation, Unpacking, and Decoding of Obfuscated Malicious JavaScript for Machine Learning Models Detection Performance Improvement
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2020.0026
– ident: ref_13
– volume: 36
  start-page: 1
  year: 2010
  ident: ref_52
  article-title: Feature Selection with the Boruta Package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
– volume: 15
  start-page: 99
  year: 2014
  ident: ref_33
  article-title: Detecting click fraud in online advertising: A data mining approach
  publication-title: J. Mach. Learn. Res.
– ident: ref_38
– volume: 68
  start-page: 687
  year: 2018
  ident: ref_30
  article-title: Towards detection of phishing websites on client-side using machine learning based approach
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-017-0414-0
– ident: ref_50
  doi: 10.1145/2939672.2939785
– ident: ref_14
  doi: 10.1145/1553374.1553462
– ident: ref_20
– ident: ref_7
– ident: ref_31
  doi: 10.1109/ACSAC.2009.41
– volume: 69
  start-page: 155
  year: 2017
  ident: ref_36
  article-title: Analyzing the ecosystem of malicious URL redirection through longitudinal observation from honeypots
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2017.01.003
– ident: ref_11
– volume: 16
  start-page: 1
  year: 2014
  ident: ref_3
  article-title: Exposure: A Passive DNS Analysis Service to Detect and Report Malicious Domains
  publication-title: Assoc. Comput. Mach. Trans. Inf. Syst. Secur.
  doi: 10.1145/2584679
– ident: ref_40
– ident: ref_37
– volume: 11
  start-page: 458
  year: 2014
  ident: ref_25
  article-title: Phishstorm: Detecting phishing with streaming analytics
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2014.2377295
– ident: ref_4
  doi: 10.1109/SPIN.2015.7095337
– ident: ref_34
  doi: 10.1007/978-3-319-11212-1_24
– volume: 8
  start-page: 53
  year: 2004
  ident: ref_42
  article-title: Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/B:DAMI.0000005258.31418.83
– ident: ref_6
– ident: ref_2
– ident: ref_46
– volume: 2
  start-page: 2522
  year: 2020
  ident: ref_44
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_47
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_1
  doi: 10.1109/IACS.2017.7921994
– ident: ref_5
  doi: 10.1145/3231053.3231082
– ident: ref_29
  doi: 10.1109/BigData.2018.8622547
– volume: 53
  start-page: 231
  year: 2016
  ident: ref_27
  article-title: New rule-based phishing detection method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.01.028
– volume: 5
  start-page: 166
  year: 2016
  ident: ref_24
  article-title: Method for detecting a malicious domain by using only well known information
  publication-title: Int. J. Cyber-Secur. Digit. Forensics
  doi: 10.17781/P002212
– ident: ref_19
– ident: ref_22
SSID ssj0000913810
Score 2.2394226
Snippet Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to perpetrate malicious activities on the Internet are rampant and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 60
SubjectTerms Decision trees
Feature selection
Machine learning
Shapley additive explanations
Subject specialists
tree ensemble methods
URLs
web-based attacks
Websites
