Product pricing solutions using hybrid machine learning algorithm Product pricing solutions using hybrid machine learning algorithm
E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is qu...
Gespeichert in:
| Veröffentlicht in: | Innovations in systems and software engineering Jg. 20; H. 3; S. 413 - 424 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.09.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1614-5046, 1614-5054 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes—where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms. |
|---|---|
| AbstractList | E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes—where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms. E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes-where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms.E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes-where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms. |
| Author | Namburu, Anupama Varsha, M. Selvaraj, Prabha |
| Author_xml | – sequence: 1 givenname: Anupama orcidid: 0000-0002-7826-0158 surname: Namburu fullname: Namburu, Anupama email: namburianupama@gmail.com organization: School of Computer Science and Engineering, VIT-AP University – sequence: 2 givenname: Prabha surname: Selvaraj fullname: Selvaraj, Prabha organization: School of Computer Science and Engineering, VIT-AP University – sequence: 3 givenname: M. surname: Varsha fullname: Varsha, M. organization: School of Computer Science and Engineering, VIT-AP University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35910813$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1PFTEUbQxG4OkfcGEmceNmtJ1-b0wIUTAhgQWum057572SmRbbGRP-vR0foLBg1fbec05OzzlGBzFFQOg9wZ8JxvJLIYRS1uKuazFmgrf0FToigrCWY84OHu9MHKLjUm4w5oIL-gYdUq4JVoQeoZOrnPzi5uY2BxfitilpXOaQYmmWsr53d30Ovpms24UIzQg2x3Vux23KYd5Nb9HrwY4F3t2fG_Tz-7fr0_P24vLsx-nJReuYZHMrZO975QVIUCAH5b11yio5ALHQ1R0QxQauh957yr3gvaCyB7AU-o5qTTfo6173dukn8A7inO1oqu_J5juTbDBPNzHszDb9NppizTWvAp_uBXL6tUCZzRSKg3G0EdJSTCe0xJqomuoGfXwGvUlLjvV7hnacyY4Rgivqw_-OHq08pFsBag9wOZWSYTAuzHZNtxoMoyHYrEWafZGmFmn-FmlWaveM-qD-IonuSaWC4xbyP9svsP4AIFeyFw |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128949 crossref_primary_10_1108_JBIM_11_2024_0897 crossref_primary_10_1007_s10586_023_04132_5 crossref_primary_10_1007_s10973_025_14245_1 crossref_primary_10_1007_s42488_024_00133_0 crossref_primary_10_1007_s00500_023_08729_1 |
| Cites_doi | 10.1155/2020/5287263 10.1007/s10551-021-04938-6 10.1080/09599916.2020.1832558 10.1186/s40537-021-00476-0 10.1016/j.procs.2014.09.060 10.1108/EJM-03-2014-0150 10.1080/14783363.2021.1980381 10.1057/s41272-019-00224-3 10.1177/21582440211032168 10.1109/TSG.2019.2892595 10.32604/cmc.2022.020782 10.5815/ijieeb.2021.01.01 10.1142/S0217595921500020 10.1155/2020/2314659 10.1007/s10479-021-04187-w 10.3390/su13179762 10.1007/s10462-020-09896-5 10.1016/j.jbusres.2021.04.076 10.1109/ICSES52305.2021.9633975 10.1109/TOCS53301.2021.9688705 10.1155/2015/584084 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
| DBID | AAYXX CITATION NPM 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
