Product pricing solutions using hybrid machine learning algorithm Product pricing solutions using hybrid machine learning algorithm

E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Innovations in systems and software engineering Jg. 20; H. 3; S. 413 - 424
Hauptverfasser: Namburu, Anupama, Selvaraj, Prabha, Varsha, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.09.2024
Springer Nature B.V
Schlagworte:
ISSN:1614-5046, 1614-5054
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes—where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms.
AbstractList E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes—where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms.
E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes-where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms.E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes-where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms.
Author Namburu, Anupama
Varsha, M.
Selvaraj, Prabha
Author_xml – sequence: 1
  givenname: Anupama
  orcidid: 0000-0002-7826-0158
  surname: Namburu
  fullname: Namburu, Anupama
  email: namburianupama@gmail.com
  organization: School of Computer Science and Engineering, VIT-AP University
– sequence: 2
  givenname: Prabha
  surname: Selvaraj
  fullname: Selvaraj, Prabha
  organization: School of Computer Science and Engineering, VIT-AP University
– sequence: 3
  givenname: M.
  surname: Varsha
  fullname: Varsha, M.
  organization: School of Computer Science and Engineering, VIT-AP University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35910813$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1PFTEUbQxG4OkfcGEmceNmtJ1-b0wIUTAhgQWum057572SmRbbGRP-vR0foLBg1fbec05OzzlGBzFFQOg9wZ8JxvJLIYRS1uKuazFmgrf0FToigrCWY84OHu9MHKLjUm4w5oIL-gYdUq4JVoQeoZOrnPzi5uY2BxfitilpXOaQYmmWsr53d30Ovpms24UIzQg2x3Vux23KYd5Nb9HrwY4F3t2fG_Tz-7fr0_P24vLsx-nJReuYZHMrZO975QVIUCAH5b11yio5ALHQ1R0QxQauh957yr3gvaCyB7AU-o5qTTfo6173dukn8A7inO1oqu_J5juTbDBPNzHszDb9NppizTWvAp_uBXL6tUCZzRSKg3G0EdJSTCe0xJqomuoGfXwGvUlLjvV7hnacyY4Rgivqw_-OHq08pFsBag9wOZWSYTAuzHZNtxoMoyHYrEWafZGmFmn-FmlWaveM-qD-IonuSaWC4xbyP9svsP4AIFeyFw
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128949
crossref_primary_10_1108_JBIM_11_2024_0897
crossref_primary_10_1007_s10586_023_04132_5
crossref_primary_10_1007_s10973_025_14245_1
crossref_primary_10_1007_s42488_024_00133_0
crossref_primary_10_1007_s00500_023_08729_1
Cites_doi 10.1155/2020/5287263
10.1007/s10551-021-04938-6
10.1080/09599916.2020.1832558
10.1186/s40537-021-00476-0
10.1016/j.procs.2014.09.060
10.1108/EJM-03-2014-0150
10.1080/14783363.2021.1980381
10.1057/s41272-019-00224-3
10.1177/21582440211032168
10.1109/TSG.2019.2892595
10.32604/cmc.2022.020782
10.5815/ijieeb.2021.01.01
10.1142/S0217595921500020
10.1155/2020/2314659
10.1007/s10479-021-04187-w
10.3390/su13179762
10.1007/s10462-020-09896-5
10.1016/j.jbusres.2021.04.076
10.1109/ICSES52305.2021.9633975
10.1109/TOCS53301.2021.9688705
10.1155/2015/584084
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
NPM
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1007/s11334-022-00465-3
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Computer Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1614-5054
EndPage 424
ExternalDocumentID PMC9309595
35910813
10_1007_s11334_022_00465_3
Genre Journal Article
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
203
29I
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFKRA
AFOHR
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-67bdb8d6e7e8e7f8ddac8a87fe1ae2bdbe184f59fbdd35d65b637beea3eb23993
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829700600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-5046
IngestDate Tue Nov 04 01:57:58 EST 2025
Sun Nov 09 12:34:43 EST 2025
Sun Sep 28 03:52:00 EDT 2025
Thu Jul 24 03:22:40 EDT 2025
Sat Nov 29 08:03:54 EST 2025
Tue Nov 18 21:37:29 EST 2025
Thu Apr 10 07:59:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Ensemble algorithms
X-NGBoost
Product pricing
XGBoost
CatBoost
Language English
License The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-67bdb8d6e7e8e7f8ddac8a87fe1ae2bdbe184f59fbdd35d65b637beea3eb23993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7826-0158
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9309595
PMID 35910813
PQID 3254724110
PQPubID 2044145
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9309595
proquest_miscellaneous_2697091811
proquest_journals_3254724110
pubmed_primary_35910813
crossref_citationtrail_10_1007_s11334_022_00465_3
crossref_primary_10_1007_s11334_022_00465_3
springer_journals_10_1007_s11334_022_00465_3
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationSubtitle A NASA Journal
PublicationTitle Innovations in systems and software engineering
PublicationTitleAbbrev Innovations Syst Softw Eng
PublicationTitleAlternate Innov Syst Softw Eng
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 465_CR11
C Bentéjac (465_CR4) 2021; 54
465_CR15
A Priester (465_CR16) 2020; 19
R Gupta (465_CR8) 2014; 36
A Hinterhuber (465_CR9) 2021; 133
465_CR1
465_CR2
465_CR3
465_CR5
465_CR6
465_CR7
465_CR20
465_CR22
465_CR23
X Li (465_CR12) 2021; 38
MA Mohamed (465_CR14) 2022; 70
465_CR25
AL Mattos (465_CR13) 2021; 11
X Sun (465_CR21) 2020; 32
465_CR17
465_CR18
465_CR19
M Yang (465_CR24) 2021; 13
WK Ho (465_CR10) 2021; 38
References_xml – ident: 465_CR2
– ident: 465_CR1
  doi: 10.1155/2020/5287263
– ident: 465_CR5
  doi: 10.1007/s10551-021-04938-6
– volume: 38
  start-page: 48
  issue: 1
  year: 2021
  ident: 465_CR10
  publication-title: J Prop Res
  doi: 10.1080/09599916.2020.1832558
– ident: 465_CR3
  doi: 10.1186/s40537-021-00476-0
– volume: 36
  start-page: 599
  year: 2014
  ident: 465_CR8
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2014.09.060
– ident: 465_CR6
  doi: 10.1108/EJM-03-2014-0150
– ident: 465_CR15
  doi: 10.1080/14783363.2021.1980381
– ident: 465_CR23
– volume: 19
  start-page: 99
  issue: 2
  year: 2020
  ident: 465_CR16
  publication-title: J Rev Pricing Manag
  doi: 10.1057/s41272-019-00224-3
– volume: 11
  start-page: 21582440211032,
  issue: 3
  year: 2021
  ident: 465_CR13
  publication-title: SAGE Open
  doi: 10.1177/21582440211032168
– ident: 465_CR17
  doi: 10.1109/TSG.2019.2892595
– volume: 70
  start-page: 3473
  issue: 2
  year: 2022
  ident: 465_CR14
  publication-title: CMC
  doi: 10.32604/cmc.2022.020782
– ident: 465_CR19
  doi: 10.5815/ijieeb.2021.01.01
– volume: 38
  start-page: 2150,002
  issue: 04
  year: 2021
  ident: 465_CR12
  publication-title: Asia Pac J Oper Res
  doi: 10.1142/S0217595921500020
– ident: 465_CR7
– ident: 465_CR18
  doi: 10.1155/2020/2314659
– ident: 465_CR11
  doi: 10.1007/s10479-021-04187-w
– volume: 13
  start-page: 9762
  issue: 17
  year: 2021
  ident: 465_CR24
  publication-title: Sustainability
  doi: 10.3390/su13179762
– volume: 54
  start-page: 1937
  issue: 3
  year: 2021
  ident: 465_CR4
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09896-5
– volume: 133
  start-page: 231
  year: 2021
  ident: 465_CR9
  publication-title: J Bus Res
  doi: 10.1016/j.jbusres.2021.04.076
– ident: 465_CR20
  doi: 10.1109/ICSES52305.2021.9633975
– ident: 465_CR25
  doi: 10.1109/TOCS53301.2021.9688705
– volume: 32
  start-page: 084
  issue: 101
  year: 2020
  ident: 465_CR21
  publication-title: Finance Res Lett
– ident: 465_CR22
  doi: 10.1155/2015/584084
SSID ssj0056563
Score 2.367762
Snippet E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 413
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Brand names
Computer Applications
Computer Science
Datasets
Decision making
Electronic commerce
Jewelry
Machine learning
Marketing
Prices
Pricing
Product specifications
S.I. : Coupling Data and Software Engineering towards Smart Systems
Software Engineering
Supply chains
Support vector machines
Subtitle Product pricing solutions using hybrid machine learning algorithm
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VyoFLtw-gaWllpN6KxTqOY-dUoaqrnhBSi8QtsmN7F4nNUnapxL9n7DhZbVG5cMphnNjOzHi-scczAF9y3whvhKW-KhUt0KJQVXn0Umwx9kw4bayKxSbk2Zm6vKzO04bbMoVV9mtiXKjtogl75CccPRmJ5oaNv938oaFqVDhdTSU0tuBlyJLAYujer34lDlglBtijCaICHcF0aaa7OofOWUFDLHtwEQXlm4bpEdp8HDT5z8lpNEiT0XOn8hpeJShKTjvZeQMvXPsWRn2ZB5K0_h2cnndZYQkOpMGhkEFcSYian5LZfbj2ReYxLtORVIhiSvT1FLtdzeZ7cDH58fv7T5oqL9CmkMWKltJYo2zppFNOemWtbpRW0jumXY40h46hF5U31nJhS2FKLo1zmqOjHiDPPmy3i9a9B-JkIz1CeMvNuPDSaKRbho-S81wXMgPW__a6SWnJQ3WM63qdUDmwqkZW1ZFVNc_g6_DOTZeU48nWhz0b6qSgy3rNgwyOBjKqVjgv0a1b3C3rvKwkwinFWAYHHfOH7rhAnKUYflxuiMXQIKTt3qS0V7OYvrviYe9VZHDcC9B6WP-fxYenZ_ERdnOEW1302yFsr27v3CfYaf6urpa3n6NaPACz9RTH
  priority: 102
  providerName: ProQuest
Title Product pricing solutions using hybrid machine learning algorithm
URI https://link.springer.com/article/10.1007/s11334-022-00465-3
https://www.ncbi.nlm.nih.gov/pubmed/35910813
https://www.proquest.com/docview/3254724110
https://www.proquest.com/docview/2697091811
https://pubmed.ncbi.nlm.nih.gov/PMC9309595
Volume 20
WOSCitedRecordID wos000829700600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1614-5054
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0056563
  issn: 1614-5046
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1614-5054
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0056563
  issn: 1614-5046
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1614-5054
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0056563
  issn: 1614-5046
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1614-5054
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0056563
  issn: 1614-5046
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1614-5054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056563
  issn: 1614-5046
  databaseCode: RSV
  dateStart: 20050401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_Wj4e-tFu_5rULGvStFcSWZcmPXWkpDEJo1xL6YiRLSgKpM5K0sP9-J3-FrB-wvdgYnWXrdOf7nXW6AziJXM6d5oa6NJE0RotCZerQSzFx14XcKm1kWWxC9HpyMEj79aaweRPt3ixJll_q5WY3dKdi6qPPvVPHKVuDDTR30hdsuLm9b76_HqGUYfVoeChHynqrzOt9rJqjFxjzZajkX-ulpRm62vm_AXyE7Rp2kvNKTj7BB1vswk5T0oHUGr4H5_0qAyzBrnPsnLSiSXyE_JCMfvstXuSxjMG0pC46MSRqMpzOxovR4z7cXV3-vLimdZUFmsciXtBEaKOlSayw0gonjVG5VFI4GyobYZtFJ9Dx1GljGDcJ1wkT2lrF0Cn38OYA1otpYT8DsSIXDuG6YbobO6EVtpsQTwljkYpFAGHD7CyvU5D7ShiTbJk82fMoQx5lJY8yFsBpe8-vKgHHu9THzRxmtTLOM4ZOsECkEnYD-NY2oxr5tRFV2OnTPIuSVCB0kmEYwGE15e3jGEdMJUPsXKwIQ0vgU3SvthTjUZmqO2X-PysP4KwRieVrvT2KL_9GfgRbEUKtKvLtGNYXsyf7FTbz58V4PuvAmhjIDmx8v-z1b_Dqh6AdH-F6i8c-f-iUyvMH3L8QEA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqNRegL5DoTVSe2otNnEcO4eqQrQItLDiQCVurh3bu0iQBXZpxZ_iN3ac12qLyo1DTzlM4mTi8cx89jwAPiS-4N5wS32eSZqiRaEy94hSbNrzMXfaWFk1mxCDgTw5yY8W4LbNhQlhla1OrBS1HRdhj3yLIZIRaG7i3teLSxq6RoXT1baFRi0WfXfzGyHb5Mv-N5zfj0my-_14Z482XQVokYp0SjNhrJE2c8JJJ7y0VhdSS-FdrF2CNIegx_PcG2sZtxk3GRPGOc0QhAZzjuM-gqWUSRHWVV_QVvMH36gK6EeTRzkCzyZJp07VQzCY0hA7HyApp2zeEN7xbu8Gaf51UlsZwN2V_-3XrcJy42qT7XptPIMFVz6HlbaNBWm02gvYPqqr3hJkvEDWSbccScgKGJLRTUhrI-dV3KkjTaONIdFnQ2RzOjp_CT8ehJFXsFiOS_cGiBOF8AhRLDO91AujkW5jvGSMJToVEcTtNKuiKbseun-cqVnB6CAaCkVDVaKhWASfumcu6qIj99693k67ahTQRM3mPILNjoyqI5wH6dKNrycqyXKB7qKM4whe18LWvY5x9CNljIOLOTHsbghlyecp5emoKk-es7C3zCP43Ars7LP-zcXa_Vy8hyd7x4cH6mB_0H8LTxN0LetIv3VYnF5duw14XPyank6u3lVLksDPhxbkP_lYdy4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQGgvbAM2wjZmJN7AWhPHsfM4DapNTFWlAdqbZcd2W2lLpzZD4r_nnK9SBkiIpzycE8fnu9zv4vsAeJv4gnvDLfV5JmmKFoXK3KOXYtOBj7nTxsq62YQYjeTVVT7-KYu_jnbvjiSbnIZQpamsjm-tP14lvqFrldIQiR4cPE7ZQ3iUhkD64K9ffu2-xQGt1CH2aIQox5Ft2szvn7Fumu7hzfthk7-cndYmabj1_4vZhqctHCUnjfzswANXPoOtrtUDaTX_OZyMm8qwBKcpcCLSiywJkfMTMv0eUr_ITR2b6UjbjGJC9PVkvphV05sX8GX48fPpGW27L9AiFWlFM2GskTZzwkknvLRWF1JL4V2sXYI0h86h57k31jJuM24yJoxzmqGzHmDPLmyU89K9BOJEITzCeMvMIPXCaKTbGC8ZY4lORQRxx3hVtKXJQ4eMa7Uqqhx4pJBHquaRYhG86--5bQpz_HX0QbefqlXSpWLoHAtEMPEggjc9GdUrnJno0s3vlirJcoGQSsZxBHvN9vfTMY5YS8b4cLEmGP2AULp7nVLOpnUJ75yF_688gvedeKxe68-rePVvw4_gyfjDUF2cjz7tw2aCaKwJjjuAjWpx5w7hcfGtmi0Xr2ud-QGdABaO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Product+pricing+solutions+using+hybrid+machine+learning+algorithm&rft.jtitle=Innovations+in+systems+and+software+engineering&rft.au=Namburu%2C+Anupama&rft.au=Selvaraj%2C+Prabha&rft.au=Varsha%2C+M.&rft.date=2024-09-01&rft.issn=1614-5046&rft.eissn=1614-5054&rft.volume=20&rft.issue=3&rft.spage=413&rft.epage=424&rft_id=info:doi/10.1007%2Fs11334-022-00465-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11334_022_00465_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-5046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-5046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-5046&client=summon