The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation
In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation...
Saved in:
| Published in: | Journal of experimental botany Vol. 63; no. 8; p. 2985 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
01.05.2012
|
| Subjects: | |
| ISSN: | 1460-2431, 1460-2431 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3. |
|---|---|
| AbstractList | In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3. In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3. |
| Author | Zheng, Shu-Xiao Xiao, Shi Chye, Mee-Len |
| Author_xml | – sequence: 1 givenname: Shu-Xiao surname: Zheng fullname: Zheng, Shu-Xiao organization: School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China – sequence: 2 givenname: Shi surname: Xiao fullname: Xiao, Shi – sequence: 3 givenname: Mee-Len surname: Chye fullname: Chye, Mee-Len |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22345636$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtqwzAQRUVJaR7tph9QtOzGjSRLcrwMoS8IdJOuzUgaJwqO5Fo2NH9f0wd0NQPn3GG4czIJMSAht5w9cFbmy-OnWWKXGCsvyIxLzTIhcz75t0_JPKUjY0wxpa7IVIhcKp3rGel2B6R7DEgx2Oh82NN1B8a72CafKNhzk23iOjM-fMO2iz36QHM60hb6QxzDdISD9aZBCsHRNJgj2p72kVrfWXAeAu1wPzTQ-xiuyWUNTcKb37kg70-Pu81Ltn17ft2st5mVheyzwjoNKwdoanCgLEcjWVlwC9pK40ptC10yjSulakCUzhWlFcoZU4u8NkwsyP3P3fHnjwFTX518stg0EDAOqeKM56XgSvJRvftVB3NCV7WdP0F3rv56El8JkG5F |
| CitedBy_id | crossref_primary_10_1002_1873_3468_13923 crossref_primary_10_1093_pcp_pcz237 crossref_primary_10_1371_journal_pone_0107372 crossref_primary_10_3389_fcell_2020_616434 crossref_primary_10_3389_fgene_2022_1057160 crossref_primary_10_3389_fpls_2017_01868 crossref_primary_10_1042_BSR20140139 crossref_primary_10_1093_jxb_eru304 crossref_primary_10_1016_j_ijbiomac_2024_131631 crossref_primary_10_1016_j_pmpp_2024_102459 crossref_primary_10_1016_j_tplants_2015_10_011 crossref_primary_10_1080_21541264_2020_1820300 crossref_primary_10_1016_j_bbalip_2015_12_018 crossref_primary_10_1016_j_plipres_2016_06_002 crossref_primary_10_1111_acel_13910 crossref_primary_10_1007_s00425_021_03721_1 crossref_primary_10_1016_j_plantsci_2013_03_016 crossref_primary_10_1080_15592324_2017_1359365 crossref_primary_10_1080_15548627_2018_1520547 crossref_primary_10_3389_fpls_2022_872218 crossref_primary_10_1111_nph_19924 crossref_primary_10_3390_biology9120454 crossref_primary_10_3390_cells10051064 crossref_primary_10_1016_j_bcab_2013_09_010 crossref_primary_10_3389_fgene_2018_00182 crossref_primary_10_1038_srep23072 crossref_primary_10_1093_jxb_erab499 crossref_primary_10_1016_j_ijbiomac_2023_125526 crossref_primary_10_1038_srep33332 crossref_primary_10_1007_s11103_016_0557_5 crossref_primary_10_1016_j_pmpp_2020_101548 crossref_primary_10_3389_fpls_2018_00002 crossref_primary_10_1007_s11103_016_0541_0 crossref_primary_10_15835_nbha50112640 crossref_primary_10_1016_j_jbiotec_2014_01_027 crossref_primary_10_1007_s00709_015_0882_6 crossref_primary_10_3389_fpls_2020_00331 crossref_primary_10_1016_j_plantsci_2012_12_009 crossref_primary_10_1111_pce_12382 crossref_primary_10_3390_ijms25158114 crossref_primary_10_1111_tpj_12692 crossref_primary_10_1007_s11745_015_4103_z crossref_primary_10_1186_s12870_024_04944_6 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/jxb/ers009 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1460-2431 |
| ExternalDocumentID | 22345636 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 3O- 4.4 482 48X 53G 5GY 5VS 5WA 5WD 6.Y 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAXTN ABBHK ABDFA ABDPE ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNGD ABNKS ABPPZ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABVGC ABWST ABXSQ ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACHIC ACIWK ACNCT ACPQN ACPRK ACUFI ACUTJ ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO AQVQM ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC C1A CAG CDBKE CGR COF CS3 CUY CVF CXTWN CZ4 D-I DAKXR DATOO DFGAJ DIK DILTD DU5 D~K E3Z EBS ECGQY ECM EE~ EIF EJD ELUNK ESX F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ H~9 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NEJ NGC NLBLG NOMLY NPM NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TLC TN5 TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7H XOL YAYTL YKOAZ YQT YSK YXANX YZZ Z5M ZCG ZKX ~02 ~91 ~KM 7X8 ABPQP ABUFD ABXZS ADNBA AJBYB AJNCP ALXQX |
| ID | FETCH-LOGICAL-c474t-7cd6a8daebfada5c1eb40971ca6c4bd96c76906e855faee4dd79c25dbbf23fb02 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000304196900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1460-2431 |
| IngestDate | Sun Nov 09 12:22:01 EST 2025 Wed Feb 19 01:54:56 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-7cd6a8daebfada5c1eb40971ca6c4bd96c76906e855faee4dd79c25dbbf23fb02 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/jxb/article-pdf/63/8/2985/16934143/ers009.pdf |
| PMID | 22345636 |
| PQID | 1013921541 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1013921541 pubmed_primary_22345636 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-05-01 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of experimental botany |
| PublicationTitleAlternate | J Exp Bot |
| PublicationYear | 2012 |
| References | 12068110 - Plant Physiol. 2002 Jun;129(2):661-77 11402169 - Plant Cell. 2001 Jun;13(6):1411-25 16231156 - Planta. 2006 Apr;223(5):871-81 20345607 - Plant J. 2010 Jun 1;62(6):989-1003 15988560 - Plant Mol Biol. 2005 Mar;57(5):629-43 11202434 - Plant Mol Biol. 2000 Dec;44(6):711-21 20107029 - Plant Physiol. 2010 Mar;152(3):1585-97 12475498 - Trends Plant Sci. 2002 Dec;7(12):555-60 10069079 - Plant J. 1998 Dec;16(6):735-43 15159625 - Plant Mol Biol. 2004 Jan;54(2):233-43 3243271 - EMBO J. 1988 Dec 20;7(13):4035-44 2535461 - Plant Cell. 1989 Jan;1(1):141-50 10721891 - J Nutr. 2000 Feb;130(2S Suppl):294S-298S 15310827 - Plant Physiol. 2004 Aug;135(4):2150-61 16741237 - J Biomol Tech. 2006 Apr;17(2):103-13 19297549 - J Exp Bot. 2009;60(6):1555-67 9862500 - Plant Mol Biol. 1998 Nov;38(5):827-38 2152106 - Plant Cell. 1990 Jan;2(1):85-94 8000001 - Plant Mol Biol. 1994 Nov;26(3):873-86 9435792 - Mol Gen Genet. 1997 Nov;256(6):674-81 2152164 - Plant Cell. 1990 May;2(5):369-78 1396594 - EMBO J. 1992 Nov;11(11):4131-44 18773301 - Plant Mol Biol. 2008 Dec;68(6):571-83 21144863 - Prog Lipid Res. 2011 Apr;50(2):141-51 21293378 - Nature. 2011 Feb 3;470(7332):110-4 6297996 - FEBS Lett. 1983 Feb 21;152(2):163-7 20442372 - Plant Cell. 2010 May;22(5):1463-82 8605301 - Plant Mol Biol. 1996 Feb;30(3):493-504 1392598 - Plant Cell. 1992 Jul;4(7):839-49 10363372 - Plant J. 1999 Apr;18(2):205-14 15075396 - Plant Cell. 2004;16 Suppl:S84-97 3745175 - J Biol Chem. 1986 Sep 15;261(26):11968-73 14563928 - Plant Physiol. 2003 Dec;133(4):1565-77 10366876 - Trends Plant Sci. 1999 Jun;4(6):210-214 9862499 - Plant Mol Biol. 1998 Nov;38(5):817-25 8870270 - Mol Plant Microbe Interact. 1996 Nov;9(8):713-9 8219069 - Plant Mol Biol. 1993 Oct;23(2):337-48 17877700 - Plant J. 2007 Nov;52(4):716-29 1392597 - Plant Cell. 1992 Jul;4(7):831-8 10380815 - Plant Mol Biol. 1999 Apr;39(6):1299-310 20009557 - Plant Signal Behav. 2009 Nov;4(11):1063-5 15604682 - Plant Mol Biol. 2004 May;55(2):297-309 21670223 - Plant Physiol. 2011 Aug;156(4):2069-81 11465496 - Electrophoresis. 2001 Jun;22(10):1979-86 15010514 - Plant Cell. 2004;16 Suppl:S98-106 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7 12519961 - Nucleic Acids Res. 2003 Jan 1;31(1):114-7 1863768 - Plant Mol Biol. 1991 Jun;16(6):955-66 942051 - Anal Biochem. 1976 May 7;72:248-54 18182029 - Plant J. 2008 Apr;54(1):141-51 2330508 - Science. 1990 Apr 27;248(4954):471-4 3456586 - Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80 12179966 - Curr Opin Plant Biol. 2002 Aug;5(4):325-31 3678200 - EMBO J. 1987 Sep;6(9):2543-9 8220480 - Plant J. 1993 Aug;4(2):225-34 18836139 - J Exp Bot. 2008;59(14):3997-4006 12396232 - Biochem J. 2002 Dec 15;368(Pt 3):679-82 20345632 - New Phytol. 2010 Jun;186(4):843-55 19121948 - Plant Physiol Biochem. 2009 Jun;47(6):479-84 11118138 - Science. 2000 Dec 15;290(5499):2110-3 18621979 - Plant Physiol. 2008 Sep;148(1):304-15 12650615 - Plant Mol Biol. 2003 Mar;51(4):483-92 9847207 - Nucleic Acids Res. 1999 Jan 1;27(1):295-6 1893099 - Plant Mol Biol. 1991 Feb;16(2):235-49 2535506 - Plant Cell. 1989 Mar;1(3):351-60 18823312 - New Phytol. 2009;181(1):89-102 |
| References_xml | – reference: 18621979 - Plant Physiol. 2008 Sep;148(1):304-15 – reference: 11202434 - Plant Mol Biol. 2000 Dec;44(6):711-21 – reference: 11118138 - Science. 2000 Dec 15;290(5499):2110-3 – reference: 1396594 - EMBO J. 1992 Nov;11(11):4131-44 – reference: 12396232 - Biochem J. 2002 Dec 15;368(Pt 3):679-82 – reference: 8220480 - Plant J. 1993 Aug;4(2):225-34 – reference: 16231156 - Planta. 2006 Apr;223(5):871-81 – reference: 21670223 - Plant Physiol. 2011 Aug;156(4):2069-81 – reference: 20345607 - Plant J. 2010 Jun 1;62(6):989-1003 – reference: 18836139 - J Exp Bot. 2008;59(14):3997-4006 – reference: 8000001 - Plant Mol Biol. 1994 Nov;26(3):873-86 – reference: 12475498 - Trends Plant Sci. 2002 Dec;7(12):555-60 – reference: 11402169 - Plant Cell. 2001 Jun;13(6):1411-25 – reference: 19121948 - Plant Physiol Biochem. 2009 Jun;47(6):479-84 – reference: 10363372 - Plant J. 1999 Apr;18(2):205-14 – reference: 12519961 - Nucleic Acids Res. 2003 Jan 1;31(1):114-7 – reference: 18773301 - Plant Mol Biol. 2008 Dec;68(6):571-83 – reference: 3243271 - EMBO J. 1988 Dec 20;7(13):4035-44 – reference: 8605301 - Plant Mol Biol. 1996 Feb;30(3):493-504 – reference: 2535506 - Plant Cell. 1989 Mar;1(3):351-60 – reference: 2330508 - Science. 1990 Apr 27;248(4954):471-4 – reference: 21293378 - Nature. 2011 Feb 3;470(7332):110-4 – reference: 3745175 - J Biol Chem. 1986 Sep 15;261(26):11968-73 – reference: 9862499 - Plant Mol Biol. 1998 Nov;38(5):817-25 – reference: 10721891 - J Nutr. 2000 Feb;130(2S Suppl):294S-298S – reference: 18823312 - New Phytol. 2009;181(1):89-102 – reference: 10380815 - Plant Mol Biol. 1999 Apr;39(6):1299-310 – reference: 15010514 - Plant Cell. 2004;16 Suppl:S98-106 – reference: 15988560 - Plant Mol Biol. 2005 Mar;57(5):629-43 – reference: 12179966 - Curr Opin Plant Biol. 2002 Aug;5(4):325-31 – reference: 21144863 - Prog Lipid Res. 2011 Apr;50(2):141-51 – reference: 6297996 - FEBS Lett. 1983 Feb 21;152(2):163-7 – reference: 20009557 - Plant Signal Behav. 2009 Nov;4(11):1063-5 – reference: 8219069 - Plant Mol Biol. 1993 Oct;23(2):337-48 – reference: 20345632 - New Phytol. 2010 Jun;186(4):843-55 – reference: 3456586 - Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80 – reference: 1893099 - Plant Mol Biol. 1991 Feb;16(2):235-49 – reference: 2152106 - Plant Cell. 1990 Jan;2(1):85-94 – reference: 15604682 - Plant Mol Biol. 2004 May;55(2):297-309 – reference: 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7 – reference: 18182029 - Plant J. 2008 Apr;54(1):141-51 – reference: 1392597 - Plant Cell. 1992 Jul;4(7):831-8 – reference: 10366876 - Trends Plant Sci. 1999 Jun;4(6):210-214 – reference: 12650615 - Plant Mol Biol. 2003 Mar;51(4):483-92 – reference: 14563928 - Plant Physiol. 2003 Dec;133(4):1565-77 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 2152164 - Plant Cell. 1990 May;2(5):369-78 – reference: 17877700 - Plant J. 2007 Nov;52(4):716-29 – reference: 9435792 - Mol Gen Genet. 1997 Nov;256(6):674-81 – reference: 20442372 - Plant Cell. 2010 May;22(5):1463-82 – reference: 20107029 - Plant Physiol. 2010 Mar;152(3):1585-97 – reference: 1392598 - Plant Cell. 1992 Jul;4(7):839-49 – reference: 11465496 - Electrophoresis. 2001 Jun;22(10):1979-86 – reference: 8870270 - Mol Plant Microbe Interact. 1996 Nov;9(8):713-9 – reference: 15159625 - Plant Mol Biol. 2004 Jan;54(2):233-43 – reference: 9847207 - Nucleic Acids Res. 1999 Jan 1;27(1):295-6 – reference: 3678200 - EMBO J. 1987 Sep;6(9):2543-9 – reference: 2535461 - Plant Cell. 1989 Jan;1(1):141-50 – reference: 15310827 - Plant Physiol. 2004 Aug;135(4):2150-61 – reference: 12068110 - Plant Physiol. 2002 Jun;129(2):661-77 – reference: 16741237 - J Biomol Tech. 2006 Apr;17(2):103-13 – reference: 1863768 - Plant Mol Biol. 1991 Jun;16(6):955-66 – reference: 9862500 - Plant Mol Biol. 1998 Nov;38(5):827-38 – reference: 10069079 - Plant J. 1998 Dec;16(6):735-43 – reference: 19297549 - J Exp Bot. 2009;60(6):1555-67 – reference: 15075396 - Plant Cell. 2004;16 Suppl:S84-97 |
| SSID | ssj0005055 |
| Score | 2.2604623 |
| Snippet | In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2985 |
| SubjectTerms | 5' Flanking Region - genetics Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - microbiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Base Sequence Carrier Proteins - genetics Carrier Proteins - metabolism Circadian Rhythm - drug effects Circadian Rhythm - genetics Darkness Deoxyribonuclease I - metabolism DNA Footprinting Electrophoretic Mobility Shift Assay Gene Expression Regulation, Developmental - drug effects Gene Expression Regulation, Plant - drug effects Genes, Plant - genetics Glucuronidase - metabolism Molecular Sequence Data Plant Growth Regulators - pharmacology Pseudomonas syringae - drug effects Pseudomonas syringae - physiology Recombinant Fusion Proteins - metabolism Regulatory Sequences, Nucleic Acid - genetics Reproducibility of Results Sequence Analysis, DNA Sequence Deletion - genetics Time Factors |
| Title | The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22345636 https://www.proquest.com/docview/1013921541 |
| Volume | 63 |
| WOSCitedRecordID | wos000304196900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAdmDh_SgvGYnVapp3JlQqKgaoOgDqVtnnsxRUJSVpEf33nJNU3RASS5aLpcj-7O-zz_mOsTtHamsuqYU1h7MbFBCKWEUYHXphoByjq-z5-3M0GsWTSTJuDtzK5lrlek2sFmqdgz0jp9lNWoX4ye_dzz-FrRpls6tNCY1t1vIobFEdTTZu4cTuQf13kSNcYsq1PWnidT--VZf0leP8Ii0rihnu__fjDtheIy55v0bDIdvC7Ii1H3ISgKtjVhAkOOEFuTWvtJxFb0qV6nxepiWXsJqJQd63e-UqWFk4pBn3OEVt5eKcGnMKLiFVM-Qy07xcKnuQwxc5h7SAyuiAF3V9exrxE_Y2fHwdPImm5IIAP_IXIgIdylhLVEZqGUAPlTXE6oEMwVc6CSGyzsYYB4GRiL7WUQJuoJUyrmeU456ynSzP8JzxAEkZaUSTSN83sUpCH9AARq5RLiB02O26L6cEaZunkBnmy3K66c0OO6sHZDqvvTempGZI8nnhxR9aX7JdkjdufT3xirUMTWi8Zm34WqRlcVNhhZ6j8csPfXHNZA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gene+encoding+Arabidopsis+acyl-CoA-binding+protein+3+is+pathogen+inducible+and+subject+to+circadian+regulation&rft.jtitle=Journal+of+experimental+botany&rft.au=Zheng%2C+Shu-Xiao&rft.au=Xiao%2C+Shi&rft.au=Chye%2C+Mee-Len&rft.date=2012-05-01&rft.eissn=1460-2431&rft.volume=63&rft.issue=8&rft.spage=2985&rft_id=info:doi/10.1093%2Fjxb%2Fers009&rft_id=info%3Apmid%2F22345636&rft_id=info%3Apmid%2F22345636&rft.externalDocID=22345636 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2431&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2431&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2431&client=summon |