Gas-Sensing Properties and Preparation of Waste Mask Fibers/ZnS Composites

To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials Jg. 51; H. 7; S. 3843 - 3850
Hauptverfasser: Wang, Q. Y., Wu, Z. F., Zhang, M., Qin, Z. J., Wang, L., Zhong, F. R., Duan, H. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2022
Springer Nature B.V
Schlagworte:
ISSN:0361-5235, 1543-186X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-performance gas sensor. The MF/ZnS sensor showed high sensitivity and recoverability to target vapors at room temperature. Compared with ZnS powder loaded on a ceramic substrate, the MF/ZnS composite responses to four analytes have been improved by 8.4~35.2 times. In addition, the time for the MF/ZnS sensor to complete one response–recovery cycle for all four analytes was less than 30 s. This should be attributed to the high gas permeability of the MF substrate, which made the ZnS particles loaded on the MF more fully exposed to contact with the target vapors. This work not only provides a simple and low-cost method to optimize the sensing performance of gas sensors but also provides a new way for the resource utilization of MF. Graphic Abstract
AbstractList To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-performance gas sensor. The MF/ZnS sensor showed high sensitivity and recoverability to target vapors at room temperature. Compared with ZnS powder loaded on a ceramic substrate, the MF/ZnS composite responses to four analytes have been improved by 8.4~35.2 times. In addition, the time for the MF/ZnS sensor to complete one response–recovery cycle for all four analytes was less than 30 s. This should be attributed to the high gas permeability of the MF substrate, which made the ZnS particles loaded on the MF more fully exposed to contact with the target vapors. This work not only provides a simple and low-cost method to optimize the sensing performance of gas sensors but also provides a new way for the resource utilization of MF.Graphic Abstract
To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-performance gas sensor. The MF/ZnS sensor showed high sensitivity and recoverability to target vapors at room temperature. Compared with ZnS powder loaded on a ceramic substrate, the MF/ZnS composite responses to four analytes have been improved by 8.4~35.2 times. In addition, the time for the MF/ZnS sensor to complete one response-recovery cycle for all four analytes was less than 30 s. This should be attributed to the high gas permeability of the MF substrate, which made the ZnS particles loaded on the MF more fully exposed to contact with the target vapors. This work not only provides a simple and low-cost method to optimize the sensing performance of gas sensors but also provides a new way for the resource utilization of MF.To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-performance gas sensor. The MF/ZnS sensor showed high sensitivity and recoverability to target vapors at room temperature. Compared with ZnS powder loaded on a ceramic substrate, the MF/ZnS composite responses to four analytes have been improved by 8.4~35.2 times. In addition, the time for the MF/ZnS sensor to complete one response-recovery cycle for all four analytes was less than 30 s. This should be attributed to the high gas permeability of the MF substrate, which made the ZnS particles loaded on the MF more fully exposed to contact with the target vapors. This work not only provides a simple and low-cost method to optimize the sensing performance of gas sensors but also provides a new way for the resource utilization of MF.The online version contains supplementary material available at 10.1007/s11664-022-09644-1.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11664-022-09644-1.
To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-performance gas sensor. The MF/ZnS sensor showed high sensitivity and recoverability to target vapors at room temperature. Compared with ZnS powder loaded on a ceramic substrate, the MF/ZnS composite responses to four analytes have been improved by 8.4~35.2 times. In addition, the time for the MF/ZnS sensor to complete one response–recovery cycle for all four analytes was less than 30 s. This should be attributed to the high gas permeability of the MF substrate, which made the ZnS particles loaded on the MF more fully exposed to contact with the target vapors. This work not only provides a simple and low-cost method to optimize the sensing performance of gas sensors but also provides a new way for the resource utilization of MF.
To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-performance gas sensor. The MF/ZnS sensor showed high sensitivity and recoverability to target vapors at room temperature. Compared with ZnS powder loaded on a ceramic substrate, the MF/ZnS composite responses to four analytes have been improved by 8.4~35.2 times. In addition, the time for the MF/ZnS sensor to complete one response–recovery cycle for all four analytes was less than 30 s. This should be attributed to the high gas permeability of the MF substrate, which made the ZnS particles loaded on the MF more fully exposed to contact with the target vapors. This work not only provides a simple and low-cost method to optimize the sensing performance of gas sensors but also provides a new way for the resource utilization of MF. Graphic Abstract
To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-performance gas sensor. The MF/ZnS sensor showed high sensitivity and recoverability to target vapors at room temperature. Compared with ZnS powder loaded on a ceramic substrate, the MF/ZnS composite responses to four analytes have been improved by 8.4~35.2 times. In addition, the time for the MF/ZnS sensor to complete one response-recovery cycle for all four analytes was less than 30 s. This should be attributed to the high gas permeability of the MF substrate, which made the ZnS particles loaded on the MF more fully exposed to contact with the target vapors. This work not only provides a simple and low-cost method to optimize the sensing performance of gas sensors but also provides a new way for the resource utilization of MF. The online version contains supplementary material available at 10.1007/s11664-022-09644-1.
Author Wu, Z. F.
Qin, Z. J.
Duan, H. M.
Wang, Q. Y.
Zhong, F. R.
Zhang, M.
Wang, L.
Author_xml – sequence: 1
  givenname: Q. Y.
  surname: Wang
  fullname: Wang, Q. Y.
  organization: Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University
– sequence: 2
  givenname: Z. F.
  surname: Wu
  fullname: Wu, Z. F.
  email: wuzf@xju.edu.cn
  organization: Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University
– sequence: 3
  givenname: M.
  surname: Zhang
  fullname: Zhang, M.
  email: minzhang0816@163.com
  organization: Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University
– sequence: 4
  givenname: Z. J.
  surname: Qin
  fullname: Qin, Z. J.
  organization: Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University
– sequence: 5
  givenname: L.
  surname: Wang
  fullname: Wang, L.
  organization: Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University
– sequence: 6
  givenname: F. R.
  surname: Zhong
  fullname: Zhong, F. R.
  organization: School of Physics and Electronic Science, Zunyi Normal College
– sequence: 7
  givenname: H. M.
  surname: Duan
  fullname: Duan, H. M.
  email: dhm@xju.edu.cn
  organization: Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35497373$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEYhYO02NvqH3AhA27cpM13JhtBLvZDWhSqKG5CJvPONXVuMk3mCv77xt5atYuuQshzTs77nn20E1MEhF5QckgJ0UeFUqUEJoxhYpQQmD5BCyoFx7RVX3fQgnBFsWRc7qH9Uq4IoZK29Cna41IYzTVfoPcnruBLiCXEVfMxpwnyHKA0Lvb1CpPLbg4pNmlovrgyQ3Phyo_mOHSQy9G3eNks03pKJcxQnqHdwY0Fnt-dB-jz8btPy1N8_uHkbPn2HHuhxYzVQEwvgClJpO6lc50zHRuYZ156AsJ0hBHtJJBOAWeS9UZD13YDbZkxzvMD9GbrO226NfQe4pzdaKcc1i7_sskF-_9LDN_tKv20hgiijKoGr-8McrreQJntOhQP4-gipE2xNVqrhGqFqOirB-hV2uRYx6uUZlQL0vJKvfw30X2UP2uuANsCPqdSMgz3CCX2d5d226WtXdrbLi2tovaByIf5to06VRgfl_KttNR_4gry39iPqG4A5Lmy6g
CitedBy_id crossref_primary_10_1016_j_cogsc_2022_100695
crossref_primary_10_1016_j_scitotenv_2022_158396
crossref_primary_10_1016_j_jhazmat_2023_132872
crossref_primary_10_1016_j_scitotenv_2023_164055
crossref_primary_10_1021_acsomega_5c01926
crossref_primary_10_1063_5_0178843
Cites_doi 10.1039/C1AN15738H
10.1016/j.cplett.2016.03.035
10.1016/j.nanoen.2019.103974
10.1002/adma.201304366
10.1016/j.jhazmat.2019.121245
10.1021/acsnano.0c04782
10.1002/adma.201807161
10.1016/j.jclepro.2014.11.043
10.1126/science.1222453
10.1016/j.compscitech.2012.09.005
10.1038/d41586-020-02801-8
10.1002/pssa.200880487
10.1039/C6RA11008H
10.1016/j.snb.2009.04.045
10.7150/thno.45079
10.1016/j.snb.2017.11.166
10.1016/j.coco.2021.100889
10.1038/nature16521
10.1016/j.adhoc.2012.02.016
10.1016/j.snb.2014.07.082
10.1016/j.snb.2019.126689
10.1002/smll.200500261
10.1002/adfm.201600592
10.1016/j.compscitech.2019.107966
10.1021/acsami.5b04808
10.1021/acsami.6b15669
10.1038/s41598-018-25836-4
10.1016/j.microc.2017.06.012
10.1039/C6RA19533D
10.1038/s41565-020-0707-4
10.1002/smll.201401865
10.1016/j.jclepro.2014.09.010
10.7554/eLife.55513
10.1016/j.marpolbul.2020.111517
10.1021/acsanm.1c01068
10.1007/s11671-007-9072-6
10.1016/j.cej.2021.132723
10.1007/s00604-012-0904-4
10.1038/250161a0
ContentType Journal Article
Copyright The Minerals, Metals & Materials Society 2022
The Minerals, Metals & Materials Society 2022.
Copyright Springer Nature B.V. Jul 2022
Copyright_xml – notice: The Minerals, Metals & Materials Society 2022
– notice: The Minerals, Metals & Materials Society 2022.
– notice: Copyright Springer Nature B.V. Jul 2022
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8AF
8AO
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
KB.
L6V
M2O
M2P
M7S
MBDVC
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
S0X
7X8
5PM
DOI 10.1007/s11664-022-09644-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
Materials Science Database
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
Materials Science Collection
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1543-186X
EndPage 3850
ExternalDocumentID PMC9040696
35497373
10_1007_s11664_022_09644_1
Genre Journal Article
GrantInformation_xml – fundername: Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region
  grantid: 2020D14038
– fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2019D01C019; XJEDU2020Y004
– fundername: National Natural Science Foundation of China
  grantid: 21964016; 11664038; 61864011
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: ;
  grantid: 2020D14038
– fundername: ;
  grantid: 2019D01C019; XJEDU2020Y004
– fundername: ;
  grantid: 21964016; 11664038; 61864011
GroupedDBID -Y2
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
78A
88I
8AF
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C1A
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D-I
D1I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GUQSH
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KC.
KDC
KOV
L6V
LLZTM
M2O
M2P
M2Q
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9N
PDBOC
PF0
PHGZT
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RWL
RXW
RZK
S0X
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
ZE2
ZMTXR
ZY4
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
-4Y
-58
-5G
-BR
-EM
-~C
3V.
ADINQ
GQ6
NPM
PKN
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z8Z
Z92
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-6f09d4e265057d5aaba9b2f2c2c5c0e49b0207a5e0b6e3252d97eb8bf18299ac3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000787654100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0361-5235
IngestDate Tue Nov 04 01:57:45 EST 2025
Fri Sep 05 06:02:37 EDT 2025
Tue Nov 04 23:18:17 EST 2025
Wed Feb 19 02:26:00 EST 2025
Sat Nov 29 08:02:47 EST 2025
Tue Nov 18 21:02:33 EST 2025
Thu Apr 10 07:59:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords gas sensor
electronic materials
nanocomposites
Waste mask
Language English
License The Minerals, Metals & Materials Society 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-6f09d4e265057d5aaba9b2f2c2c5c0e49b0207a5e0b6e3252d97eb8bf18299ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9040696
PMID 35497373
PQID 2672174083
PQPubID 48394
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9040696
proquest_miscellaneous_2658646844
proquest_journals_2672174083
pubmed_primary_35497373
crossref_primary_10_1007_s11664_022_09644_1
crossref_citationtrail_10_1007_s11664_022_09644_1
springer_journals_10_1007_s11664_022_09644_1
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Warrendale
PublicationTitle Journal of electronic materials
PublicationTitleAbbrev J. Electron. Mater
PublicationTitleAlternate J Electron Mater
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BS Brown (9644_CR3) 1974; 250
D Miorandi (9644_CR11) 2012; 10
W He (9644_CR2) 2020; 14
D Zhang (9644_CR13) 2019; 65
A Das (9644_CR17) 2012; 72
R Banavath (9644_CR25) 2021; 4
H Yuan (9644_CR12) 2019; 31
W Chen (9644_CR21) 2011; 137
YA Chiao (9644_CR26) 2020; 9
AM Kansara (9644_CR8) 2016; 6
A Aragaw (9644_CR7) 2020; 159
A Asghar (9644_CR19) 2015; 87
S Marinello (9644_CR38) 2019; 384
E Capua (9644_CR43) 2009; 140
PK Prajapati (9644_CR5) 2016; 6
N Näther (9644_CR42) 2010; 206
W Zhang (9644_CR35) 2019; 188
H Sakata-Haga (9644_CR24) 2018; 8
9644_CR39
DT Dova (9644_CR36) 2007; 2
R Li (9644_CR40) 2021; 27
W Gao (9644_CR16) 2016; 529
ME Franke (9644_CR30) 2010; 2
H Liu (9644_CR15) 2014; 26
J Li (9644_CR41) 2016; 651
JM Rosa (9644_CR23) 2015; 90
D Zhang (9644_CR32) 2017; 9
L Shao (9644_CR10) 2018; 258
C Fang (9644_CR34) 2020; 10
R Zhang (9644_CR37) 2015; 7
M Volder (9644_CR29) 2013; 339
W Zhang (9644_CR33) 2019; 188
W Zhang (9644_CR27) 2020; 304
L Peeples (9644_CR1) 2020; 586
Z Wu (9644_CR28) 2016; 26
Q Sun (9644_CR18) 2019; 297
S Bai (9644_CR31) 2015; 11
S Chen (9644_CR20) 2013; 180
EI Muller (9644_CR22) 2017; 134
X Sun (9644_CR4) 2020; 15
SW Rhee (9644_CR6) 2020; 8
H Yue (9644_CR14) 2014; 204
S Kim (9644_CR9) 2022; 430
References_xml – volume: 8
  start-page: 38
  year: 2020
  ident: 9644_CR6
  publication-title: Waste Manag. Res.
– volume: 137
  start-page: 49
  year: 2011
  ident: 9644_CR21
  publication-title: Analyst
  doi: 10.1039/C1AN15738H
– volume: 651
  start-page: 137
  year: 2016
  ident: 9644_CR41
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.03.035
– volume: 65
  start-page: 103974
  year: 2019
  ident: 9644_CR13
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103974
– volume: 26
  start-page: 2718
  year: 2014
  ident: 9644_CR15
  publication-title: Adv Mater
  doi: 10.1002/adma.201304366
– volume: 384
  start-page: 121245
  year: 2019
  ident: 9644_CR38
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121245
– volume: 14
  start-page: 13161
  year: 2020
  ident: 9644_CR2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04782
– volume: 31
  start-page: 1807161
  year: 2019
  ident: 9644_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807161
– volume: 90
  start-page: 60
  year: 2015
  ident: 9644_CR23
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.11.043
– volume: 339
  start-page: 535
  year: 2013
  ident: 9644_CR29
  publication-title: Science
  doi: 10.1126/science.1222453
– volume: 72
  start-page: 1961
  year: 2012
  ident: 9644_CR17
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2012.09.005
– volume: 586
  start-page: 186
  year: 2020
  ident: 9644_CR1
  publication-title: Nature
  doi: 10.1038/d41586-020-02801-8
– volume: 206
  start-page: 449
  year: 2010
  ident: 9644_CR42
  publication-title: Phys. Status. Solid.
  doi: 10.1002/pssa.200880487
– volume: 6
  start-page: 61129
  year: 2016
  ident: 9644_CR8
  publication-title: RSC Adv.
  doi: 10.1039/C6RA11008H
– volume: 140
  start-page: 122
  year: 2009
  ident: 9644_CR43
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2009.04.045
– volume: 10
  start-page: 7671
  year: 2020
  ident: 9644_CR34
  publication-title: Theranostics
  doi: 10.7150/thno.45079
– ident: 9644_CR39
– volume: 258
  start-page: 937
  year: 2018
  ident: 9644_CR10
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2017.11.166
– volume: 27
  start-page: 100889
  year: 2021
  ident: 9644_CR40
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2021.100889
– volume: 529
  start-page: 509
  year: 2016
  ident: 9644_CR16
  publication-title: Nature
  doi: 10.1038/nature16521
– volume: 10
  start-page: 1497
  year: 2012
  ident: 9644_CR11
  publication-title: Ad. Hoc. Netw.
  doi: 10.1016/j.adhoc.2012.02.016
– volume: 204
  start-page: 310
  year: 2014
  ident: 9644_CR14
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2014.07.082
– volume: 297
  start-page: 126689
  year: 2019
  ident: 9644_CR18
  publication-title: Sensor Actuat B
  doi: 10.1016/j.snb.2019.126689
– volume: 2
  start-page: 36
  year: 2010
  ident: 9644_CR30
  publication-title: Small
  doi: 10.1002/smll.200500261
– volume: 26
  start-page: 4578
  year: 2016
  ident: 9644_CR28
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600592
– volume: 188
  start-page: 107966
  year: 2019
  ident: 9644_CR35
  publication-title: Compos. Sci. Technol,
  doi: 10.1016/j.compscitech.2019.107966
– volume: 7
  start-page: 19145
  year: 2015
  ident: 9644_CR37
  publication-title: ACS Appl. Mater. Int.
  doi: 10.1021/acsami.5b04808
– volume: 9
  start-page: 6462
  year: 2017
  ident: 9644_CR32
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15669
– volume: 188
  start-page: 107966
  year: 2019
  ident: 9644_CR33
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107966
– volume: 304
  start-page: 127233.1
  year: 2020
  ident: 9644_CR27
  publication-title: Sens. Actuat. B
– volume: 8
  start-page: 7453
  year: 2018
  ident: 9644_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25836-4
– volume: 134
  start-page: 257
  year: 2017
  ident: 9644_CR22
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2017.06.012
– volume: 6
  start-page: 88943
  year: 2016
  ident: 9644_CR5
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19533D
– volume: 15
  start-page: 755
  year: 2020
  ident: 9644_CR4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0707-4
– volume: 11
  start-page: 306
  year: 2015
  ident: 9644_CR31
  publication-title: Small
  doi: 10.1002/smll.201401865
– volume: 87
  start-page: 826
  year: 2015
  ident: 9644_CR19
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.09.010
– volume: 9
  start-page: e55513
  year: 2020
  ident: 9644_CR26
  publication-title: Elife
  doi: 10.7554/eLife.55513
– volume: 159
  start-page: 111517
  year: 2020
  ident: 9644_CR7
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2020.111517
– volume: 4
  start-page: 5564
  year: 2021
  ident: 9644_CR25
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c01068
– volume: 2
  start-page: 391
  year: 2007
  ident: 9644_CR36
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-007-9072-6
– volume: 430
  start-page: 132723
  year: 2022
  ident: 9644_CR9
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132723
– volume: 180
  start-page: 15
  year: 2013
  ident: 9644_CR20
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-012-0904-4
– volume: 250
  start-page: 161
  year: 1974
  ident: 9644_CR3
  publication-title: Nature
  doi: 10.1038/250161a0
SSID ssj0015181
Score 2.3828235
Snippet To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3843
SubjectTerms Ceramic powders
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electronics and Microelectronics
Gas sensors
Instrumentation
Materials Science
Nanoparticles
Optical and Electronic Materials
Original
Original Research Article
Permeability
Recoverability
Resource utilization
Room temperature
Sensors
Solid State Physics
Substrates
Waste utilization
Zinc sulfide
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3o_QgozEDawmjh_xCVWIBSGoViqPqpfIr9CqyCmbLb8fT5LNslT0wjGyrWQy4_GMZ-YbgBdS5sw3HJMYjKLclIJq5T01wUru0_kt-qr3rx_V_n51eKjn44VbN6ZVrnRir6h96_COfJdJhdZzshhen_2k2DUKo6tjC42rcA1RErB1w1wcTVEEUfRNSpOSLtDhEmPRzFA6V0jJKeayJyOec1psHkwXrM2LSZN_RU77A2l2-39JuQO3RlOU7A2ycxeuhHgPbv4BUHgfPrwzHT3AHPf4nczx3n6BAKzERJ8ew4Ab3kbSNuSbSfJCPpnulMwwC6XbPYoHBNUNpoWF7gF8mb39_OY9HbsvUMcVX1LZ5NrzwCS6MF4YY422rGGOOeHywLVNlqYyIuRWhpIJ5rUKtrJN8li0Nq58CFuxjeExEBsKK5x3VivBg7KGNcIynlzTqnS2DBkUq19fuxGaHDtk_KjXoMrIrjqxq-7ZVRcZvJzWnA3AHJfO3lmxoh43aVev-ZDB82k4bS-MmZgY2nOcIyrJZcV5Bo8GAZheVyYCVKnSarUhGtMEhO7eHIknxz2Et86x4lhm8GolROvP-jcVTy6nYhtusF6gMZl4B7aWi_PwFK67X8uTbvGs3xq_AR2nE_o
  priority: 102
  providerName: ProQuest
Title Gas-Sensing Properties and Preparation of Waste Mask Fibers/ZnS Composites
URI https://link.springer.com/article/10.1007/s11664-022-09644-1
https://www.ncbi.nlm.nih.gov/pubmed/35497373
https://www.proquest.com/docview/2672174083
https://www.proquest.com/docview/2658646844
https://pubmed.ncbi.nlm.nih.gov/PMC9040696
Volume 51
WOSCitedRecordID wos000787654100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1543-186X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015181
  issn: 0361-5235