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5B6KEcKNBWhJf2wIFWsmpvJrb3hJISxIUoAqpys7wPIyTqQGz4_cxsNgGpVS9c7TmsPTvv3e8DOCL7cknZjyMKvXmEiY7J5rSKSpVoHafW5jgnm8jG4_zmRk1Cw60JxyoXPtE7ajs13CP_QZl-LhkbJjt5eIyYNYqnq4FCYxXWGKkMO7A2HI0nl8suC6Ne5kk8v5jXo_qe58IJT4BjD0r5Goo8Yv9fDtlHmbNP713fJmyE_FIM5htiC1ZcvQ3rb1AHt2Er2HMjjgPo9LfPMDl1PE4gAfHb6WhIwc2KQdvyFXzBzVpxdT6YiLK24nrmnBjVjfuj75248KcxnQhArbfiwnNSN1_g19no-ud5FNgWIoMZthHVGcaksUWnYtRoUq17ykhnK9On3Faljmo_FSsqcKTNZGV6pSopu5FVYqlmwt5X6NTT2u2AwNSSWInsaZF2Qo5YSZNSdWn6Ep3swvfFjy9MgCJnRoz7gkoS1lLxRktdOFoKP8wROP4tNmQNLkUYNts_mM5ui2CFhUdLcypFhUwCbzV9XJpVlBSpTGqZdWF_odwi2HJTvGp29_-v9-Cj5MsRvkGzD5129uQO4IN5bu-a2WHYmi_WHulz
  priority: 102
  providerName: ProQuest
Title Detecting Web-Based Attacks with SHAP and Tree Ensemble Machine Learning Methods
URI https://www.proquest.com/docview/2618213117
https://doaj.org/article/12102e964945465dbdfc67f190972b27
Volume 12
WOSCitedRecordID wos000751036600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6ketCD2KpYrWUPPagQTLbbJHtstaUeWoJWrKeQfUSEGqWJ_n5nN7EWFLx4TBhImMfOfLs73wB0ML60l_RcB1Nv6DBPuBhzgjsJ94RwfaVCVg6bCKbTcD7n0dqoL3MnrKQHLhV3aQmuNPcZZ2ZutxIqlX6QYh7jARXU9pFj1bMGpuwazD1DXVU25HUR15vzYM-c_LqWjPI7BVmm_h8Lsc0uoz3YrcpC0i9_pw4bOmvAzhpZYAPqVRjm5Kziij7fh-ham1MAFCAPWjgDzEmK9IvCdM4Ts8dK7sb9iCSZIrOl1mSY5fpFLDSZ2EuUmlT8qk9kYkdJ5wdwPxrOrsZONSTBkSxghYPwQErfVUxzlwkmfSG6XFKNauphScp9jZANlYW4hKqAprKb8ASLEpp6CqEO6x5CLXvN9BEQ5isUS5hZIBkaMGQspdJHA8geZZo24eJLb7GsGMTNIItFjEjCKDleU3ITOivht5I443exgTHASsSwXdsX6ANx5QPxXz7QhNaX-eIqBPMYoWFIDZlQcPwf3ziBbWo6H-zuSwtqxfJdn8KW_Cie82UbNgfDaXTbtl6IT9HNJHr8BAlb3CE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFH_UVlAPaqvS1apzqKBCcDKZTTIHkV27ZUu7y6Ir9pZmPlIKNVs3UfGf8m_0vWSyLSjeevCaPAKT-b3vmd8D2EX9cmHe5wG63jSQoeaoc1oFuQq15rG1qWyHTSTTaXp8rGZr8Ku7C0PHKjub2BhquzBUI3-DkX4qiBsmeXfxNaCpUdRd7UZotLA4dD9_YMpWvT3Yw_19IcT-aP5-HPipAoGRiawDjKeNibmVTnGppYm1jpQRzhamjzGcih3mOIpjLt4XNhGFiXKVoxcXRWgxN5ARfvcGbMhIJqhXG8PRdPZhVdUhls005O1FwChSnPrQIXWceUOCeen6mgkBfziAxqvt3_vf_sd9uOvjZzZoAb8Ja67cgjtXWBW3YNPbq4q99KTarx7AbM9RuwQF2GengyE6b8sGdU0UA4yK0ezjeDBjeWnZfOkcG5WV-6LPHZs0p00d80S0p2zSzNyuHsKna1nnI1gvF6XbBiZji2K5JE8iEemplIUwMWbPpi-kEz143W10ZjzVOk38OM8w5SJUZFdQ0YPdlfBFyzDyd7EhIWYlQrTgzYPF8jTzViZr2OCciqWSNOTealxcnBQY9KlEaJH0YKcDU-ZtVZVdIunxv18_h1vj-eQoOzqYHj6B24IugjTFqB1Yr5ff3FO4ab7XZ9XymVcLBifXjbzf1fJFXw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFH_UVkQPaqviatU5VFAhdDKZTDIHka3bpUvdJWDF9hQzHylCzdZNtPRf61_XN8lkW1C89eA1eQQm83vfM78HsIX6ZcMipgG63jTgoaKoc0oGhQyVosKYlHfDJpLZLD08lNkKXPR3Ydyxyt4mtobazLWrkW9jpJ8yxw2TbJf-WEQ2Gn84_Rm4CVKu09qP0-ggsm_PzzB9q99PRrjXrxkb7x583Av8hIFA84Q3AcbWWgtquJWUK66FUpHUzJpSxxjPSWEx35EU8_KYmYSVOipkgR6dlaHBPIFH-N1bsIYhOUcdW8sm0-xoWeFxjJtpSLtLgVEkqetJh677TFtCzCs32E4L-MMZtB5u_OB__jcP4b6Pq8mwU4R1WLHVBty7xra4AevejtXkjSfbfvsIspF1bRQUIF-tCnbQqRsybBpHPUBckZp83htmpKgMOVhYS3ar2v5QJ5ZM21OolniC2mMybWdx14_hy42s8wmsVvPKPgXChUGxgjsPw1EDUs5LpgVm1Tpm3LIBvOs3Pdeegt1NAjnJMRVzCMmvIWQAW0vh04555O9iOw49SxFHF94-mC-Oc2998pYlzkrBJY-5iI3CxYmkxGBQJkyxZACbPbByb8Pq_ApVz_79-hXcQbjlnyaz_edwl7n7IW2NahNWm8Uv-wJu69_N93rx0msIgW83DbxLbrJOUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Web-Based+Attacks+with+SHAP+and+Tree+Ensemble+Machine+Learning+Methods&rft.jtitle=Applied+sciences&rft.au=Samuel+Ndichu&rft.au=Sangwook+Kim&rft.au=Seiichi+Ozawa&rft.au=Tao+Ban&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=1&rft.spage=60&rft_id=info:doi/10.3390%2Fapp12010060&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_12102e964945465dbdfc67f190972b27
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon