The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation

In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany Vol. 63; no. 8; p. 2985
Main Authors: Zheng, Shu-Xiao, Xiao, Shi, Chye, Mee-Len
Format: Journal Article
Language:English
Published: England 01.05.2012
Subjects:
ISSN:1460-2431, 1460-2431
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.
AbstractList In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.
In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.
Author Zheng, Shu-Xiao
Xiao, Shi
Chye, Mee-Len
Author_xml – sequence: 1
  givenname: Shu-Xiao
  surname: Zheng
  fullname: Zheng, Shu-Xiao
  organization: School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
– sequence: 2
  givenname: Shi
  surname: Xiao
  fullname: Xiao, Shi
– sequence: 3
  givenname: Mee-Len
  surname: Chye
  fullname: Chye, Mee-Len
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22345636$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtqwzAQRUVJaR7tph9QtOzGjSRLcrwMoS8IdJOuzUgaJwqO5Fo2NH9f0wd0NQPn3GG4czIJMSAht5w9cFbmy-OnWWKXGCsvyIxLzTIhcz75t0_JPKUjY0wxpa7IVIhcKp3rGel2B6R7DEgx2Oh82NN1B8a72CafKNhzk23iOjM-fMO2iz36QHM60hb6QxzDdISD9aZBCsHRNJgj2p72kVrfWXAeAu1wPzTQ-xiuyWUNTcKb37kg70-Pu81Ltn17ft2st5mVheyzwjoNKwdoanCgLEcjWVlwC9pK40ptC10yjSulakCUzhWlFcoZU4u8NkwsyP3P3fHnjwFTX518stg0EDAOqeKM56XgSvJRvftVB3NCV7WdP0F3rv56El8JkG5F
CitedBy_id crossref_primary_10_1002_1873_3468_13923
crossref_primary_10_1093_pcp_pcz237
crossref_primary_10_1371_journal_pone_0107372
crossref_primary_10_3389_fcell_2020_616434
crossref_primary_10_3389_fgene_2022_1057160
crossref_primary_10_3389_fpls_2017_01868
crossref_primary_10_1042_BSR20140139
crossref_primary_10_1093_jxb_eru304
crossref_primary_10_1016_j_ijbiomac_2024_131631
crossref_primary_10_1016_j_pmpp_2024_102459
crossref_primary_10_1016_j_tplants_2015_10_011
crossref_primary_10_1080_21541264_2020_1820300
crossref_primary_10_1016_j_bbalip_2015_12_018
crossref_primary_10_1016_j_plipres_2016_06_002
crossref_primary_10_1111_acel_13910
crossref_primary_10_1007_s00425_021_03721_1
crossref_primary_10_1016_j_plantsci_2013_03_016
crossref_primary_10_1080_15592324_2017_1359365
crossref_primary_10_1080_15548627_2018_1520547
crossref_primary_10_3389_fpls_2022_872218
crossref_primary_10_1111_nph_19924
crossref_primary_10_3390_biology9120454
crossref_primary_10_3390_cells10051064
crossref_primary_10_1016_j_bcab_2013_09_010
crossref_primary_10_3389_fgene_2018_00182
crossref_primary_10_1038_srep23072
crossref_primary_10_1093_jxb_erab499
crossref_primary_10_1016_j_ijbiomac_2023_125526
crossref_primary_10_1038_srep33332
crossref_primary_10_1007_s11103_016_0557_5
crossref_primary_10_1016_j_pmpp_2020_101548
crossref_primary_10_3389_fpls_2018_00002
crossref_primary_10_1007_s11103_016_0541_0
crossref_primary_10_15835_nbha50112640
crossref_primary_10_1016_j_jbiotec_2014_01_027
crossref_primary_10_1007_s00709_015_0882_6
crossref_primary_10_3389_fpls_2020_00331
crossref_primary_10_1016_j_plantsci_2012_12_009
crossref_primary_10_1111_pce_12382
crossref_primary_10_3390_ijms25158114
crossref_primary_10_1111_tpj_12692
crossref_primary_10_1007_s11745_015_4103_z
crossref_primary_10_1186_s12870_024_04944_6
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/jxb/ers009
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
ExternalDocumentID 22345636
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNGD
ABNKS
ABPPZ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABVGC
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
C1A
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CXTWN
CZ4
D-I
DAKXR
DATOO
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
ECM
EE~
EIF
EJD
ELUNK
ESX
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NPM
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
Z5M
ZCG
ZKX
~02
~91
~KM
7X8
ABPQP
ABUFD
ABXZS
ADNBA
AJBYB
AJNCP
ALXQX
ID FETCH-LOGICAL-c474t-7cd6a8daebfada5c1eb40971ca6c4bd96c76906e855faee4dd79c25dbbf23fb02
IEDL.DBID 7X8
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000304196900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2431
IngestDate Sun Nov 09 12:22:01 EST 2025
Wed Feb 19 01:54:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-7cd6a8daebfada5c1eb40971ca6c4bd96c76906e855faee4dd79c25dbbf23fb02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jxb/article-pdf/63/8/2985/16934143/ers009.pdf
PMID 22345636
PQID 1013921541
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1013921541
pubmed_primary_22345636
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2012
References 12068110 - Plant Physiol. 2002 Jun;129(2):661-77
11402169 - Plant Cell. 2001 Jun;13(6):1411-25
16231156 - Planta. 2006 Apr;223(5):871-81
20345607 - Plant J. 2010 Jun 1;62(6):989-1003
15988560 - Plant Mol Biol. 2005 Mar;57(5):629-43
11202434 - Plant Mol Biol. 2000 Dec;44(6):711-21
20107029 - Plant Physiol. 2010 Mar;152(3):1585-97
12475498 - Trends Plant Sci. 2002 Dec;7(12):555-60
10069079 - Plant J. 1998 Dec;16(6):735-43
15159625 - Plant Mol Biol. 2004 Jan;54(2):233-43
3243271 - EMBO J. 1988 Dec 20;7(13):4035-44
2535461 - Plant Cell. 1989 Jan;1(1):141-50
10721891 - J Nutr. 2000 Feb;130(2S Suppl):294S-298S
15310827 - Plant Physiol. 2004 Aug;135(4):2150-61
16741237 - J Biomol Tech. 2006 Apr;17(2):103-13
19297549 - J Exp Bot. 2009;60(6):1555-67
9862500 - Plant Mol Biol. 1998 Nov;38(5):827-38
2152106 - Plant Cell. 1990 Jan;2(1):85-94
8000001 - Plant Mol Biol. 1994 Nov;26(3):873-86
9435792 - Mol Gen Genet. 1997 Nov;256(6):674-81
2152164 - Plant Cell. 1990 May;2(5):369-78
1396594 - EMBO J. 1992 Nov;11(11):4131-44
18773301 - Plant Mol Biol. 2008 Dec;68(6):571-83
21144863 - Prog Lipid Res. 2011 Apr;50(2):141-51
21293378 - Nature. 2011 Feb 3;470(7332):110-4
6297996 - FEBS Lett. 1983 Feb 21;152(2):163-7
20442372 - Plant Cell. 2010 May;22(5):1463-82
8605301 - Plant Mol Biol. 1996 Feb;30(3):493-504
1392598 - Plant Cell. 1992 Jul;4(7):839-49
10363372 - Plant J. 1999 Apr;18(2):205-14
15075396 - Plant Cell. 2004;16 Suppl:S84-97
3745175 - J Biol Chem. 1986 Sep 15;261(26):11968-73
14563928 - Plant Physiol. 2003 Dec;133(4):1565-77
10366876 - Trends Plant Sci. 1999 Jun;4(6):210-214
9862499 - Plant Mol Biol. 1998 Nov;38(5):817-25
8870270 - Mol Plant Microbe Interact. 1996 Nov;9(8):713-9
8219069 - Plant Mol Biol. 1993 Oct;23(2):337-48
17877700 - Plant J. 2007 Nov;52(4):716-29
1392597 - Plant Cell. 1992 Jul;4(7):831-8
10380815 - Plant Mol Biol. 1999 Apr;39(6):1299-310
20009557 - Plant Signal Behav. 2009 Nov;4(11):1063-5
15604682 - Plant Mol Biol. 2004 May;55(2):297-309
21670223 - Plant Physiol. 2011 Aug;156(4):2069-81
11465496 - Electrophoresis. 2001 Jun;22(10):1979-86
15010514 - Plant Cell. 2004;16 Suppl:S98-106
3327686 - EMBO J. 1987 Dec 20;6(13):3901-7
12519961 - Nucleic Acids Res. 2003 Jan 1;31(1):114-7
1863768 - Plant Mol Biol. 1991 Jun;16(6):955-66
942051 - Anal Biochem. 1976 May 7;72:248-54
18182029 - Plant J. 2008 Apr;54(1):141-51
2330508 - Science. 1990 Apr 27;248(4954):471-4
3456586 - Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80
12179966 - Curr Opin Plant Biol. 2002 Aug;5(4):325-31
3678200 - EMBO J. 1987 Sep;6(9):2543-9
8220480 - Plant J. 1993 Aug;4(2):225-34
18836139 - J Exp Bot. 2008;59(14):3997-4006
12396232 - Biochem J. 2002 Dec 15;368(Pt 3):679-82
20345632 - New Phytol. 2010 Jun;186(4):843-55
19121948 - Plant Physiol Biochem. 2009 Jun;47(6):479-84
11118138 - Science. 2000 Dec 15;290(5499):2110-3
18621979 - Plant Physiol. 2008 Sep;148(1):304-15
12650615 - Plant Mol Biol. 2003 Mar;51(4):483-92
9847207 - Nucleic Acids Res. 1999 Jan 1;27(1):295-6
1893099 - Plant Mol Biol. 1991 Feb;16(2):235-49
2535506 - Plant Cell. 1989 Mar;1(3):351-60
18823312 - New Phytol. 2009;181(1):89-102
References_xml – reference: 18621979 - Plant Physiol. 2008 Sep;148(1):304-15
– reference: 11202434 - Plant Mol Biol. 2000 Dec;44(6):711-21
– reference: 11118138 - Science. 2000 Dec 15;290(5499):2110-3
– reference: 1396594 - EMBO J. 1992 Nov;11(11):4131-44
– reference: 12396232 - Biochem J. 2002 Dec 15;368(Pt 3):679-82
– reference: 8220480 - Plant J. 1993 Aug;4(2):225-34
– reference: 16231156 - Planta. 2006 Apr;223(5):871-81
– reference: 21670223 - Plant Physiol. 2011 Aug;156(4):2069-81
– reference: 20345607 - Plant J. 2010 Jun 1;62(6):989-1003
– reference: 18836139 - J Exp Bot. 2008;59(14):3997-4006
– reference: 8000001 - Plant Mol Biol. 1994 Nov;26(3):873-86
– reference: 12475498 - Trends Plant Sci. 2002 Dec;7(12):555-60
– reference: 11402169 - Plant Cell. 2001 Jun;13(6):1411-25
– reference: 19121948 - Plant Physiol Biochem. 2009 Jun;47(6):479-84
– reference: 10363372 - Plant J. 1999 Apr;18(2):205-14
– reference: 12519961 - Nucleic Acids Res. 2003 Jan 1;31(1):114-7
– reference: 18773301 - Plant Mol Biol. 2008 Dec;68(6):571-83
– reference: 3243271 - EMBO J. 1988 Dec 20;7(13):4035-44
– reference: 8605301 - Plant Mol Biol. 1996 Feb;30(3):493-504
– reference: 2535506 - Plant Cell. 1989 Mar;1(3):351-60
– reference: 2330508 - Science. 1990 Apr 27;248(4954):471-4
– reference: 21293378 - Nature. 2011 Feb 3;470(7332):110-4
– reference: 3745175 - J Biol Chem. 1986 Sep 15;261(26):11968-73
– reference: 9862499 - Plant Mol Biol. 1998 Nov;38(5):817-25
– reference: 10721891 - J Nutr. 2000 Feb;130(2S Suppl):294S-298S
– reference: 18823312 - New Phytol. 2009;181(1):89-102
– reference: 10380815 - Plant Mol Biol. 1999 Apr;39(6):1299-310
– reference: 15010514 - Plant Cell. 2004;16 Suppl:S98-106
– reference: 15988560 - Plant Mol Biol. 2005 Mar;57(5):629-43
– reference: 12179966 - Curr Opin Plant Biol. 2002 Aug;5(4):325-31
– reference: 21144863 - Prog Lipid Res. 2011 Apr;50(2):141-51
– reference: 6297996 - FEBS Lett. 1983 Feb 21;152(2):163-7
– reference: 20009557 - Plant Signal Behav. 2009 Nov;4(11):1063-5
– reference: 8219069 - Plant Mol Biol. 1993 Oct;23(2):337-48
– reference: 20345632 - New Phytol. 2010 Jun;186(4):843-55
– reference: 3456586 - Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80
– reference: 1893099 - Plant Mol Biol. 1991 Feb;16(2):235-49
– reference: 2152106 - Plant Cell. 1990 Jan;2(1):85-94
– reference: 15604682 - Plant Mol Biol. 2004 May;55(2):297-309
– reference: 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7
– reference: 18182029 - Plant J. 2008 Apr;54(1):141-51
– reference: 1392597 - Plant Cell. 1992 Jul;4(7):831-8
– reference: 10366876 - Trends Plant Sci. 1999 Jun;4(6):210-214
– reference: 12650615 - Plant Mol Biol. 2003 Mar;51(4):483-92
– reference: 14563928 - Plant Physiol. 2003 Dec;133(4):1565-77
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 2152164 - Plant Cell. 1990 May;2(5):369-78
