Multi-task semantic segmentation of CT images for COVID-19 infections using DeepLabV3+ based on dilated residual network

COVID-19 is a deadly outbreak that has been declared a public health emergency of international concern. The massive damage of the disease to public health, social life, and the global economy increases the importance of alternative rapid diagnosis and follow-up methods. RT-PCR assay, which is consi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Australasian physical & engineering sciences in medicine Ročník 45; číslo 2; s. 443 - 455
Hlavný autor: Polat, Hasan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.06.2022
Springer Nature B.V
Predmet:
ISSN:2662-4729, 0158-9938, 2662-4737, 2662-4737, 1879-5447
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract COVID-19 is a deadly outbreak that has been declared a public health emergency of international concern. The massive damage of the disease to public health, social life, and the global economy increases the importance of alternative rapid diagnosis and follow-up methods. RT-PCR assay, which is considered the gold standard in diagnosing the disease, is complicated, expensive, time-consuming, prone to contamination, and may give false-negative results. These drawbacks reinforce the trend toward medical imaging techniques such as computed tomography (CT). Typical visual signs such as ground-glass opacity (GGO) and consolidation of CT images allow for quantitative assessment of the disease. In this context, it is aimed at the segmentation of the infected lung CT images with the residual network-based DeepLabV3+, which is a redesigned convolutional neural network (CNN) model. In order to evaluate the robustness of the proposed model, three different segmentation tasks as Task-1, Task-2, and Task-3 were applied. Task-1 represents binary segmentation as lung (infected and non-infected tissues) and background. Task-2 represents multi-class segmentation as lung (non-infected tissue), COVID (GGO, consolidation, and pleural effusion irregularities are gathered under a single roof), and background. Finally, the segmentation in which each lesion type is considered as a separate class is defined as Task-3. COVID-19 imaging data for each segmentation task consists of 100 CT single-slice scans from over 40 diagnosed patients. The performance of the model was evaluated using Dice similarity coefficient (DSC), intersection over union (IoU), sensitivity, specificity, and accuracy by performing five-fold cross-validation. The average DSC performance for three different segmentation tasks was obtained as 0.98, 0.858, and 0.616, respectively. The experimental results demonstrate that the proposed method has robust performance and great potential in evaluating COVID-19 infection.
AbstractList COVID-19 is a deadly outbreak that has been declared a public health emergency of international concern. The massive damage of the disease to public health, social life, and the global economy increases the importance of alternative rapid diagnosis and follow-up methods. RT-PCR assay, which is considered the gold standard in diagnosing the disease, is complicated, expensive, time-consuming, prone to contamination, and may give false-negative results. These drawbacks reinforce the trend toward medical imaging techniques such as computed tomography (CT). Typical visual signs such as ground-glass opacity (GGO) and consolidation of CT images allow for quantitative assessment of the disease. In this context, it is aimed at the segmentation of the infected lung CT images with the residual network-based DeepLabV3+, which is a redesigned convolutional neural network (CNN) model. In order to evaluate the robustness of the proposed model, three different segmentation tasks as Task-1, Task-2, and Task-3 were applied. Task-1 represents binary segmentation as lung (infected and non-infected tissues) and background. Task-2 represents multi-class segmentation as lung (non-infected tissue), COVID (GGO, consolidation, and pleural effusion irregularities are gathered under a single roof), and background. Finally, the segmentation in which each lesion type is considered as a separate class is defined as Task-3. COVID-19 imaging data for each segmentation task consists of 100 CT single-slice scans from over 40 diagnosed patients. The performance of the model was evaluated using Dice similarity coefficient (DSC), intersection over union (IoU), sensitivity, specificity, and accuracy by performing five-fold cross-validation. The average DSC performance for three different segmentation tasks was obtained as 0.98, 0.858, and 0.616, respectively. The experimental results demonstrate that the proposed method has robust performance and great potential in evaluating COVID-19 infection.