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BywEOvB-BsgoSNwhNHD-SI0VdENAl6kJZ9RL5FVoVZdFmy-9nJptkWQpIcLFkeZzE9tgzk_lmDPBUypi5ihOIQauI61REuXIu0t5I7lB-izbq_ei9mkyy2SwvuqCwpke79y7J9qReB7slUvKI0OeodnMeoc2zjeJOEZDvcHo0-A5E0l5NikdzQmaW6EJlfv-MTXF0Qce8CJX8xV_aiqHxjf8bwE243qmd4csVn9yCS76-Ddd-SkZ4B96-1k00JTx7_SUs6B_9gpKthrp2WPWrHOHzOpxX4WeNvBEe6OYsHBPipNk9rqchHS0EAfPNXfg03v_46k3U3bQQWa74MpJVnDvumSRzxQmtjc4Nq5hlVtjY89ygVqm08LGRPmWCuVx5k5kKrZM81za9B1v1vPYPIDQ-McI6a3BhuFdGs0oYxtEMzVJrUh9A0k94abs05HQbxtdynUCZ5qnEeSrbeSqTAJ4Nfb6tknD8lXqnX8ey25BNyaQi4wsVzgCeDM24lcg_oms_PycakUkuM84DuL9a9uF1KQ5ApQp7qw2GGAgoTfdmS3160qbrzmOKLpYBPO_ZYv1Zfx7Fw38jfwRXWctZBCTega3l4tw_hiv2-_K0WYzgspplI9je258Uh1h7t_cCywP2oS0LKtUUy0Icj9rN9AOnpREm
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbtNA9KkUJODAvhgKGAlOMK09nsU-IMQWWpJGldpC1YuZzVCBnBKnIH6Kb2SetxAqeuuBozUztp_f7rcBPBIiorZgmMSgJGEq4SST1hLltGDW629eV72_H8nxON3by7aW4FdXC4NplZ1MrAW1nRj8R75GhUTr2VsMzw-_EZwahdHVboRGQxZD9_OHd9mqZxuvPX4fUzp4s_NqnbRTBYhhks2IKKLMMkcFmuaWK6VVpmlBDTXcRI5l2ltQUnEXaeESyqnNpNOpLrwlnmXKJP6-Z-AsS1KJzt7w5WofteBxPRTVK4UYHTzeFuk0pXqxEIxg7rx3Ghgj8aIiPGbdHk_S_CtSWyvAweX_7dNdgUutqR2-aHjjKiy58hpc_KMB43V491ZVZBtz-MtP4RbGJabYYDZUpfWXrumLPinDSRF-UJ4fwk1VfQkHmGVTre2X2yGKU0x7c9UN2D0VYG7Ccjkp3W0ItYs1N9boTHLmpFa04Joy73qnidGJCyDuUJ2btvU6TgD5ms-bRiN55J488po88jiAJ_2Zw6bxyIm7VzrU560QqvI53gN42C978YExIVW6yRHu4algImUsgFsNwfWPSzwAMpH-tFwgxX4DtiZfXCkPPtctyrMIK6pFAE87op2_1r-huHMyFA_g_PrO5igfbYyHd-ECrZkJE6dXYHk2PXL34Jz5Pjuopvdrtgzh42kT82-jlHFq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceBcCBYwEJ4g2cfyIDwghykJpWVYqj4pLajsOVKCkbLYg_hq_Dk9ey1LRWw8cI9tJJv48Hme-mQG4L0RE84IhiUHLkOmEh0rmeaidESz3-zdvot7fb8vJJN3dVdMV-NXHwiCtsteJjaLOK4v_yEdUSLSevcUwKjpaxHRj_OTgW4gVpNDT2pfTaCGy5X7-8Me3-vHmhp_rB5SOn7999jLsKgyElkk2D0URqZw5KtBMz7nWRitDC2qp5TZyTBlvTUnNXWSESyinuZLOpKbwVrlS2ib-vqfgtGTe7kfaIH0zeDB43BRI9RtEjIc93gXstGF7sRAsRB69P0AwFsbLm-IRS_coYfMvr22zGY4v_s-f8RJc6Exw8rRdM5dhxZVX4PwfiRmvwqsXug53kNtffiJT9FfMMPEs0WXuL12bL70qSVWQD9qvE_Ja11_IGNk39ehjuUNQzSIdztXX4N2JCLMGq2VVuhtAjIsNt7k1SnLmpNG04IZ6sKg0sSZxAcT9tGe2S8mOlUG-Zotk0giVzEMla6CSxQE8HMYctAlJju293sMg65RTnS0wEMC9odmrFfQV6dJVh9iHp4KJlLEArrfgGx6XeAFkIv1ouQTLoQOmLF9uKfc_N6nLVYSR1iKARz2AF6_1byluHi_FXTjrMZxtb062bsE52qwr5FOvw-p8duhuwxn7fb5fz-40K5TA3klj-TdFjXpN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas-Sensing+Properties+and+Preparation+of+Waste+Mask+Fibers%2FZnS+Composites&rft.jtitle=Journal+of+electronic+materials&rft.au=Wang%2C+Q.+Y.&rft.au=Wu%2C+Z.+F.&rft.au=Zhang%2C+M.&rft.au=Qin%2C+Z.+J.&rft.date=2022-07-01&rft.pub=Springer+US&rft.issn=0361-5235&rft.eissn=1543-186X&rft.volume=51&rft.issue=7&rft.spage=3843&rft.epage=3850&rft_id=info:doi/10.1007%2Fs11664-022-09644-1&rft_id=info%3Apmid%2F35497373&rft.externalDocID=PMC9040696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-5235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-5235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-5235&client=summon