– reference: 17877700 - Plant J. 2007 Nov;52(4):716-29
– reference: 9435792 - Mol Gen Genet. 1997 Nov;256(6):674-81
– reference: 20442372 - Plant Cell. 2010 May;22(5):1463-82
– reference: 20107029 - Plant Physiol. 2010 Mar;152(3):1585-97
– reference: 1392598 - Plant Cell. 1992 Jul;4(7):839-49
– reference: 11465496 - Electrophoresis. 2001 Jun;22(10):1979-86
– reference: 8870270 - Mol Plant Microbe Interact. 1996 Nov;9(8):713-9
– reference: 15159625 - Plant Mol Biol. 2004 Jan;54(2):233-43
– reference: 9847207 - Nucleic Acids Res. 1999 Jan 1;27(1):295-6
– reference: 3678200 - EMBO J. 1987 Sep;6(9):2543-9
– reference: 2535461 - Plant Cell. 1989 Jan;1(1):141-50
– reference: 15310827 - Plant Physiol. 2004 Aug;135(4):2150-61
– reference: 12068110 - Plant Physiol. 2002 Jun;129(2):661-77
– reference: 16741237 - J Biomol Tech. 2006 Apr;17(2):103-13
– reference: 1863768 - Plant Mol Biol. 1991 Jun;16(6):955-66
– reference: 9862500 - Plant Mol Biol. 1998 Nov;38(5):827-38
– reference: 10069079 - Plant J. 1998 Dec;16(6):735-43
– reference: 19297549 - J Exp Bot. 2009;60(6):1555-67
– reference: 15075396 - Plant Cell. 2004;16 Suppl:S84-97
SSID ssj0005055
Score 2.2604623
Snippet In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2985
SubjectTerms 5' Flanking Region - genetics
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Base Sequence
Carrier Proteins - genetics
Carrier Proteins - metabolism
Circadian Rhythm - drug effects
Circadian Rhythm - genetics
Darkness
Deoxyribonuclease I - metabolism
DNA Footprinting
Electrophoretic Mobility Shift Assay
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Plant - drug effects
Genes, Plant - genetics
Glucuronidase - metabolism
Molecular Sequence Data
Plant Growth Regulators - pharmacology
Pseudomonas syringae - drug effects
Pseudomonas syringae - physiology
Recombinant Fusion Proteins - metabolism
Regulatory Sequences, Nucleic Acid - genetics
Reproducibility of Results
Sequence Analysis, DNA
Sequence Deletion - genetics
Time Factors
Title The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation
URI https://www.ncbi.nlm.nih.gov/pubmed/22345636
https://www.proquest.com/docview/1013921541
Volume 63
WOSCitedRecordID wos000304196900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAdmDh_SgvGYnVapp3JlQqKgaoOgDqVtnnsxRUJSVpEf33nJNU3RASS5aLpcj-7O-zz_mOsTtHamsuqYU1h7MbFBCKWEUYHXphoByjq-z5-3M0GsWTSTJuDtzK5lrlek2sFmqdgz0jp9lNWoX4ye_dzz-FrRpls6tNCY1t1vIobFEdTTZu4cTuQf13kSNcYsq1PWnidT--VZf0leP8Ii0rihnu__fjDtheIy55v0bDIdvC7Ii1H3ISgKtjVhAkOOEFuTWvtJxFb0qV6nxepiWXsJqJQd63e-UqWFk4pBn3OEVt5eKcGnMKLiFVM-Qy07xcKnuQwxc5h7SAyuiAF3V9exrxE_Y2fHwdPImm5IIAP_IXIgIdylhLVEZqGUAPlTXE6oEMwVc6CSGyzsYYB4GRiL7WUQJuoJUyrmeU456ynSzP8JzxAEkZaUSTSN83sUpCH9AARq5RLiB02O26L6cEaZunkBnmy3K66c0OO6sHZDqvvTempGZI8nnhxR9aX7JdkjdufT3xirUMTWi8Zm34WqRlcVNhhZ6j8csPfXHNZA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gene+encoding+Arabidopsis+acyl-CoA-binding+protein+3+is+pathogen+inducible+and+subject+to+circadian+regulation&rft.jtitle=Journal+of+experimental+botany&rft.au=Zheng%2C+Shu-Xiao&rft.au=Xiao%2C+Shi&rft.au=Chye%2C+Mee-Len&rft.date=2012-05-01&rft.eissn=1460-2431&rft.volume=63&rft.issue=8&rft.spage=2985&rft_id=info:doi/10.1093%2Fjxb%2Fers009&rft_id=info%3Apmid%2F22345636&rft_id=info%3Apmid%2F22345636&rft.externalDocID=22345636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2431&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2431&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2431&client=summon