COVID-19 is a deadly outbreak that has been declared a public health emergency of international concern. The massive damage of the disease to public health, social life, and the global economy increases the importance of alternative rapid diagnosis and follow-up methods. RT-PCR assay, which is considered the gold standard in diagnosing the disease, is complicated, expensive, time-consuming, prone to contamination, and may give false-negative results. These drawbacks reinforce the trend toward medical imaging techniques such as computed tomography (CT). Typical visual signs such as ground-glass opacity (GGO) and consolidation of CT images allow for quantitative assessment of the disease. In this context, it is aimed at the segmentation of the infected lung CT images with the residual network-based DeepLabV3+, which is a redesigned convolutional neural network (CNN) model. In order to evaluate the robustness of the proposed model, three different segmentation tasks as Task-1, Task-2, and Task-3 were applied. Task-1 represents binary segmentation as lung (infected and non-infected tissues) and background. Task-2 represents multi-class segmentation as lung (non-infected tissue), COVID (GGO, consolidation, and pleural effusion irregularities are gathered under a single roof), and background. Finally, the segmentation in which each lesion type is considered as a separate class is defined as Task-3. COVID-19 imaging data for each segmentation task consists of 100 CT single-slice scans from over 40 diagnosed patients. The performance of the model was evaluated using Dice similarity coefficient (DSC), intersection over union (IoU), sensitivity, specificity, and accuracy by performing five-fold cross-validation. The average DSC performance for three different segmentation tasks was obtained as 0.98, 0.858, and 0.616, respectively. The experimental results demonstrate that the proposed method has robust performance and great potential in evaluating COVID-19 infection.COVID-19 is a deadly outbreak that has been declared a public health emergency of international concern. The massive damage of the disease to public health, social life, and the global economy increases the importance of alternative rapid diagnosis and follow-up methods. RT-PCR assay, which is considered the gold standard in diagnosing the disease, is complicated, expensive, time-consuming, prone to contamination, and may give false-negative results. These drawbacks reinforce the trend toward medical imaging techniques such as computed tomography (CT). Typical visual signs such as ground-glass opacity (GGO) and consolidation of CT images allow for quantitative assessment of the disease. In this context, it is aimed at the segmentation of the infected lung CT images with the residual network-based DeepLabV3+, which is a redesigned convolutional neural network (CNN) model. In order to evaluate the robustness of the proposed model, three different segmentation tasks as Task-1, Task-2, and Task-3 were applied. Task-1 represents binary segmentation as lung (infected and non-infected tissues) and background. Task-2 represents multi-class segmentation as lung (non-infected tissue), COVID (GGO, consolidation, and pleural effusion irregularities are gathered under a single roof), and background. Finally, the segmentation in which each lesion type is considered as a separate class is defined as Task-3. COVID-19 imaging data for each segmentation task consists of 100 CT single-slice scans from over 40 diagnosed patients. The performance of the model was evaluated using Dice similarity coefficient (DSC), intersection over union (IoU), sensitivity, specificity, and accuracy by performing five-fold cross-validation. The average DSC performance for three different segmentation tasks was obtained as 0.98, 0.858, and 0.616, respectively. The experimental results demonstrate that the proposed method has robust performance and great potential in evaluating COVID-19 infection.
Author Polat, Hasan
Author_xml – sequence: 1
  givenname: Hasan
  orcidid: 0000-0001-5535-4832
  surname: Polat
  fullname: Polat, Hasan
  email: hasanpolat@bingol.edu.tr
  organization: Department of Electrical and Energy, Bingol University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35286619$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1UREvpH2CBLLFBQgE_EifeIFVTHpUGdVO6te44N8FtYg92wsC_xyVlgC668pX8neN7fJ6SAx88EvKcszecsfpt4lKUqmBCFIxzzordI3IklBJFWcv6YD8LfUhOUrpmjImK81pVT8ihrESjFNdH5MfneZhcMUG6oQlH8JOzeehH9BNMLngaOrq6pG6EHhPtQqSri6vzs4Jr6nyH9pZJdE7O9_QMcbuGzZV8TTeQsKVZ3roBpjxGTK6dYaAep12IN8_I4w6GhCd35zH58uH95epTsb74eL46XRe2rMupqDvJdKdraJlqdVnKqhJtZ6VE3jaaA7f5mgG0m0oBYFkz5NJWUoBqpNIgj8m7xXc7b0Zsbc4VYTDbmBPFnyaAM__fePfV9OG7ye6aK50NXt0ZxPBtxjSZ0SWLwwAew5yMUFILUbOKZ_TlPfQ6zNHneJlquMrfXspMvfh3o_0qf0rJgFgAG0NKEbs9wpm5Ld8s5ZtcvvldvtllUXNPZN3SYE7lhoelcpGm_I7vMf5d-wHVL5MIw9s
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106691
crossref_primary_10_1038_s41597_025_04709_2
crossref_primary_10_1007_s42452_024_06264_8
crossref_primary_10_1109_ACCESS_2024_3487784
crossref_primary_10_1016_j_bspc_2024_106866
crossref_primary_10_1038_s41598_024_63538_2
crossref_primary_10_1016_j_bspc_2024_107234
crossref_primary_10_3390_diagnostics15030248
crossref_primary_10_1016_j_dsp_2025_105477
crossref_primary_10_1007_s00521_024_10809_8
crossref_primary_10_1007_s11042_025_20763_9
crossref_primary_10_1002_acm2_14553
crossref_primary_10_1007_s12008_025_02360_0
crossref_primary_10_1016_j_bspc_2023_105824
crossref_primary_10_1007_s13246_023_01250_7
crossref_primary_10_1177_20552076231225853
crossref_primary_10_1016_j_compbiomed_2025_110437
Cites_doi 10.1016/j.measurement.2020.108288
10.1007/978-3-319-24574-4_28
10.1007/978-3-319-10578-9_23
10.1016/j.procs.2021.01.025
10.1016/j.knosys.2021.106849
10.1002/mp.14676
10.1016/j.patrec.2020.07.029
10.33889/IJMEMS.2020.5.4.052
10.1016/j.bbe.2021.05.013
10.1016/j.compbiomed.2020.104037
10.1109/TPAMI.2016.2572683
10.1016/j.bbe.2021.04.006
10.1016/j.compbiomed.2020.103805
10.1016/j.bspc.2021.102987
10.1016/j.iot.2021.100377
10.1016/j.ibmed.2020.100013
10.1016/j.eng.2020.04.010
10.3390/s20113183
10.1186/s12880-020-00529-5
10.1109/TPAMI.2016.2644615
10.1109/ACCESS.2021.3067047
10.1016/j.jrid.2020.04.001
10.1002/ima.22558
10.1109/JAS.2020.1003393
10.1016/j.clinimag.2021.01.019
10.1007/978-3-030-01234-2_49
10.1016/j.patcog.2020.10774
10.1145/3453892.3461322
10.1109/cvprw.2009.5206848
10.31590/ejosat.819409
10.1155/2021/9999368
10.1109/TENCON.2019.8929376
10.1016/j.media.2020.101794
10.1016/j.imu.2021.100681
10.5281/ZENODO.3757476
10.1016/j.cmpb.2020.105532
10.1111/exsy.12742
10.1109/CVPR.2016.90
10.1155/2021/8828404
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2022
2022. Australasian College of Physical Scientists and Engineers in Medicine.
Australasian College of Physical Scientists and Engineers in Medicine 2022.
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2022
– notice: 2022. Australasian College of Physical Scientists and Engineers in Medicine.
– notice: Australasian College of Physical Scientists and Engineers in Medicine 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s13246-022-01110-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

ProQuest Central Student
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 2662-4737
1879-5447
EndPage 455
ExternalDocumentID PMC8919169
35286619
10_1007_s13246_022_01110_w
Genre Journal Article
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AANZL
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABDZT
ABECU
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACMDZ
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AFLOW
AFQWF
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
BGNMA
DDRTE
DNIVK
DPUIP
EBLON
EBS
EMB
EMOBN
FERAY
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SV3
UOJIU
UTJUX
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
CGR
CUY
CVF
ECM
EIF
NPM
..I
06D
0VY
1N0
203
23N
29~
2KG
30V
36B
3V.
4.4
408
40D
53G
5GY
67N
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
8WZ
96X
A6W
AAIAL
AAJKR
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAZMS
ABFTV
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABUWG
ABXPI
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADZKW
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFKRA
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
AZQEC
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CSCUP
DWQXO
EIOEI
EN4
ESBYG
FRRFC
FYJPI
FYUFA
GGRSB
GJIRD
GNUQQ
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
ITM
J0Z
JBSCW
K9.
KTM
M1P
M2P
O9-
O93
O9I
O9J
P2P
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q9U
R9I
RLLFE
S27
S3A
S3B
SBL
SHX
SISQX
SPISZ
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UKHRP
UZXMN
VC2
VFIZW
W48
WK8
WOQ
Z45
ZOVNA
~A9
7X8
5PM
ID FETCH-LOGICAL-c474t-7f309f97ad06d9443552dfc33e1d891a1c09f0aadb56aae470e13c532a68369a3
IEDL.DBID RSV
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768620200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2662-4729
0158-9938
2662-4737
IngestDate Tue Nov 04 02:04:02 EST 2025
Thu Oct 02 11:54:23 EDT 2025
Wed Nov 05 04:11:18 EST 2025
Thu Apr 03 07:04:34 EDT 2025
Tue Nov 18 22:35:36 EST 2025
Sat Nov 29 04:09:58 EST 2025
Fri Feb 21 02:46:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Image segmentation
Coronavirus (COVID-19)
Computed tomography images
Image classification
Language English
License 2022. Australasian College of Physical Scientists and Engineers in Medicine.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-7f309f97ad06d9443552dfc33e1d891a1c09f0aadb56aae470e13c532a68369a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5535-4832
OpenAccessLink http://dx.doi.org/10.1007/s13246-022-01110-w
PMID 35286619
PQID 2681635243
PQPubID 33672
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8919169
proquest_miscellaneous_2639227051
proquest_journals_2681635243
pubmed_primary_35286619
crossref_primary_10_1007_s13246_022_01110_w
crossref_citationtrail_10_1007_s13246_022_01110_w
springer_journals_10_1007_s13246_022_01110_w
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Dordrecht
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Phys Eng Sci Med
PublicationTitleAlternate Phys Eng Sci Med
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Benameur, Mahmoudi, Zaid (CR12) 2021; 76
Baheti, Innani, Gajre, Talbar (CR14) 2020; 138
Sethy, Behera, Ratha, Biswas (CR16) 2020; 5
Kassania, Kassanib, Wesolowskic (CR20) 2021; 41
Badrinarayanan, Kendall, Cipolla (CR26) 2017; 39
CR17
CR39
CR36
CR35
Khan, Yahya, Alsaih (CR43) 2020; 20
Chen, Zhu, Papandreou (CR15) 2018; 11211 LNCS
CR34
CR33
Polat, Özerdem, Ekici, Akpolat (CR18) 2021; 31
CR32
Ronneberger, Fischer, Brox (CR25) 2015; 9351
CR31
CR30
Saood, Hatem (CR13) 2021; 21
Amyar, Modzelewski, Li, Ruan (CR11) 2020; 126
Sarwinda, Paradisa, Bustamam, Anggia (CR37) 2021; 179
Pei, Yang, Liu, Lu (CR42) 2021; 9
CR2
Toğaçar, Ergen, Cömert (CR1) 2020
Desai, Pareek, Lungren (CR9) 2020; 3–4
CR5
CR7
Mishra, Singh, Joshi (CR8) 2021; 41
CR29
Li (CR10) 2020; 7
CR28
Ohata, Bezerra, Chagas, Das (CR21) 2021; 8
Shelhamer, Long, Darrell (CR27) 2017; 39
Loey, Manogaran, Taha, Khalifa (CR4) 2021; 167
Rohila, Gupta, Kaul, Sharma (CR3) 2021; 14
CR23
CR22
He, Zhang, Ren, Sun (CR38) 2014; 8691 LNCS
Ma, Wang, An (CR41) 2021; 48
CR44
Xu, Jiang, Ma (CR6) 2020; 6
Li, Yang, Liang, Wu (CR24) 2021; 218
CR40
JavadiMoghaddam, Gholamalinejad (CR19) 2021; 70
A Saood (1110_CR13) 2021; 21
J Ma (1110_CR41) 2021; 48
1110_CR33
1110_CR32
1110_CR31
SH Kassania (1110_CR20) 2021; 41
1110_CR30
H Polat (1110_CR18) 2021; 31
LC Chen (1110_CR15) 2018; 11211 LNCS
X Xu (1110_CR6) 2020; 6
M Loey (1110_CR4) 2021; 167
1110_CR17
1110_CR39
1110_CR36
E Shelhamer (1110_CR27) 2017; 39
1110_CR35
1110_CR34
V Badrinarayanan (1110_CR26) 2017; 39
VS Rohila (1110_CR3) 2021; 14
M Toğaçar (1110_CR1) 2020
SM JavadiMoghaddam (1110_CR19) 2021; 70
1110_CR22
1110_CR44
N Benameur (1110_CR12) 2021; 76
1110_CR40
Z Khan (1110_CR43) 2020; 20
SB Desai (1110_CR9) 2020; 3–4
A Amyar (1110_CR11) 2020; 126
C Li (1110_CR24) 2021; 218
1110_CR7
1110_CR29
K He (1110_CR38) 2014; 8691 LNCS
B Baheti (1110_CR14) 2020; 138
O Ronneberger (1110_CR25) 2015; 9351
1110_CR28
HY Pei (1110_CR42) 2021; 9
