Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis

Objectives To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS. Methods We analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants were followed up for 2–6 yea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurology Vol. 268; no. 12; pp. 4834 - 4845
Main Authors: Tommasin, Silvia, Cocozza, Sirio, Taloni, Alessandro, Giannì, Costanza, Petsas, Nikolaos, Pontillo, Giuseppe, Petracca, Maria, Ruggieri, Serena, De Giglio, Laura, Pozzilli, Carlo, Brunetti, Arturo, Pantano, Patrizia
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Subjects:
ISSN:0340-5354, 1432-1459, 1432-1459
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objectives To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS. Methods We analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants were followed up for 2–6 years, with disability progression defined according to the expanded disability status scale (EDSS) increment at follow-up. T2-weighted lesion load (T2LL), thalamic and cerebellar gray matter (GM) volumes, fractional anisotropy of the normal appearing white matter were calculated at baseline and included in supervised machine learning classifiers. Age, sex, phenotype, EDSS at baseline, therapy and time to follow-up period were also included. Classes were labeled as stable or progressed disability. Participants were randomly chosen from both sites to build a sample including 50% patients showing disability progression and 50% patients being stable. One-thousand machine learning classifiers were applied to the resulting sample, and after testing for overfitting, classifier confusion matrix, relative metrics and feature importance were evaluated. Results At follow-up, 36% of participants showed disability progression. The classifier with the highest resulting metrics had accuracy of 0.79, area under the true positive versus false positive rates curve of 0.81, sensitivity of 0.90 and specificity of 0.71. T2LL, thalamic volume, disability at baseline and administered therapy were identified as important features in predicting disability progression. Classifiers built on radiological features had higher accuracy than those built on clinical features. Conclusions Disability progression in MS may be predicted via machine learning classifiers, mostly evaluating neuroradiological features.
AbstractList To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS. We analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants were followed up for 2-6 years, with disability progression defined according to the expanded disability status scale (EDSS) increment at follow-up. T2-weighted lesion load (T2LL), thalamic and cerebellar gray matter (GM) volumes, fractional anisotropy of the normal appearing white matter were calculated at baseline and included in supervised machine learning classifiers. Age, sex, phenotype, EDSS at baseline, therapy and time to follow-up period were also included. Classes were labeled as stable or progressed disability. Participants were randomly chosen from both sites to build a sample including 50% patients showing disability progression and 50% patients being stable. One-thousand machine learning classifiers were applied to the resulting sample, and after testing for overfitting, classifier confusion matrix, relative metrics and feature importance were evaluated. At follow-up, 36% of participants showed disability progression. The classifier with the highest resulting metrics had accuracy of 0.79, area under the true positive versus false positive rates curve of 0.81, sensitivity of 0.90 and specificity of 0.71. T2LL, thalamic volume, disability at baseline and administered therapy were identified as important features in predicting disability progression. Classifiers built on radiological features had higher accuracy than those built on clinical features. Disability progression in MS may be predicted via machine learning classifiers, mostly evaluating neuroradiological features.
To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS.OBJECTIVESTo evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS.We analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants were followed up for 2-6 years, with disability progression defined according to the expanded disability status scale (EDSS) increment at follow-up. T2-weighted lesion load (T2LL), thalamic and cerebellar gray matter (GM) volumes, fractional anisotropy of the normal appearing white matter were calculated at baseline and included in supervised machine learning classifiers. Age, sex, phenotype, EDSS at baseline, therapy and time to follow-up period were also included. Classes were labeled as stable or progressed disability. Participants were randomly chosen from both sites to build a sample including 50% patients showing disability progression and 50% patients being stable. One-thousand machine learning classifiers were applied to the resulting sample, and after testing for overfitting, classifier confusion matrix, relative metrics and feature importance were evaluated.METHODSWe analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants were followed up for 2-6 years, with disability progression defined according to the expanded disability status scale (EDSS) increment at follow-up. T2-weighted lesion load (T2LL), thalamic and cerebellar gray matter (GM) volumes, fractional anisotropy of the normal appearing white matter were calculated at baseline and included in supervised machine learning classifiers. Age, sex, phenotype, EDSS at baseline, therapy and time to follow-up period were also included. Classes were labeled as stable or progressed disability. Participants were randomly chosen from both sites to build a sample including 50% patients showing disability progression and 50% patients being stable. One-thousand machine learning classifiers were applied to the resulting sample, and after testing for overfitting, classifier confusion matrix, relative metrics and feature importance were evaluated.At follow-up, 36% of participants showed disability progression. The classifier with the highest resulting metrics had accuracy of 0.79, area under the true positive versus false positive rates curve of 0.81, sensitivity of 0.90 and specificity of 0.71. T2LL, thalamic volume, disability at baseline and administered therapy were identified as important features in predicting disability progression. Classifiers built on radiological features had higher accuracy than those built on clinical features.RESULTSAt follow-up, 36% of participants showed disability progression. The classifier with the highest resulting metrics had accuracy of 0.79, area under the true positive versus false positive rates curve of 0.81, sensitivity of 0.90 and specificity of 0.71. T2LL, thalamic volume, disability at baseline and administered therapy were identified as important features in predicting disability progression. Classifiers built on radiological features had higher accuracy than those built on clinical features.Disability progression in MS may be predicted via machine learning classifiers, mostly evaluating neuroradiological features.CONCLUSIONSDisability progression in MS may be predicted via machine learning classifiers, mostly evaluating neuroradiological features.
Objectives To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS. Methods We analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants were followed up for 2–6 years, with disability progression defined according to the expanded disability status scale (EDSS) increment at follow-up. T2-weighted lesion load (T2LL), thalamic and cerebellar gray matter (GM) volumes, fractional anisotropy of the normal appearing white matter were calculated at baseline and included in supervised machine learning classifiers. Age, sex, phenotype, EDSS at baseline, therapy and time to follow-up period were also included. Classes were labeled as stable or progressed disability. Participants were randomly chosen from both sites to build a sample including 50% patients showing disability progression and 50% patients being stable. One-thousand machine learning classifiers were applied to the resulting sample, and after testing for overfitting, classifier confusion matrix, relative metrics and feature importance were evaluated. Results At follow-up, 36% of participants showed disability progression. The classifier with the highest resulting metrics had accuracy of 0.79, area under the true positive versus false positive rates curve of 0.81, sensitivity of 0.90 and specificity of 0.71. T2LL, thalamic volume, disability at baseline and administered therapy were identified as important features in predicting disability progression. Classifiers built on radiological features had higher accuracy than those built on clinical features. Conclusions Disability progression in MS may be predicted via machine learning classifiers, mostly evaluating neuroradiological features.
ObjectivesTo evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS.MethodsWe analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants were followed up for 2–6 years, with disability progression defined according to the expanded disability status scale (EDSS) increment at follow-up. T2-weighted lesion load (T2LL), thalamic and cerebellar gray matter (GM) volumes, fractional anisotropy of the normal appearing white matter were calculated at baseline and included in supervised machine learning classifiers. Age, sex, phenotype, EDSS at baseline, therapy and time to follow-up period were also included. Classes were labeled as stable or progressed disability. Participants were randomly chosen from both sites to build a sample including 50% patients showing disability progression and 50% patients being stable. One-thousand machine learning classifiers were applied to the resulting sample, and after testing for overfitting, classifier confusion matrix, relative metrics and feature importance were evaluated.ResultsAt follow-up, 36% of participants showed disability progression. The classifier with the highest resulting metrics had accuracy of 0.79, area under the true positive versus false positive rates curve of 0.81, sensitivity of 0.90 and specificity of 0.71. T2LL, thalamic volume, disability at baseline and administered therapy were identified as important features in predicting disability progression. Classifiers built on radiological features had higher accuracy than those built on clinical features.ConclusionsDisability progression in MS may be predicted via machine learning classifiers, mostly evaluating neuroradiological features.
Author Pozzilli, Carlo
Pantano, Patrizia
Ruggieri, Serena
Cocozza, Sirio
Giannì, Costanza
Pontillo, Giuseppe
Petracca, Maria
De Giglio, Laura
Petsas, Nikolaos
Taloni, Alessandro
Tommasin, Silvia
Brunetti, Arturo
Author_xml – sequence: 1
  givenname: Silvia
  orcidid: 0000-0001-9088-7968
  surname: Tommasin
  fullname: Tommasin, Silvia
  email: silvia.tommasin@uniroma1.it
  organization: Department of Human Neurosciences, Sapienza University of Rome
– sequence: 2
  givenname: Sirio
  orcidid: 0000-0002-0300-5160
  surname: Cocozza
  fullname: Cocozza, Sirio
  organization: Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0002-8863-7166
  surname: Taloni
  fullname: Taloni, Alessandro
  organization: Institute for Complex Systems, Italian National Research Council
– sequence: 4
  givenname: Costanza
  orcidid: 0000-0002-4018-169X
  surname: Giannì
  fullname: Giannì, Costanza
  organization: Department of Human Neurosciences, Sapienza University of Rome
– sequence: 5
  givenname: Nikolaos
  orcidid: 0000-0001-7150-9697
  surname: Petsas
  fullname: Petsas, Nikolaos
  organization: Department of Radiology, IRCCS NEUROMED
– sequence: 6
  givenname: Giuseppe
  orcidid: 0000-0001-5425-1890
  surname: Pontillo
  fullname: Pontillo, Giuseppe
  organization: Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II
– sequence: 7
  givenname: Maria
  orcidid: 0000-0001-9429-2769
  surname: Petracca
  fullname: Petracca, Maria
  organization: Department of Human Neurosciences, Sapienza University of Rome, Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Università degli Studi di Napoli Federico II
– sequence: 8
  givenname: Serena
  orcidid: 0000-0001-5287-3290
  surname: Ruggieri
  fullname: Ruggieri, Serena
  organization: Department of Human Neurosciences, Sapienza University of Rome, Neuroimmunology Unit, IRCSS Fondazione Santa Lucia
– sequence: 9
  givenname: Laura
  orcidid: 0000-0001-9018-7320
  surname: De Giglio
  fullname: De Giglio, Laura
  organization: Department of Human Neurosciences, Sapienza University of Rome, Neurology Unit, Medicine Department, San Filippo Neri Hospital
– sequence: 10
  givenname: Carlo
  orcidid: 0000-0002-6360-4798
  surname: Pozzilli
  fullname: Pozzilli, Carlo
  organization: Department of Human Neurosciences, Sapienza University of Rome
– sequence: 11
  givenname: Arturo
  orcidid: 0000-0001-7057-3494
  surname: Brunetti
  fullname: Brunetti, Arturo
  organization: Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II
– sequence: 12
  givenname: Patrizia
  orcidid: 0000-0001-9659-8294
  surname: Pantano
  fullname: Pantano, Patrizia
  organization: Department of Human Neurosciences, Sapienza University of Rome, Department of Radiology, IRCCS NEUROMED
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33970338$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFvFCEUxompsdvqP-DBkHjxMgoDDOzFxDTamtR40TNhmDfT17CwwkyTPfcfl-3Wqj30RML7fR_vPb4TchRTBEJec_aeM6Y_FMYkVw1recNZx1Sjn5EVl6JtuFTrI7JiQrJGCSWPyUkp14wxUwsvyLEQa82EMCty-835K4xAA7gcMU7UB1cKjgiZzoniAHHGcVevMaJ3gbo40OwGTCFNdxcjuHnJUGiGADcuznvdgMX1GHDe0W1OUy0XTJFipJslzLgNQIsPkFPB8pI8H10o8Or-PCU_v3z-cXbRXH4__3r26bLxUsu50Z0XrG-Fdx030ArZj60EPnoGsuvNIJX3IIdBdM4pNxq9ZqD6UatWcdmzXpySjwff7dJvYPB1suyC3WbcuLyzyaH9vxLxyk7pxhrViU7zavDu3iCnXwuU2W6weAjBRUhLsa1qpTG8ZbKibx-h12nJsY5XqTU3WhmtK_Xm344eWvnzPxVoD4CvmyoZxgeEM7sPgT2EwNYQ2LsQ2L2reSTyOLu57r9OheFpqThIS30nTpD_tv2E6jf2IMoF
CitedBy_id crossref_primary_10_1038_s41598_023_30502_5
crossref_primary_10_1088_1402_4896_ad72b0
crossref_primary_10_1111_ene_15157
crossref_primary_10_1080_13607863_2022_2031868
crossref_primary_10_1055_a_2530_1105
crossref_primary_10_1016_j_nicl_2022_103065
crossref_primary_10_1098_rsos_241052
crossref_primary_10_1177_20552173221108635
crossref_primary_10_1007_s00415_024_12651_3
crossref_primary_10_1007_s00330_024_11157_w
crossref_primary_10_1016_j_msard_2023_104849
crossref_primary_10_1038_s41598_022_23685_w
crossref_primary_10_3389_fneur_2022_855122
crossref_primary_10_1007_s00415_022_11283_9
crossref_primary_10_1177_14604582241285743
crossref_primary_10_1186_s12877_022_03295_x
crossref_primary_10_3390_ijms231810651
crossref_primary_10_1080_01616412_2025_2532038
crossref_primary_10_3390_jpm15050167
crossref_primary_10_1002_hbm_26106
crossref_primary_10_1007_s00415_024_12507_w
crossref_primary_10_1007_s00234_022_02961_6
crossref_primary_10_1007_s00330_022_09170_y
crossref_primary_10_1038_s41598_024_63888_x
crossref_primary_10_1007_s10278_024_01031_y
crossref_primary_10_1016_j_compbiomed_2025_110756
Cites_doi 10.1093/brain/awaa251
10.1093/brain/awx228
10.1016/S1474-4422(17)30470-2
10.1002/ana.25150
10.1371/journal.pone.0174866
10.1177/2055217319885983
10.1097/WCO.0000000000000456
10.1371/journal.pone.0120754
10.1007/s00330-020-06738-4
10.1212/WNL.0000000000001281
10.1111/jon.12688
10.1212/WNL.0000000000006810
10.1148/radiol.10100326
10.1002/ana.22366
10.1016/S1474-4422(12)70059-5
10.1002/brb3.1194
10.1002/ana.25145
10.3389/fneur.2017.00312
10.1148/radiol.2541090817
10.1177/1352458519877810
10.1177/1352458516674567
10.1002/msj.20246
10.1097/00019052-200206000-00003
10.1093/brain/aws246
10.1016/S1474-4422(18)30451-4
10.1136/jnnp-2017-316448
10.1016/j.nicl.2014.11.021
10.1093/brain/awz212
10.1093/brain/awy114
10.1212/WNL.0b013e3181db9957
10.1148/radiol.14131688
10.1097/WCO.0000000000000700
10.1016/j.nicl.2018.09.002
10.1093/brain/118.6.1583
10.1016/j.neuroscience.2017.07.055
10.1136/jnnp.2009.177733
10.1148/radiol.2019192515
10.1016/S1474-4422(14)70101-2
10.1093/brain/awx185
10.1093/brain/awv105
10.1002/ana.20740
10.1016/B978-0-444-52001-2.00014-5
10.1212/WNL.94.15_supplement.4846
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00415-021-10605-7
DatabaseName Springer Nature OA/Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1459
EndPage 4845
ExternalDocumentID PMC8563671
33970338
10_1007_s00415_021_10605_7
Genre Journal Article
GrantInformation_xml – fundername: Fondazione Italiana Sclerosi Multipla
  grantid: FISM/2018/S/3
  funderid: http://dx.doi.org/10.13039/100007366
– fundername: Università degli Studi di Roma La Sapienza
– fundername: Fondazione Italiana Sclerosi Multipla
  grantid: FISM/2018/S/3
– fundername: ;
– fundername: ;
  grantid: FISM/2018/S/3
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
X7M
YLTOR
Z45
Z7U
Z81
Z82
Z83
Z87
Z8O
Z8U
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-76c30b23ca618e234bf24e1fc0e46b8d45cce4dd36aa5af8790e5bf752514b0b3
IEDL.DBID RSV
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648826600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0340-5354
1432-1459
IngestDate Tue Nov 04 01:53:21 EST 2025
Fri Sep 05 07:06:00 EDT 2025
Tue Nov 04 23:42:57 EST 2025
Wed Feb 19 02:26:27 EST 2025
Sat Nov 29 02:48:35 EST 2025
Tue Nov 18 21:41:23 EST 2025
Fri Feb 21 02:47:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Multiple sclerosis
Disability progression
Magnetic resonance imaging
Machine learning
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-76c30b23ca618e234bf24e1fc0e46b8d45cce4dd36aa5af8790e5bf752514b0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6360-4798
0000-0001-9429-2769
0000-0001-9659-8294
0000-0002-8863-7166
0000-0001-7150-9697
0000-0001-5425-1890
0000-0002-0300-5160
0000-0002-4018-169X
0000-0001-5287-3290
0000-0001-7057-3494
0000-0001-9088-7968
0000-0001-9018-7320
OpenAccessLink https://link.springer.com/10.1007/s00415-021-10605-7
PMID 33970338
PQID 2591875877
PQPubID 47196
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563671
proquest_miscellaneous_2524881204
proquest_journals_2591875877
pubmed_primary_33970338
crossref_primary_10_1007_s00415_021_10605_7
crossref_citationtrail_10_1007_s00415_021_10605_7
springer_journals_10_1007_s00415_021_10605_7
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Journal of neurology
PublicationTitleAbbrev J Neurol
PublicationTitleAlternate J Neurol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Cocozza, Petracca, Mormina (CR11) 2017; 88
Calabrese, Poretto, Favaretto (CR14) 2012; 135
Dwyer, Brior, Lyman (CR36) 2020; 94
Haines, Inglese, Casaccia (CR40) 2011; 78
Šimundić (CR28) 2009; 19
Zhao, Healy, Rotstein (CR24) 2017; 12
Rocca, Mesaros, Pagani (CR16) 2010; 257
Wottschel, Alexander, Kwok (CR18) 2015; 7
Gasperini, Prosperini, Tintoré (CR27) 2019; 92
Barkhof (CR32) 2002; 15
Confavreux, Vukusic (CR1) 2014; 122
Radue, Barkhof, Kappos (CR7) 2015; 84
Kalincik, Manouchehrinia, Sobisek (CR42) 2017; 140
Tona, Petsas, Sbardella (CR38) 2014; 271
Bluemke, Moy, Bredella (CR25) 2020; 294
Schoonheim, Geurts, Barkhof (CR29) 2010; 74
Tommasin, Giannì, De Giglio, Pantano (CR4) 2017
Polman, Reingold, Banwell (CR20) 2011; 69
Thompson, Banwell, Barkhof (CR21) 2018; 17
Amato, Fonderico, Portaccio (CR3) 2020
Tintore, Arrambide, Otero-Romero (CR34) 2019
Wilkins (CR15) 2017
Ciccarelli, Barkhof, Bodini (CR2) 2014; 13
Azevedo, Cen, Khadka (CR37) 2018; 83
Pontillo, Cocozza, Di Stasi (CR6) 2020
Bakshi, Healy, Dupuy (CR35) 2020
D’Ambrosio, Pagani, Riccitelli (CR12) 2017; 23
Kolasa, Hakulinen, Brander (CR41) 2019; 9
Stankoff, Louapre (CR39) 2018; 141
Río, Nos, Tintoré (CR22) 2006; 59
Law, Traboulsee, Li (CR26) 2019; 5
Davie, Barker, Webb (CR31) 1995; 118
Raz, Cercignani, Sbardella (CR23) 2009; 254
Calabrese, Mattisi, Rinaldi (CR30) 2010; 81
Tintore, Rovira, Río (CR5) 2015; 138
Louapre, Bodini, Lubetzki (CR8) 2017; 30
Eshaghi, Prados, Brownlee (CR10) 2018; 83
Datta, Colasanti, Rabiner (CR17) 2017; 140
Filippi, Brück, Chard (CR9) 2019; 18
Hart, Bainbridge (CR44) 2016; 22
Cohen, Reingold, Polman (CR45) 2012; 11
Elliott, Belachew, Wolinsky (CR33) 2019; 142
Cree, Mares, Hartung (CR43) 2019; 32
Patti, De Stefano, Lavorgna (CR13) 2015; 10
Zurita, Montalba, Labbé (CR19) 2018; 20
R Bakshi (10605_CR35) 2020
M Dwyer (10605_CR36) 2020; 94
E-W Radue (10605_CR7) 2015; 84
AJ Thompson (10605_CR21) 2018; 17
A Wilkins (10605_CR15) 2017
O Ciccarelli (10605_CR2) 2014; 13
MP Amato (10605_CR3) 2020
CA Davie (10605_CR31) 1995; 118
F Tona (10605_CR38) 2014; 271
M Calabrese (10605_CR14) 2012; 135
M Kolasa (10605_CR41) 2019; 9
T Kalincik (10605_CR42) 2017; 140
S Cocozza (10605_CR11) 2017; 88
M Filippi (10605_CR9) 2019; 18
A Eshaghi (10605_CR10) 2018; 83
MM Schoonheim (10605_CR29) 2010; 74
JD Haines (10605_CR40) 2011; 78
F Barkhof (10605_CR32) 2002; 15
A-M Šimundić (10605_CR28) 2009; 19
FM Hart (10605_CR44) 2016; 22
J Río (10605_CR22) 2006; 59
M Calabrese (10605_CR30) 2010; 81
BAC Cree (10605_CR43) 2019; 32
C Confavreux (10605_CR1) 2014; 122
G Pontillo (10605_CR6) 2020
C Elliott (10605_CR33) 2019; 142
V Wottschel (10605_CR18) 2015; 7
C Louapre (10605_CR8) 2017; 30
CH Polman (10605_CR20) 2011; 69
E Raz (10605_CR23) 2009; 254
C Gasperini (10605_CR27) 2019; 92
MA Rocca (10605_CR16) 2010; 257
M Tintore (10605_CR5) 2015; 138
B Stankoff (10605_CR39) 2018; 141
A D’Ambrosio (10605_CR12) 2017; 23
JA Cohen (10605_CR45) 2012; 11
S Tommasin (10605_CR4) 2017
M Tintore (10605_CR34) 2019
Y Zhao (10605_CR24) 2017; 12
CJ Azevedo (10605_CR37) 2018; 83
G Datta (10605_CR17) 2017; 140
F Patti (10605_CR13) 2015; 10
M Zurita (10605_CR19) 2018; 20
DA Bluemke (10605_CR25) 2020; 294
MT Law (10605_CR26) 2019; 5
References_xml – year: 2020
  ident: CR3
  article-title: Disease-modifying drugs can reduce disability progression in relapsing multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awaa251
– volume: 140
  start-page: 2927
  year: 2017
  end-page: 2938
  ident: CR17
  article-title: Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awx228
– volume: 17
  start-page: 162
  year: 2018
  end-page: 173
  ident: CR21
  article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(17)30470-2
– volume: 83
  start-page: 223
  year: 2018
  end-page: 234
  ident: CR37
  article-title: Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.25150
– volume: 12
  start-page: e0174866
  year: 2017
  ident: CR24
  article-title: Exploration of machine learning techniques in predicting multiple sclerosis disease course
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0174866
– volume: 5
  start-page: 2055217319885983
  year: 2019
  ident: CR26
  article-title: Machine learning in secondary progressive multiple sclerosis: an improved predictive model for short-term disability progression
  publication-title: Mult Scler J Exp Transl Clin
  doi: 10.1177/2055217319885983
– volume: 30
  start-page: 231
  year: 2017
  end-page: 236
  ident: CR8
  article-title: Imaging markers of multiple sclerosis prognosis
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000456
– volume: 10
  start-page: e0120754
  year: 2015
  ident: CR13
  article-title: Lesion load may predict long-term cognitive dysfunction in multiple sclerosis patients
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0120754
– volume: 19
  start-page: 203
  year: 2009
  end-page: 211
  ident: CR28
  article-title: Measures of diagnostic accuracy: basic definitions
  publication-title: EJIFCC
– year: 2020
  ident: CR6
  article-title: 2D linear measures of ventricular enlargement may be relevant markers of brain atrophy and long-term disability progression in multiple sclerosis
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06738-4
– volume: 84
  start-page: 784
  year: 2015
  end-page: 793
  ident: CR7
  article-title: Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001281
– year: 2020
  ident: CR35
  article-title: Brain MRI predicts worsening multiple sclerosis disability over 5 years in the SUMMIT study
  publication-title: J Neuroimaging
  doi: 10.1111/jon.12688
– volume: 92
  start-page: 180
  year: 2019
  end-page: 192
  ident: CR27
  article-title: Unraveling treatment response in multiple sclerosis: a clinical and MRI challenge
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000006810
– volume: 257
  start-page: 463
  year: 2010
  end-page: 469
  ident: CR16
  article-title: Thalamic damage and long-term progression of disability in multiple sclerosis
  publication-title: Radiology
  doi: 10.1148/radiol.10100326
– volume: 94
  start-page: 4846
  year: 2020
  ident: CR36
  article-title: Artificial intelligence-based thalamic volumetry is fast, reliable, and generalizable to large, heterogeneous datasets using only clinical quality T2-FLAIR MRI (4846)
  publication-title: Neurology
– volume: 69
  start-page: 292
  year: 2011
  end-page: 302
  ident: CR20
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann Neurol
  doi: 10.1002/ana.22366
– volume: 11
  start-page: 467
  year: 2012
  end-page: 476
  ident: CR45
  article-title: Disability outcome measures in multiple sclerosis clinical trials: current status and future prospects
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(12)70059-5
– volume: 9
  start-page: e01194
  year: 2019
  ident: CR41
  article-title: Diffusion tensor imaging and disability progression in multiple sclerosis: a 4-year follow-up study
  publication-title: Brain Behav
  doi: 10.1002/brb3.1194
– volume: 83
  start-page: 210
  year: 2018
  end-page: 222
  ident: CR10
  article-title: Deep gray matter volume loss drives disability worsening in multiple sclerosis
  publication-title: Ann Neurol
  doi: 10.1002/ana.25145
– year: 2017
  ident: CR15
  article-title: Cerebellar dysfunction in multiple sclerosis
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00312
– volume: 254
  start-page: 227
  year: 2009
  end-page: 234
  ident: CR23
  article-title: Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of White and Gray matter
  publication-title: Radiology
  doi: 10.1148/radiol.2541090817
– year: 2019
  ident: CR34
  article-title: The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS
  publication-title: Mult Scler
  doi: 10.1177/1352458519877810
– volume: 22
  start-page: s159
  year: 2016
  end-page: 170
  ident: CR44
  article-title: Current and emerging treatment of multiple sclerosis
  publication-title: Am J Manag Care
– volume: 23
  start-page: 1194
  year: 2017
  end-page: 1203
  ident: CR12
  article-title: Cerebellar contribution to motor and cognitive performance in multiple sclerosis: an MRI sub-regional volumetric analysis
  publication-title: Mult Scler
  doi: 10.1177/1352458516674567
– volume: 78
  start-page: 231
  year: 2011
  end-page: 243
  ident: CR40
  article-title: axonal damage in multiple sclerosis
  publication-title: Mt Sinai J Med
  doi: 10.1002/msj.20246
– volume: 15
  start-page: 239
  year: 2002
  end-page: 245
  ident: CR32
  article-title: The clinico-radiological paradox in multiple sclerosis revisited
  publication-title: Curr Opin Neurol
  doi: 10.1097/00019052-200206000-00003
– volume: 135
  start-page: 2952
  year: 2012
  end-page: 2961
  ident: CR14
  article-title: Cortical lesion load associates with progression of disability in multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/aws246
– volume: 18
  start-page: 198
  year: 2019
  end-page: 210
  ident: CR9
  article-title: Association between pathological and MRI findings in multiple sclerosis
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30451-4
– volume: 88
  start-page: 1065
  year: 2017
  end-page: 1072
  ident: CR11
  article-title: Cerebellar lobule atrophy and disability in progressive MS
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2017-316448
– volume: 7
  start-page: 281
  year: 2015
  end-page: 287
  ident: CR18
  article-title: Predicting outcome in clinically isolated syndrome using machine learning
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.11.021
– volume: 142
  start-page: 2787
  year: 2019
  end-page: 2799
  ident: CR33
  article-title: Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awz212
– volume: 141
  start-page: 1580
  year: 2018
  end-page: 1583
  ident: CR39
  article-title: Can we use regional grey matter atrophy sequence to stage neurodegeneration in multiple sclerosis?
  publication-title: Brain
  doi: 10.1093/brain/awy114
– volume: 74
  start-page: 1246
  year: 2010
  end-page: 1247
  ident: CR29
  article-title: The limits of functional reorganization in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181db9957
– volume: 271
  start-page: 814
  year: 2014
  end-page: 821
  ident: CR38
  article-title: Multiple sclerosis: altered thalamic resting-state functional connectivity and its effect on cognitive function
  publication-title: Radiology
  doi: 10.1148/radiol.14131688
– volume: 32
  start-page: 365
  year: 2019
  end-page: 377
  ident: CR43
  article-title: Current therapeutic landscape in multiple sclerosis: an evolving treatment paradigm
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000700
– volume: 20
  start-page: 724
  year: 2018
  end-page: 730
  ident: CR19
  article-title: Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.09.002
– volume: 118
  start-page: 1583
  issue: Pt 6
  year: 1995
  end-page: 1592
  ident: CR31
  article-title: Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss
  publication-title: Brain
  doi: 10.1093/brain/118.6.1583
– year: 2017
  ident: CR4
  article-title: Neuroimaging techniques to assess inflammation in multiple sclerosis
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.07.055
– volume: 81
  start-page: 401
  year: 2010
  end-page: 404
  ident: CR30
  article-title: Magnetic resonance evidence of cerebellar cortical pathology in multiple sclerosis
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2009.177733
– volume: 294
  start-page: 487
  year: 2020
  end-page: 489
  ident: CR25
  article-title: Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers—from the radiology editorial board
  publication-title: Radiology
  doi: 10.1148/radiol.2019192515
– volume: 13
  start-page: 807
  year: 2014
  end-page: 822
  ident: CR2
  article-title: Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70101-2
– volume: 140
  start-page: 2426
  year: 2017
  end-page: 2443
  ident: CR42
  article-title: Towards personalized therapy for multiple sclerosis: prediction of individual treatment response
  publication-title: Brain
  doi: 10.1093/brain/awx185
– volume: 138
  start-page: 1863
  year: 2015
  end-page: 1874
  ident: CR5
  article-title: Defining high, medium and low impact prognostic factors for developing multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awv105
– volume: 59
  start-page: 344
  year: 2006
  end-page: 352
  ident: CR22
  article-title: Defining the response to interferon-beta in relapsing-remitting multiple sclerosis patients
  publication-title: Ann Neurol
  doi: 10.1002/ana.20740
– volume: 122
  start-page: 343
  year: 2014
  end-page: 369
  ident: CR1
  article-title: The clinical course of multiple sclerosis
  publication-title: Handb Clin Neurol
  doi: 10.1016/B978-0-444-52001-2.00014-5
– year: 2017
  ident: 10605_CR15
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00312
– volume: 22
  start-page: s159
  year: 2016
  ident: 10605_CR44
  publication-title: Am J Manag Care
– volume: 294
  start-page: 487
  year: 2020
  ident: 10605_CR25
  publication-title: Radiology
  doi: 10.1148/radiol.2019192515
– year: 2020
  ident: 10605_CR3
  publication-title: Brain
  doi: 10.1093/brain/awaa251
– volume: 20
  start-page: 724
  year: 2018
  ident: 10605_CR19
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.09.002
– volume: 74
  start-page: 1246
  year: 2010
  ident: 10605_CR29
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181db9957
– volume: 78
  start-page: 231
  year: 2011
  ident: 10605_CR40
  publication-title: Mt Sinai J Med
  doi: 10.1002/msj.20246
– volume: 12
  start-page: e0174866
  year: 2017
  ident: 10605_CR24
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0174866
– volume: 122
  start-page: 343
  year: 2014
  ident: 10605_CR1
  publication-title: Handb Clin Neurol
  doi: 10.1016/B978-0-444-52001-2.00014-5
– year: 2017
  ident: 10605_CR4
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.07.055
– volume: 81
  start-page: 401
  year: 2010
  ident: 10605_CR30
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2009.177733
– volume: 257
  start-page: 463
  year: 2010
  ident: 10605_CR16
  publication-title: Radiology
  doi: 10.1148/radiol.10100326
– volume: 83
  start-page: 223
  year: 2018
  ident: 10605_CR37
  publication-title: Ann Neurol
  doi: 10.1002/ana.25150
– volume: 69
  start-page: 292
  year: 2011
  ident: 10605_CR20
  publication-title: Ann Neurol
  doi: 10.1002/ana.22366
– volume: 141
  start-page: 1580
  year: 2018
  ident: 10605_CR39
  publication-title: Brain
  doi: 10.1093/brain/awy114
– volume: 7
  start-page: 281
  year: 2015
  ident: 10605_CR18
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.11.021
– year: 2020
  ident: 10605_CR35
  publication-title: J Neuroimaging
  doi: 10.1111/jon.12688
– volume: 23
  start-page: 1194
  year: 2017
  ident: 10605_CR12
  publication-title: Mult Scler
  doi: 10.1177/1352458516674567
– volume: 13
  start-page: 807
  year: 2014
  ident: 10605_CR2
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70101-2
– volume: 19
  start-page: 203
  year: 2009
  ident: 10605_CR28
  publication-title: EJIFCC
– volume: 94
  start-page: 4846
  year: 2020
  ident: 10605_CR36
  publication-title: Neurology
  doi: 10.1212/WNL.94.15_supplement.4846
– volume: 118
  start-page: 1583
  issue: Pt 6
  year: 1995
  ident: 10605_CR31
  publication-title: Brain
  doi: 10.1093/brain/118.6.1583
– volume: 9
  start-page: e01194
  year: 2019
  ident: 10605_CR41
  publication-title: Brain Behav
  doi: 10.1002/brb3.1194
– volume: 140
  start-page: 2426
  year: 2017
  ident: 10605_CR42
  publication-title: Brain
  doi: 10.1093/brain/awx185
– volume: 271
  start-page: 814
  year: 2014
  ident: 10605_CR38
  publication-title: Radiology
  doi: 10.1148/radiol.14131688
– volume: 84
  start-page: 784
  year: 2015
  ident: 10605_CR7
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001281
– volume: 11
  start-page: 467
  year: 2012
  ident: 10605_CR45
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(12)70059-5
– volume: 140
  start-page: 2927
  year: 2017
  ident: 10605_CR17
  publication-title: Brain
  doi: 10.1093/brain/awx228
– volume: 5
  start-page: 205521731988598
  year: 2019
  ident: 10605_CR26
  publication-title: Mult Scler J Exp Transl Clin
  doi: 10.1177/2055217319885983
– volume: 15
  start-page: 239
  year: 2002
  ident: 10605_CR32
  publication-title: Curr Opin Neurol
  doi: 10.1097/00019052-200206000-00003
– volume: 135
  start-page: 2952
  year: 2012
  ident: 10605_CR14
  publication-title: Brain
  doi: 10.1093/brain/aws246
– volume: 92
  start-page: 180
  year: 2019
  ident: 10605_CR27
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000006810
– volume: 83
  start-page: 210
  year: 2018
  ident: 10605_CR10
  publication-title: Ann Neurol
  doi: 10.1002/ana.25145
– volume: 254
  start-page: 227
  year: 2009
  ident: 10605_CR23
  publication-title: Radiology
  doi: 10.1148/radiol.2541090817
– volume: 142
  start-page: 2787
  year: 2019
  ident: 10605_CR33
  publication-title: Brain
  doi: 10.1093/brain/awz212
– volume: 18
  start-page: 198
  year: 2019
  ident: 10605_CR9
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30451-4
– volume: 138
  start-page: 1863
  year: 2015
  ident: 10605_CR5
  publication-title: Brain
  doi: 10.1093/brain/awv105
– year: 2020
  ident: 10605_CR6
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06738-4
– volume: 10
  start-page: e0120754
  year: 2015
  ident: 10605_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0120754
– volume: 88
  start-page: 1065
  year: 2017
  ident: 10605_CR11
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2017-316448
– volume: 32
  start-page: 365
  year: 2019
  ident: 10605_CR43
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000700
– year: 2019
  ident: 10605_CR34
  publication-title: Mult Scler
  doi: 10.1177/1352458519877810
– volume: 59
  start-page: 344
  year: 2006
  ident: 10605_CR22
  publication-title: Ann Neurol
  doi: 10.1002/ana.20740
– volume: 30
  start-page: 231
  year: 2017
  ident: 10605_CR8
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000456
– volume: 17
  start-page: 162
  year: 2018
  ident: 10605_CR21
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(17)30470-2
SSID ssj0008459
Score 2.4902163
Snippet Objectives To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS. Methods We...
To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS. We analyzed structural...
ObjectivesTo evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS.MethodsWe...
To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS.OBJECTIVESTo evaluate...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4834
SubjectTerms Accuracy
Anisotropy
Brain - diagnostic imaging
Cerebellum
Disability Evaluation
Disease Progression
Gray Matter - diagnostic imaging
Humans
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Medicine
Medicine & Public Health
Multiple sclerosis
Multiple Sclerosis - diagnostic imaging
Neurology
Neuroradiology
Neurosciences
Original Communication
Patients
Phenotypes
Substantia alba
Substantia grisea
Thalamus
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFqFeeFMCBRmJG1jY8XNPValacaCrCoHUW-TYTomEsmWTIvXMH8f2OqmWil569jixM57xF3vmG4B30ta2nvMGG2PDD4q0c6x9KbHVAY2bUhPhEonrF7VY6NPT-Uk-cOtzWOXoE5Ojdksbz8g_BphOA7bWSu2d_8KxalS8Xc0lNO7CVmQq4zPY-nS4OPk6-WLNU7k0wjjBggme02ZS8lykmorZyTGkK4B6rDa3pmt483rY5D93p2lLOnp428k8ggcZjKL99ep5DHd89wTuH-fr9qfw5ziFWnqUa0ucIRvBdtuEvRQNS9SmLN_mEo35lch0Dq2Ma0eXihqfmEN7FIuzBNQ-xH4uE_sOlyjFh625QVDboTG-EfVhQOErtf0z-H50-O3gM85VG7Dlig9YSctIXTJrJA1qZ7xuSu5pY4nnstaOC2s9d45JY4RptJoTL-pGiYC0eE1q9hxm3bLzLwAJaahzjTOccO7DU11pPdUmyErvqC2AjgqrbKY0j5U1flYTGXNSchWUXCUlV6qA91Of8zWhx43Su6MCq2zcfXWlvQLeTs3BLONdi-n88iLKlME10pLwAnbWy2Z6HQsYkDCmC1AbC2oSiJTfmy1d-yNRf2shmVS0gA_j0rsa1v9n8fLmWbyC7TKZQQzS2YXZsLrwr-Ge_T20_epNNqm_bH8rrQ
  priority: 102
  providerName: ProQuest
Title Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis
URI https://link.springer.com/article/10.1007/s00415-021-10605-7
https://www.ncbi.nlm.nih.gov/pubmed/33970338
https://www.proquest.com/docview/2591875877
https://www.proquest.com/docview/2524881204
https://pubmed.ncbi.nlm.nih.gov/PMC8563671
Volume 268
WOSCitedRecordID wos000648826600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1459
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008459
  issn: 0340-5354
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RFiEu5VkIlJWRuEEkO37uEVArDnRVlYf2Fjm2A5GqLNqkSD3zxzv2JkFLAQkuuXjs2OMZe6yZ-QbghXKVq-aizq11-EBRbp6bUKjcGbTGbWGo9AnE9b1eLMxyOT8dksK6Mdp9dEmmk3pKdovQUDGbOIZgoRGe6x3Yw-vORHU8-_B5On-NSCXSKBc0l1yKIVXm92NsX0fXbMzroZK_-EvTNXR85_8WcBf2B7OTvN7IyT24Edr7cOtkcKw_gB8nKagykKGKxBfiolnd1Hhrkn5FmpTPW1-SMZOS2NaTtfXNeHiSOiSM0I7EMixon_exnx8gfPtLkiLBNiggpGnJGMlIOpwQ8qbpHsKn46OPb9_lQ32G3Akt-lwrx2lVcGcVww3moqoLEVjtaBCqMl5I54Lwnitrpa2NntMgq1pLtKlERSt-ALvtqg2PgUhlmfe1t4IKEXBUX7jAjEVaFTxzGbBxm0o3gJfHGhrn5QS7nLhbInfLxN1SZ_By6vNtA93xV-rDcffLQY27Et-GDB90RmPz86kZFTB6VWwbVheRpsBDkBVUZPBoIyzT7zhae5Rzk4HeEqOJIIJ7b7e0zdcE8m2k4kqzDF6NwvRzWn9exZN_I38Kt4skjzE85xB2-_VFeAY33fe-6dYz2NFLnb5mBntvjhanZ7OkalcGqCNr
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgBBFO7NjeA0IIqFp1d8WhSHsLju1AJJQtmxS0Z_4Pv5Gx86iWit564Bw7sZPP45n4m28AnglTmGLCy1hrgwGKMJNYuVTERqE3rlNFMxtEXKdyPleLxeTjFvwecmE8rXKwicFQ26Xx_8hfoZueoG-tpHxz9D32VaP86epQQqODxYFb_8SQrXm9_x6_7_M03f1w-G4v7qsKxIZL3sZSGEaLlBktEhwW40WZcpeUhjouCmV5Zozj1jKhdaZLJSfUZUUpM_QEeEELhve9ABfRjktPIZOLMcCjiofibJRxGmcs432STkjV88JWPhfaE8gwhIjl5kZ4yrs9TdL866Q2bIC71_-3V3cDrvWuNnnbrY2bsOXqW3B51pMJbsOvWSCSOtJXzvhCjA8lqhI9BdIuSRVymMs1GbJHia4tWWlbDRsGKV3QRW2ILz2DMUnr-9letrhdk8B-65RPSFWTgb1JGhwQfpWquQOfzuUV3IXtelm7-0AyoRNrS6s55dzhXW1qXKI0thXOJiaCZABIbnrBdl835Fs-Sk0HUOUIqjyAKpcRvBj7HHVyJWe23hkAk_emq8lP0BLB0_EyGh1_kqRrtzz2bVI0_ElKeQT3OpiOj2Po4VLGVARyA8BjAy9ovnmlrr4GYXOVCSZkEsHLAeonw_r3LB6cPYsncGXvcDbNp_vzg4dwNQ1L0NORdmC7XR27R3DJ_GirZvU4LGYCn897CfwBWmiIbQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaq48H4EChgJThA1iR3be0AIaFdUbVcrBFJvqWM7NFKVLZsUtGf-Fb-OsfOoloreeuAcO7GTz55v4plvAF5ynet8zIpQKY0OCtfjUNqEh1oiG1eJjFLjRVz3xXQqDw_HszX43efCuLDKfk_0G7WZa_ePfAtpeozcWgqxVXRhEbPtybvT76GrIOVOWvtyGi1E9uzyJ7pv9dvdbfzWr5JksvPl46ewqzAQaiZYEwquaZQnVCse4xApy4uE2bjQkWU8l4alWltmDOVKpaqQYhzZNC9EiqyA5VFO8b7XYF0gyUhHsP5hZzr7PNgByXyptoiyKExpyrqUHZ-452SuXGa0CydDhyIUq2bxAte9GLL517mtN4eTW__zi7wNNzsSTt63q-YOrNnqLmwcdGEG9-DXgQ8xtaSrqfGNaOdklAVyCNLMSemzm4sl6fNKiaoMWShT9qaEFNYrptbEFaVBb6Vx_UwnaNwsiY-LazVRSFmRPq6T1Dgg_EJlfR--XskreACjal7ZR0BSrmJjCqNYxJjFu5pE21gqbMutiXUAcQ-WTHdS7q6iyEk2iFB7gGUIsMwDLBMBvB76nLZCJpe23uzBk3WbWp2dIyeAF8Nl3I7cGZOq7PzMtUnQJMRJxAJ42EJ2eBxF7htRKgMQK2AeGjip89UrVXnsJc9lyikXcQBvetifD-vfs3h8-SyewwYiP9vfne49gRuJX40uTmkTRs3izD6F6_pHU9aLZ93KJnB01WvgDz6Tko0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+classifier+to+identify+clinical+and+radiological+features+relevant+to+disability+progression+in+multiple+sclerosis&rft.jtitle=Journal+of+neurology&rft.au=Tommasin%2C+Silvia&rft.au=Cocozza%2C+Sirio&rft.au=Taloni%2C+Alessandro&rft.au=Giann%C3%AC%2C+Costanza&rft.date=2021-12-01&rft.issn=0340-5354&rft.eissn=1432-1459&rft.volume=268&rft.issue=12&rft.spage=4834&rft.epage=4845&rft_id=info:doi/10.1007%2Fs00415-021-10605-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00415_021_10605_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-5354&client=summon