| DOI | 10.1007/s11334-022-00465-3 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Computer Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1614-5054 |
| EndPage | 424 |
| ExternalDocumentID | PMC9309595 35910813 10_1007_s11334_022_00465_3 |
| Genre | Journal Article |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 203 29I 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABFSG ABJCF ABRTQ ACSTC AEZWR AFFHD AFHIU AFKRA AFOHR AHWEU AIXLP ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-67bdb8d6e7e8e7f8ddac8a87fe1ae2bdbe184f59fbdd35d65b637beea3eb23993 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829700600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1614-5046 |
| IngestDate | Tue Nov 04 01:57:58 EST 2025 Sun Nov 09 12:34:43 EST 2025 Sun Sep 28 03:52:00 EDT 2025 Thu Jul 24 03:22:40 EDT 2025 Sat Nov 29 08:03:54 EST 2025 Tue Nov 18 21:37:29 EST 2025 Thu Apr 10 07:59:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Ensemble algorithms X-NGBoost Product pricing XGBoost CatBoost |
| Language | English |
| License | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-67bdb8d6e7e8e7f8ddac8a87fe1ae2bdbe184f59fbdd35d65b637beea3eb23993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7826-0158 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9309595 |
| PMID | 35910813 |
| PQID | 3254724110 |
| PQPubID | 2044145 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9309595 proquest_miscellaneous_2697091811 proquest_journals_3254724110 pubmed_primary_35910813 crossref_citationtrail_10_1007_s11334_022_00465_3 crossref_primary_10_1007_s11334_022_00465_3 springer_journals_10_1007_s11334_022_00465_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
| PublicationSubtitle | A NASA Journal |
| PublicationTitle | Innovations in systems and software engineering |
| PublicationTitleAbbrev | Innovations Syst Softw Eng |
| PublicationTitleAlternate | Innov Syst Softw Eng |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | 465_CR11 C Bentéjac (465_CR4) 2021; 54 465_CR15 A Priester (465_CR16) 2020; 19 R Gupta (465_CR8) 2014; 36 A Hinterhuber (465_CR9) 2021; 133 465_CR1 465_CR2 465_CR3 465_CR5 465_CR6 465_CR7 465_CR20 465_CR22 465_CR23 X Li (465_CR12) 2021; 38 MA Mohamed (465_CR14) 2022; 70 465_CR25 AL Mattos (465_CR13) 2021; 11 X Sun (465_CR21) 2020; 32 465_CR17 465_CR18 465_CR19 M Yang (465_CR24) 2021; 13 WK Ho (465_CR10) 2021; 38 |
| References_xml | – ident: 465_CR2 – ident: 465_CR1 doi: 10.1155/2020/5287263 – ident: 465_CR5 doi: 10.1007/s10551-021-04938-6 – volume: 38 start-page: 48 issue: 1 year: 2021 ident: 465_CR10 publication-title: J Prop Res doi: 10.1080/09599916.2020.1832558 – ident: 465_CR3 doi: 10.1186/s40537-021-00476-0 – volume: 36 start-page: 599 year: 2014 ident: 465_CR8 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2014.09.060 – ident: 465_CR6 doi: 10.1108/EJM-03-2014-0150 – ident: 465_CR15 doi: 10.1080/14783363.2021.1980381 – ident: 465_CR23 – volume: 19 start-page: 99 issue: 2 year: 2020 ident: 465_CR16 publication-title: J Rev Pricing Manag doi: 10.1057/s41272-019-00224-3 – volume: 11 start-page: 21582440211032, issue: 3 year: 2021 ident: 465_CR13 publication-title: SAGE Open doi: 10.1177/21582440211032168 – ident: 465_CR17 doi: 10.1109/TSG.2019.2892595 – volume: 70 start-page: 3473 issue: 2 year: 2022 ident: 465_CR14 publication-title: CMC doi: 10.32604/cmc.2022.020782 – ident: 465_CR19 doi: 10.5815/ijieeb.2021.01.01 – volume: 38 start-page: 2150,002 issue: 04 year: 2021 ident: 465_CR12 publication-title: Asia Pac J Oper Res doi: 10.1142/S0217595921500020 – ident: 465_CR7 – ident: 465_CR18 doi: 10.1155/2020/2314659 – ident: 465_CR11 doi: 10.1007/s10479-021-04187-w – volume: 13 start-page: 9762 issue: 17 year: 2021 ident: 465_CR24 publication-title: Sustainability doi: 10.3390/su13179762 – volume: 54 start-page: 1937 issue: 3 year: 2021 ident: 465_CR4 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09896-5 – volume: 133 start-page: 231 year: 2021 ident: 465_CR9 publication-title: J Bus Res doi: 10.1016/j.jbusres.2021.04.076 – ident: 465_CR20 doi: 10.1109/ICSES52305.2021.9633975 – ident: 465_CR25 doi: 10.1109/TOCS53301.2021.9688705 – volume: 32 start-page: 084 issue: 101 year: 2020 ident: 465_CR21 publication-title: Finance Res Lett – ident: 465_CR22 doi: 10.1155/2015/584084 |
| SSID | ssj0056563 |
| Score | 2.367762 |
| Snippet | E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 413 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Brand names Computer Applications Computer Science Datasets Decision making Electronic commerce Jewelry Machine learning Marketing Prices Pricing Product specifications S.I. : Coupling Data and Software Engineering towards Smart Systems Software Engineering Supply chains Support vector machines |
| Subtitle | Product pricing solutions using hybrid machine learning algorithm |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VyoFLtw-gaWllpN6KxTqOY-dUoaqrnhBSi8QtsmN7F4nNUnapxL9n7DhZbVG5cMphnNjOzHi-scczAF9y3whvhKW-KhUt0KJQVXn0Umwx9kw4bayKxSbk2Zm6vKzO04bbMoVV9mtiXKjtogl75CccPRmJ5oaNv938oaFqVDhdTSU0tuBlyJLAYujer34lDlglBtijCaICHcF0aaa7OofOWUFDLHtwEQXlm4bpEdp8HDT5z8lpNEiT0XOn8hpeJShKTjvZeQMvXPsWRn2ZB5K0_h2cnndZYQkOpMGhkEFcSYian5LZfbj2ReYxLtORVIhiSvT1FLtdzeZ7cDH58fv7T5oqL9CmkMWKltJYo2zppFNOemWtbpRW0jumXY40h46hF5U31nJhS2FKLo1zmqOjHiDPPmy3i9a9B-JkIz1CeMvNuPDSaKRbho-S81wXMgPW__a6SWnJQ3WM63qdUDmwqkZW1ZFVNc_g6_DOTZeU48nWhz0b6qSgy3rNgwyOBjKqVjgv0a1b3C3rvKwkwinFWAYHHfOH7rhAnKUYflxuiMXQIKTt3qS0V7OYvrviYe9VZHDcC9B6WP-fxYenZ_ERdnOEW1302yFsr27v3CfYaf6urpa3n6NaPACz9RTH priority: 102 providerName: ProQuest |
| Title | Product pricing solutions using hybrid machine learning algorithm |
| URI | https://link.springer.com/article/10.1007/s11334-022-00465-3 https://www.ncbi.nlm.nih.gov/pubmed/35910813 https://www.proquest.com/docview/3254724110 https://www.proquest.com/docview/2697091811 https://pubmed.ncbi.nlm.nih.gov/PMC9309595 |
| Volume | 20 |
| WOSCitedRecordID | wos000829700600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1614-5054 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0056563 issn: 1614-5046 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1614-5054 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0056563 issn: 1614-5046 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1614-5054 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0056563 issn: 1614-5046 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1614-5054 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0056563 issn: 1614-5046 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals - Owned customDbUrl: eissn: 1614-5054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056563 issn: 1614-5046 databaseCode: RSV dateStart: 20050401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_Wj4e-tFu_5rULGvStFcSWZcmPXWkpDEJo1xL6YiRLSgKpM5K0sP9-J3-FrB-wvdgYnWXrdOf7nXW6AziJXM6d5oa6NJE0RotCZerQSzFx14XcKm1kWWxC9HpyMEj79aaweRPt3ixJll_q5WY3dKdi6qPPvVPHKVuDDTR30hdsuLm9b76_HqGUYfVoeChHynqrzOt9rJqjFxjzZajkX-ulpRm62vm_AXyE7Rp2kvNKTj7BB1vswk5T0oHUGr4H5_0qAyzBrnPsnLSiSXyE_JCMfvstXuSxjMG0pC46MSRqMpzOxovR4z7cXV3-vLimdZUFmsciXtBEaKOlSayw0gonjVG5VFI4GyobYZtFJ9Dx1GljGDcJ1wkT2lrF0Cn38OYA1otpYT8DsSIXDuG6YbobO6EVtpsQTwljkYpFAGHD7CyvU5D7ShiTbJk82fMoQx5lJY8yFsBpe8-vKgHHu9THzRxmtTLOM4ZOsECkEnYD-NY2oxr5tRFV2OnTPIuSVCB0kmEYwGE15e3jGEdMJUPsXKwIQ0vgU3SvthTjUZmqO2X-PysP4KwRieVrvT2KL_9GfgRbEUKtKvLtGNYXsyf7FTbz58V4PuvAmhjIDmx8v-z1b_Dqh6AdH-F6i8c-f-iUyvMH3L8QEA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqNRegL5DoTVSe2otNnEcO4eqQrQItLDiQCVurh3bu0iQBXZpxZ_iN3ac12qLyo1DTzlM4mTi8cx89jwAPiS-4N5wS32eSZqiRaEy94hSbNrzMXfaWFk1mxCDgTw5yY8W4LbNhQlhla1OrBS1HRdhj3yLIZIRaG7i3teLSxq6RoXT1baFRi0WfXfzGyHb5Mv-N5zfj0my-_14Z482XQVokYp0SjNhrJE2c8JJJ7y0VhdSS-FdrF2CNIegx_PcG2sZtxk3GRPGOc0QhAZzjuM-gqWUSRHWVV_QVvMH36gK6EeTRzkCzyZJp07VQzCY0hA7HyApp2zeEN7xbu8Gaf51UlsZwN2V_-3XrcJy42qT7XptPIMFVz6HlbaNBWm02gvYPqqr3hJkvEDWSbccScgKGJLRTUhrI-dV3KkjTaONIdFnQ2RzOjp_CT8ehJFXsFiOS_cGiBOF8AhRLDO91AujkW5jvGSMJToVEcTtNKuiKbseun-cqVnB6CAaCkVDVaKhWASfumcu6qIj99693k67ahTQRM3mPILNjoyqI5wH6dKNrycqyXKB7qKM4whe18LWvY5x9CNljIOLOTHsbghlyecp5emoKk-es7C3zCP43Ars7LP-zcXa_Vy8hyd7x4cH6mB_0H8LTxN0LetIv3VYnF5duw14XPyank6u3lVLksDPhxbkP_lYdy4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQGgvbAM2wjZmJN7AWhPHsfM4DapNTFWlAdqbZcd2W2lLpzZD4r_nnK9SBkiIpzycE8fnu9zv4vsAeJv4gnvDLfV5JmmKFoXK3KOXYtOBj7nTxsq62YQYjeTVVT7-KYu_jnbvjiSbnIZQpamsjm-tP14lvqFrldIQiR4cPE7ZQ3iUhkD64K9ffu2-xQGt1CH2aIQox5Ft2szvn7Fumu7hzfthk7-cndYmabj1_4vZhqctHCUnjfzswANXPoOtrtUDaTX_OZyMm8qwBKcpcCLSiywJkfMTMv0eUr_ITR2b6UjbjGJC9PVkvphV05sX8GX48fPpGW27L9AiFWlFM2GskTZzwkknvLRWF1JL4V2sXYI0h86h57k31jJuM24yJoxzmqGzHmDPLmyU89K9BOJEITzCeMvMIPXCaKTbGC8ZY4lORQRxx3hVtKXJQ4eMa7Uqqhx4pJBHquaRYhG86--5bQpz_HX0QbefqlXSpWLoHAtEMPEggjc9GdUrnJno0s3vlirJcoGQSsZxBHvN9vfTMY5YS8b4cLEmGP2AULp7nVLOpnUJ75yF_688gvedeKxe68-rePVvw4_gyfjDUF2cjz7tw2aCaKwJjjuAjWpx5w7hcfGtmi0Xr2ud-QGdABaO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Product+pricing+solutions+using+hybrid+machine+learning+algorithm&rft.jtitle=Innovations+in+systems+and+software+engineering&rft.au=Namburu%2C+Anupama&rft.au=Selvaraj%2C+Prabha&rft.au=Varsha%2C+M.&rft.date=2024-09-01&rft.issn=1614-5046&rft.eissn=1614-5054&rft.volume=20&rft.issue=3&rft.spage=413&rft.epage=424&rft_id=info:doi/10.1007%2Fs11334-022-00465-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11334_022_00465_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-5046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-5046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-5046&client=summon |