PK Sethy (1110_CR16) 2020; 5
1110_CR23
1110_CR2
D Sarwinda (1110_CR37) 2021; 179
M Li (1110_CR10) 2020; 7
EF Ohata (1110_CR21) 2021; 8
NK Mishra (1110_CR8) 2021; 41
1110_CR5
References_xml – volume: 167
  start-page: 108288
  year: 2021
  ident: CR4
  article-title: A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2020.108288
– ident: CR22
– volume: 9351
  start-page: 234
  year: 2015
  end-page: 241
  ident: CR25
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
  doi: 10.1007/978-3-319-24574-4_28
– ident: CR39
– ident: CR2
– volume: 8691 LNCS
  start-page: 346
  year: 2014
  end-page: 361
  ident: CR38
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
  doi: 10.1007/978-3-319-10578-9_23
– volume: 179
  start-page: 423
  year: 2021
  end-page: 431
  ident: CR37
  article-title: Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2021.01.025
– ident: CR30
– ident: CR33
– volume: 218
  start-page: 106849
  year: 2021
  ident: CR24
  article-title: Transfer learning for establishment of recognition of COVID-19 on CT imaging using small-sized training datasets[Formula presented]
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2021.106849
– ident: CR35
– volume: 48
  start-page: 1197
  year: 2021
  end-page: 1210
  ident: CR41
  article-title: Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation
  publication-title: Med Phys
  doi: 10.1002/mp.14676
– ident: CR29
– volume: 138
  start-page: 223
  year: 2020
  end-page: 229
  ident: CR14
  article-title: Semantic scene segmentation in unstructured environment with modified DeepLabV3+
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2020.07.029
– volume: 5
  start-page: 643
  year: 2020
  end-page: 651
  ident: CR16
  article-title: Detection of coronavirus disease (COVID-19) based on deep features and support vector machine
  publication-title: Int J Math Eng Manag Sci
  doi: 10.33889/IJMEMS.2020.5.4.052
– volume: 41
  start-page: 867
  year: 2021
  end-page: 879
  ident: CR20
  article-title: Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning Based Approach
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2021.05.013
– ident: CR40
– volume: 126
  start-page: 104037
  year: 2020
  ident: CR11
  article-title: Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.104037
– ident: CR23
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: CR27
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2572683
– volume: 41
  start-page: 572
  year: 2021
  end-page: 588
  ident: CR8
  article-title: Automated detection of COVID-19 from CT scan using convolutional neural network
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2021.04.006
– year: 2020
  ident: CR1
  article-title: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103805
– ident: CR44
– volume: 70
  start-page: 102987
  year: 2021
  ident: CR19
  article-title: A novel deep learning based method for COVID-19 detection from CT image
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102987
– volume: 14
  start-page: 100377
  year: 2021
  ident: CR3
  article-title: Deep learning assisted COVID-19 detection using full CT-scans
  publication-title: Internet of Things (Netherlands)
  doi: 10.1016/j.iot.2021.100377
– volume: 3–4
  start-page: 100013
  year: 2020
  ident: CR9
  article-title: Deep learning and its role in COVID-19 medical imaging
  publication-title: Intell Med
  doi: 10.1016/j.ibmed.2020.100013
– volume: 6
  start-page: 1122
  year: 2020
  end-page: 1129
  ident: CR6
  article-title: A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.04.010
– volume: 20
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR43
  article-title: Evaluation of deep neural networks for semantic segmentation of prostate in T2W MRI
  publication-title: Sens (Switzerland)
  doi: 10.3390/s20113183
– volume: 21
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR13
  article-title: COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-020-00529-5
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: CR26
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2644615
– ident: CR17
– volume: 9
  start-page: 47144
  year: 2021
  end-page: 47153
  ident: CR42
  article-title: MPS-net: Multi-point supervised network for ct image segmentation of covid-19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067047
– volume: 7
  start-page: 51
  year: 2020
  end-page: 54
  ident: CR10
  article-title: Chest CT features and their role in COVID-19
  publication-title: Radiol Infect Dis
  doi: 10.1016/j.jrid.2020.04.001
– ident: CR31
– volume: 31
  start-page: 509
  year: 2021
  end-page: 524
  ident: CR18
  article-title: Automatic detection and localization of COVID-19 pneumonia using axial computed tomography images and deep convolutional neural networks
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22558
– ident: CR32
– ident: CR34
– ident: CR36
– volume: 8
  start-page: 239
  year: 2021
  end-page: 248
  ident: CR21
  article-title: Automatic detection of COVID-19 infection using chest X-ray images through transfer learning
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2020.1003393
– ident: CR5
– ident: CR7
– volume: 76
  start-page: 6
  year: 2021
  end-page: 14
  ident: CR12
  article-title: SARS-CoV-2 diagnosis using medical imaging techniques and artificial intelligence: A review
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2021.01.019
– ident: CR28
– volume: 11211 LNCS
  start-page: 833
  year: 2018
  end-page: 851
  ident: CR15
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
  doi: 10.1007/978-3-030-01234-2_49
– volume: 167
  start-page: 108288
  year: 2021
  ident: 1110_CR4
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2020.108288
– ident: 1110_CR7
  doi: 10.1016/j.patcog.2020.10774
– volume: 41
  start-page: 572
  year: 2021
  ident: 1110_CR8
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2021.04.006
– volume: 7
  start-page: 51
  year: 2020
  ident: 1110_CR10
  publication-title: Radiol Infect Dis
  doi: 10.1016/j.jrid.2020.04.001
– volume: 70
  start-page: 102987
  year: 2021
  ident: 1110_CR19
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102987
– volume: 11211 LNCS
  start-page: 833
  year: 2018
  ident: 1110_CR15
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
  doi: 10.1007/978-3-030-01234-2_49
– volume: 41
  start-page: 867
  year: 2021
  ident: 1110_CR20
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2021.05.013
– ident: 1110_CR30
  doi: 10.1145/3453892.3461322
– ident: 1110_CR34
  doi: 10.1109/cvprw.2009.5206848
– volume: 39
  start-page: 640
  year: 2017
  ident: 1110_CR27
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2572683
– volume: 48
  start-page: 1197
  year: 2021
  ident: 1110_CR41
  publication-title: Med Phys
  doi: 10.1002/mp.14676
– year: 2020
  ident: 1110_CR1
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103805
– volume: 126
  start-page: 104037
  year: 2020
  ident: 1110_CR11
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.104037
– volume: 76
  start-page: 6
  year: 2021
  ident: 1110_CR12
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2021.01.019
– ident: 1110_CR44
  doi: 10.31590/ejosat.819409
– ident: 1110_CR33
– volume: 9351
  start-page: 234
  year: 2015
  ident: 1110_CR25
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
  doi: 10.1007/978-3-319-24574-4_28
– ident: 1110_CR5
– volume: 8691 LNCS
  start-page: 346
  year: 2014
  ident: 1110_CR38
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
  doi: 10.1007/978-3-319-10578-9_23
– ident: 1110_CR28
  doi: 10.1155/2021/9999368
– ident: 1110_CR39
– ident: 1110_CR35
  doi: 10.1109/TENCON.2019.8929376
– volume: 31
  start-page: 509
  year: 2021
  ident: 1110_CR18
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22558
– volume: 218
  start-page: 106849
  year: 2021
  ident: 1110_CR24
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2021.106849
– volume: 138
  start-page: 223
  year: 2020
  ident: 1110_CR14
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2020.07.029
– volume: 39
  start-page: 2481
  year: 2017
  ident: 1110_CR26
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2644615
– ident: 1110_CR22
  doi: 10.1016/j.media.2020.101794
– volume: 14
  start-page: 100377
  year: 2021
  ident: 1110_CR3
  publication-title: Internet of Things (Netherlands)
  doi: 10.1016/j.iot.2021.100377
– ident: 1110_CR32
  doi: 10.1016/j.imu.2021.100681
– volume: 179
  start-page: 423
  year: 2021
  ident: 1110_CR37
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2021.01.025
– volume: 5
  start-page: 643
  year: 2020
  ident: 1110_CR16
  publication-title: Int J Math Eng Manag Sci
  doi: 10.33889/IJMEMS.2020.5.4.052
– volume: 6
  start-page: 1122
  year: 2020
  ident: 1110_CR6
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.04.010
– ident: 1110_CR40
  doi: 10.5281/ZENODO.3757476
– ident: 1110_CR2
  doi: 10.1016/j.cmpb.2020.105532
– volume: 3–4
  start-page: 100013
  year: 2020
  ident: 1110_CR9
  publication-title: Intell Med
  doi: 10.1016/j.ibmed.2020.100013
– volume: 8
  start-page: 239
  year: 2021
  ident: 1110_CR21
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2020.1003393
– volume: 20
  start-page: 1
  year: 2020
  ident: 1110_CR43
  publication-title: Sens (Switzerland)
  doi: 10.3390/s20113183
– volume: 9
  start-page: 47144
  year: 2021
  ident: 1110_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067047
– ident: 1110_CR31
  doi: 10.1111/exsy.12742
– ident: 1110_CR36
  doi: 10.1109/CVPR.2016.90
– ident: 1110_CR29
– ident: 1110_CR17
– volume: 21
  start-page: 1
  year: 2021
  ident: 1110_CR13
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-020-00529-5
– ident: 1110_CR23
  doi: 10.1155/2021/8828404
SSID ssj0002511765
ssj0024368
Score 2.41564
Snippet COVID-19 is a deadly outbreak that has been declared a public health emergency of international concern. The massive damage of the disease to public health,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 443
SubjectTerms Artificial neural networks
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Computed tomography
Consolidation
Coronaviruses
COVID-19
COVID-19 - diagnostic imaging
Global economy
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging techniques
Lungs
Medical and Radiation Physics
Medical imaging
Neural Networks, Computer
Public health
Scientific Paper
Semantic segmentation
Semantics
Tomography, X-Ray Computed - methods
Viral diseases
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QBCPMorUJCRuBWrSZw48QmhLRVIpfRQqt4iv1JWdLPLekv5-YwdZ7dLRS-cbSdxZsbzaTzzDcBbZhHUa5XRWnIfrRIVFbUqqGpTkyqL9qcDiet-dXBQn5yIwxhwczGtcjgTw0FtptrHyHdyXiN0KPOCvZ_9pL5rlL9djS00bsItRDaZT-n6kh9e4toLpXDo8dCoBatj0UxfOodIwqff-sQEdIH0Yt0xXUGbV5Mm_7o5DQ5p78H_buUh3I9QlHzodecR3LDdJty9RFC4Cff6qB7pi5Uew-9Qr0sX0v0gzk5QKjjo7OkkVjB1ZNqS0REZT_CYcgQBMRl9Pf68SzNBhrSvzhGfbH9Kdq2d7Ut1zLaJ96WG4HIzPkPwa8jculAlRro-Tf0JfNv7eDT6RGPvBqqLqljQqmWpaEUlTcqNKBCUlblpNWM2M7XIZKZxOJXSqJJLaYsqtRnTJctRZRgXkj2FjW7a2edAtEjLWvG6zbgqrFSS40MsPk1ZXipWJJANgmt0JDb3_TXOmhUlsxd2g8JugrCbiwS2l2tmPa3HtbO3BkE20cRds5JiAm-Ww2ic_sZFdnZ67ucg_MwrPPgSeNarz_J1nlYHwZFIoFpTrOUET_y9PtKNvwcCcPyBiOpx5btBBVef9e9dvLh-Fy_hTh7MwUeYtmBjMT-3r-C2_rUYu_nrYFh_AE09KV4
  priority: 102
  providerName: ProQuest
Title Multi-task semantic segmentation of CT images for COVID-19 infections using DeepLabV3+ based on dilated residual network
URI https://link.springer.com/article/10.1007/s13246-022-01110-w
https://www.ncbi.nlm.nih.gov/pubmed/35286619
https://www.proquest.com/docview/2681635243
https://www.proquest.com/docview/2639227051
https://pubmed.ncbi.nlm.nih.gov/PMC8919169
Volume 45
WOSCitedRecordID wos000768620200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 2662-4737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511765
  issn: 2662-4729
  databaseCode: RSV
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQd4GJ9jgVEZibdhKYmdOH6EbhNIo1RjVBUvke04I2JNp6Vj_Pmc3SSlDJDgJUrksxOfz75f7PsAeMksgnqjI5qp1O1WSUFlpjnVZViE2uL8Mz6I67EYjbLpVI5bp7Cms3bvjiT9Sr1ydkPd7wxmnSkBKi16vQFbqO4yl7Dh5OOk31lxoFn4HJKofGLKET623jK_b2ZdI92AmTetJX85MvWa6Oje__XhPmy3yJO8XorKA7hl64dw96d4hI_gu3fHpQvVfCWNnSHTK4M3Z7PWQakm85IMT0k1w1WoIYh3yfDD5N0BjSTprLrqhjhb-jNyYO3FsdITtk-cqiwIVi-qc8S2BcF_fO8ERuqlFfpj-HR0eDp8S9vUDNRwwRdUlCyUpRSqCNNCcsRcSVyUhjEbFZmMVGSwOFSq0EmqlOUitBEzCYtRIlgqFduBzXpe210gRoZJptOsjFLNrdIqxUYstqZtmmjGA4i64clNG7fcpc84z1cRlx1Xc-Rq7rmaXwew39e5WEbt-Cv1XjfqeTuDmzxOM4SqScxZAC_6Ypx77kBF1XZ-5WgQXcYC17UAniyFpH-di5qD2EcGINbEpydwcb3XS-rqi4_vjQxE0I41X3VCtPqsP_fi6b-RP4M7sZdDt6G0B5uLyyv7HG6bb4uquRzAhpgKf80GsPXmcDQ-waf38Riv4-TzwM-4H96OIPA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwkQ4jIGFAYYCZ6GtSTOzQ8IoZZp1UrZQ5n2lvmWUbGmpeko_Cl-I8dO0q5M7G0PPPuS2PnO8Rf7nM8Ar5lBUq-kT1MR290qnlCeypDK3NOeNGh_yom49pJ-Pz064gdr8LvJhbFhlY1PdI5aj5XdI98J4hSpQxSE7P3kO7W3RtnT1eYKjQoW--bXHH_ZynfdDn7fN0Gw-3HQ3qP1rQJUhUk4o0nOPJ7zRGgv1jxEuhAFOleMGV-n3Be-wmJPCC2jWAgTJp7xmYpYgINhMRcM-70G10OrLGZDBYODc9p-LvUOV1h0IpyldZJOlaqHzMWG-9pACFxy6Xx1IbzAbi8Gaf51UusWwN17_9vU3Ye7NdUmHyrbeABrptiA2-cEGDfgTrVrSapkrIfw0-Uj05kov5HSjBB1WFiak1GdoVWQcU7aAzIcoRsuCRJ-0v582O1Qn5MmrK0oiU0mOCEdYyY9IQ_ZNrFcQRNsroenSO41mZrSZcGRogrD34QvVzIVj2C9GBfmCRDFvSiVcZr7sQyNkCLGTgz2Jk0cSRa2wG-AkqlauN3eH3KaLSWnLbgyBFfmwJXNW7C9aDOpZEsurb3VACerXViZLVHTgleLYnQ-9kRJFGZ8ZusgvQ4SdOwteFzBdfE4KxuE5I-3IFkB8qKCFTZfLSmGX53AOU4g_rVgy7cN5Jev9e9RPL18FC_h5t7gUy_rdfv7z-BW4EzR7qZtwfpsemaeww31YzYspy-cURM4vmpT-ANtn4Xs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VghAI8SivQAEjwalY3V3vyweEUEJE1CjkUKqql8WvLRHNJmRTAn-NX8fYu5s0VPTWA2c_Enu_GX-25xsDvGIGSb2SPk1FbE-reEJ5KkMqc0970qD9KZfEtZ8MBunhIR9uwO9GC2PDKhuf6By1nih7Rr4bxClShygI2W5eh0UMO9130-_UviBlb1qb5zQqiOyZXwvcvpVvex381q-DoPthv_2R1i8MUBUm4ZwmOfN4zhOhvVjzEKlDFOhcMWZ8nXJf-AqLPSG0jGIhTJh4xmcqYgEOjMVcMOz3ClxNcI9pwwmH0dGZPH9OhoerLToUztJasFPJ9pDF2NBfGxSByy9drC-K55ju-YDNv25t3WLYvfM_T-NduF1TcPK-spl7sGGKLbh5JjHjFtyqTjNJJdK6Dz-dTpnORfmNlGaMaMTC0hyPa-VWQSY5ae-T0Rjdc0lwI0Danw56Hepz0oS7FSWxIoNj0jFm2hfygO0QyyE0weZ6dIKkX5OZKZ06jhRVeP4D-HwpU_EQNotJYR4DUdyLUhmnuR_L0AgpYuzEYG_SxJFkYQv8BjSZqhO623dFTrJVKmoLtAyBljmgZYsW7CzbTKt0JhfW3m5AlNWurcxWCGrBy2UxOiV70yQKMzm1dZB2Bwk6_BY8qqC7_DmbTghJIW9BsgbqZQWb8Hy9pBh9dYnPcQJxN4Mt3zTwX_2tf4_iycWjeAHX0QKyfm-w9xRuBM4q7SHbNmzOZ6fmGVxTP-ajcvbc2TeBL5dtCX8AZr6O2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+semantic+segmentation+of+CT+images+for+COVID-19+infections+using+DeepLabV3%2B+based+on+dilated+residual+network&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Polat%2C+Hasan&rft.date=2022-06-01&rft.issn=2662-4737&rft.eissn=2662-4737&rft.volume=45&rft.issue=2&rft.spage=443&rft_id=info:doi/10.1007%2Fs13246-022-01110-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon