Multiscale Modeling Meets Machine Learning: What Can We Learn?

Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Archives of computational methods in engineering Ročník 28; číslo 3; s. 1017 - 1037
Hlavní autori: Peng, Grace C. Y., Alber, Mark, Buganza Tepole, Adrian, Cannon, William R., De, Suvranu, Dura-Bernal, Savador, Garikipati, Krishna, Karniadakis, George, Lytton, William W., Perdikaris, Paris, Petzold, Linda, Kuhl, Ellen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.05.2021
Springer Nature B.V
Predmet:
ISSN:1134-3060, 1886-1784, 1886-1784
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems.
AbstractList Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems.
Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems.Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems.
Author Garikipati, Krishna
Dura-Bernal, Savador
Lytton, William W.
Karniadakis, George
Kuhl, Ellen
De, Suvranu
Cannon, William R.
Petzold, Linda
Peng, Grace C. Y.
Buganza Tepole, Adrian
Alber, Mark
Perdikaris, Paris
Author_xml – sequence: 1
  givenname: Grace C. Y.
  surname: Peng
  fullname: Peng, Grace C. Y.
  organization: National Institutes of Health
– sequence: 2
  givenname: Mark
  surname: Alber
  fullname: Alber, Mark
  organization: University of California
– sequence: 3
  givenname: Adrian
  surname: Buganza Tepole
  fullname: Buganza Tepole, Adrian
  organization: Purdue University
– sequence: 4
  givenname: William R.
  surname: Cannon
  fullname: Cannon, William R.
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Suvranu
  surname: De
  fullname: De, Suvranu
  organization: Rensselaer Polytechnic Institute
– sequence: 6
  givenname: Savador
  surname: Dura-Bernal
  fullname: Dura-Bernal, Savador
  organization: State University of New York
– sequence: 7
  givenname: Krishna
  surname: Garikipati
  fullname: Garikipati, Krishna
  organization: University of Michigan
– sequence: 8
  givenname: George
  surname: Karniadakis
  fullname: Karniadakis, George
  organization: Brown University
– sequence: 9
  givenname: William W.
  surname: Lytton
  fullname: Lytton, William W.
  organization: State University of New York
– sequence: 10
  givenname: Paris
  surname: Perdikaris
  fullname: Perdikaris, Paris
  organization: University of Pennsylvania
– sequence: 11
  givenname: Linda
  surname: Petzold
  fullname: Petzold, Linda
  organization: University of California
– sequence: 12
  givenname: Ellen
  orcidid: 0000-0002-6283-935X
  surname: Kuhl
  fullname: Kuhl, Ellen
  email: ekuhl@stanford.edu
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34093005$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9vFCEUx4mpsT_0H_BgJvHiZex7AwyMhzZmo7bJbrxoeiQMA7s0s1BhxsT_Xtbdqu2hJ-Dx-X75Pt4pOQoxWEJeI7xHAHGeESXFGhqooWPAa_6MnKCUbY1CsqOyR8pqCi0ck9OcbwE467rmBTmmDDpajifkYjWPk89Gj7ZaxcGOPqyrlbVTrlbabHyw1dLqFEr5Q3Wz0VO10KG6OVQvX5LnTo_ZvjqsZ-T750_fFlf18uuX68XHZW2YYFPNnW01Dkz0TLdoLIBD2vW2a_oGelaiODB92w5yMNaBG9A5M-i-6yQXDDk9Ixd737u539oChSnpUd0lv9Xpl4raq4c3wW_UOv5UEkWDDSsG7w4GKf6YbZ7UtnRtx1EHG-esGk4lMIGwe-vtI_Q2zimU9gqFXLScCijUm_8T_Y1y_7UFkHvApJhzsk4ZP-nJx11APyoEtZui2k9RlSmqP1NUO2nzSHrv_qSI7kW5wGFt07_YT6h-AxPBrbs
CitedBy_id crossref_primary_10_1007_s00466_024_02523_y
crossref_primary_10_1137_22M1520840
crossref_primary_10_1016_j_cma_2025_117867
crossref_primary_10_1108_IJSI_12_2024_0209
crossref_primary_10_1016_j_joule_2023_11_015
crossref_primary_10_1088_1361_6528_add304
crossref_primary_10_1016_j_artmed_2024_102995
crossref_primary_10_3390_ma17071621
crossref_primary_10_1016_j_finel_2023_104064
crossref_primary_10_1063_5_0228610
crossref_primary_10_1016_j_scitotenv_2022_160303
crossref_primary_10_1007_s00366_023_01906_8
crossref_primary_10_3390_bioengineering9030090
crossref_primary_10_1007_s11831_024_10145_z
crossref_primary_10_1038_s41467_024_53165_w
crossref_primary_10_1016_j_istruc_2024_106206
crossref_primary_10_1007_s00170_023_12637_x
crossref_primary_10_1016_j_actbio_2022_05_039
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_1038_s41524_022_00753_3
crossref_primary_10_1002_nme_7481
crossref_primary_10_1007_s12551_021_00826_5
crossref_primary_10_1016_j_jmps_2022_105098
crossref_primary_10_1016_j_ijmecsci_2023_108897
crossref_primary_10_1145_3514228
crossref_primary_10_1016_j_cma_2023_116007
crossref_primary_10_3389_fmolb_2021_812248
crossref_primary_10_1007_s00521_022_07291_5
crossref_primary_10_1007_s10238_025_01723_x
crossref_primary_10_1016_j_oceaneng_2024_120260
crossref_primary_10_1016_j_jcp_2025_114356
crossref_primary_10_1007_s11831_025_10241_8
crossref_primary_10_1016_j_cma_2022_115716
crossref_primary_10_3390_bioengineering7020035
crossref_primary_10_1007_s10462_024_10836_w
crossref_primary_10_3390_pr11061717
crossref_primary_10_3390_machines12120833
crossref_primary_10_3390_brainsci10060396
crossref_primary_10_1029_2021WR031808
crossref_primary_10_1007_s11831_025_10342_4
crossref_primary_10_1002_idm2_12020
crossref_primary_10_1016_j_aap_2025_108220
crossref_primary_10_1002_admi_202101734
crossref_primary_10_3390_agriculture13081622
crossref_primary_10_1007_s00466_020_01880_8
crossref_primary_10_1016_j_applthermaleng_2024_123255
crossref_primary_10_3390_app132111966
crossref_primary_10_18596_jotcsa_1473948
crossref_primary_10_1002_smtd_202200537
crossref_primary_10_1016_j_jii_2025_100920
crossref_primary_10_1016_j_cma_2022_115027
crossref_primary_10_3390_molecules27113574
crossref_primary_10_1016_j_jestch_2023_101605
crossref_primary_10_1016_j_cma_2024_116910
crossref_primary_10_1038_s41598_024_74214_w
crossref_primary_10_1016_j_aej_2025_02_013
crossref_primary_10_1007_s00366_024_02095_8
crossref_primary_10_1038_s41598_024_65304_w
crossref_primary_10_1016_j_cis_2025_103492
crossref_primary_10_1016_j_cma_2023_116155
crossref_primary_10_1109_ACCESS_2025_3542634
crossref_primary_10_3390_ijms252212233
crossref_primary_10_1016_j_cma_2023_116432
crossref_primary_10_3389_fsysb_2023_1188009
crossref_primary_10_1016_j_cpc_2025_109523
crossref_primary_10_3390_math9232999
crossref_primary_10_3390_electronics11020278
crossref_primary_10_1016_j_pmatsci_2023_101085
crossref_primary_10_3390_ijtpp7020016
crossref_primary_10_1007_s11831_024_10196_2
crossref_primary_10_1371_journal_pcbi_1009850
crossref_primary_10_3390_jpm13081255
crossref_primary_10_1002_nme_7388
crossref_primary_10_1016_j_cma_2022_115731
crossref_primary_10_1080_10255842_2025_2523313
crossref_primary_10_1002_ecog_07784
crossref_primary_10_1038_s41540_025_00527_9
crossref_primary_10_3389_fphys_2025_1555230
crossref_primary_10_1016_j_cma_2022_115616
crossref_primary_10_1002_bit_28851
crossref_primary_10_1016_j_compositesb_2025_112819
crossref_primary_10_1007_s10237_023_01779_2
crossref_primary_10_1038_s41598_022_19157_w
crossref_primary_10_1109_TTE_2021_3135525
crossref_primary_10_1016_j_brain_2022_100058
crossref_primary_10_3390_ijms232113149
crossref_primary_10_1145_3654662
crossref_primary_10_3803_EnM_2024_2208
crossref_primary_10_1007_s00466_023_02435_3
crossref_primary_10_3390_fluids7030116
crossref_primary_10_1016_j_engappai_2023_105945
crossref_primary_10_1007_s00466_024_02493_1
crossref_primary_10_1016_j_ijmecsci_2022_107858
crossref_primary_10_1016_j_microc_2024_111666
crossref_primary_10_1016_j_jmps_2025_106209
crossref_primary_10_1007_s11831_022_09795_8
crossref_primary_10_1002_smsc_202300185
crossref_primary_10_1039_D3MH01484C
crossref_primary_10_1016_j_cma_2022_115569
crossref_primary_10_1007_s00158_021_03005_y
crossref_primary_10_3389_fimmu_2025_1540087
crossref_primary_10_1007_s11831_022_09840_6
crossref_primary_10_3389_fphys_2024_1473125
crossref_primary_10_1007_s13198_021_01594_x
crossref_primary_10_1016_j_cma_2023_116698
crossref_primary_10_1016_j_cma_2023_116333
crossref_primary_10_1051_epjpv_2022018
crossref_primary_10_1007_s40435_022_01088_z
crossref_primary_10_1016_j_cma_2023_116295
crossref_primary_10_1016_j_cmpb_2023_107344
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1038_s41699_021_00228_x
crossref_primary_10_1088_2632_2153_ad7572
crossref_primary_10_1016_j_apenergy_2024_125059
crossref_primary_10_1016_j_jmps_2023_105454
crossref_primary_10_1016_j_sbi_2023_102569
crossref_primary_10_1103_PhysRevResearch_6_033276
crossref_primary_10_1002_nme_6992
crossref_primary_10_1007_s11095_022_03298_8
crossref_primary_10_1109_TVCG_2021_3109387
crossref_primary_10_1016_j_jcp_2024_113206
crossref_primary_10_3390_computers12020037
crossref_primary_10_1109_JSEN_2024_3464874
crossref_primary_10_1016_j_landig_2025_02_004
crossref_primary_10_1016_j_smaim_2025_06_003
crossref_primary_10_1017_jfm_2021_866
crossref_primary_10_1371_journal_pcbi_1013284
crossref_primary_10_1016_j_csbj_2024_10_018
crossref_primary_10_1016_j_sciaf_2024_e02059
crossref_primary_10_1007_s10439_022_03037_5
crossref_primary_10_1007_s00466_020_01899_x
crossref_primary_10_1016_j_cmpb_2025_108792
crossref_primary_10_1016_j_cma_2022_115190
crossref_primary_10_1016_j_rser_2023_113967
crossref_primary_10_1016_j_bspc_2023_105552
crossref_primary_10_1109_TII_2024_3444896
crossref_primary_10_1016_j_compositesb_2024_111530
crossref_primary_10_1063_5_0240004
crossref_primary_10_1016_j_cma_2022_115346
crossref_primary_10_1016_j_jcp_2023_111953
crossref_primary_10_1080_17452759_2025_2510001
crossref_primary_10_1109_TIA_2023_3280896
crossref_primary_10_1016_j_eswa_2023_120155
crossref_primary_10_1038_s41597_024_04128_9
crossref_primary_10_1038_s41598_024_52274_2
crossref_primary_10_1016_j_cma_2022_115867
crossref_primary_10_3390_polym17070963
crossref_primary_10_1007_s00466_023_02355_2
crossref_primary_10_3390_electronics11182850
crossref_primary_10_1109_ACCESS_2021_3079121
crossref_primary_10_3390_molecules28247964
crossref_primary_10_1016_j_jcat_2023_115217
crossref_primary_10_1093_cercor_bhae294
crossref_primary_10_1016_j_apm_2023_07_011
crossref_primary_10_1016_j_compstruct_2025_119419
crossref_primary_10_1016_j_ijsolstr_2024_112966
crossref_primary_10_1039_D5CP00373C
crossref_primary_10_1016_j_eml_2021_101566
crossref_primary_10_1007_s11831_021_09539_0
crossref_primary_10_1016_j_cmpb_2023_107681
crossref_primary_10_1016_j_ijengsci_2021_103522
crossref_primary_10_1016_j_jmps_2023_105231
crossref_primary_10_1007_s42947_025_00593_6
crossref_primary_10_1093_bib_bbaa257
crossref_primary_10_1016_j_commatsci_2022_111750
crossref_primary_10_1038_s44222_023_00105_w
crossref_primary_10_1016_j_cma_2024_117517
crossref_primary_10_1016_j_commatsci_2023_112186
crossref_primary_10_1063_5_0058904
crossref_primary_10_3390_agronomy15092187
crossref_primary_10_1016_j_cma_2024_117078
crossref_primary_10_1093_jas_skac132
crossref_primary_10_1016_j_euromechsol_2025_105634
crossref_primary_10_1016_j_fpp_2024_100077
crossref_primary_10_1007_s40139_020_00216_8
crossref_primary_10_1002_adma_202301449
crossref_primary_10_1007_s00466_024_02515_y
crossref_primary_10_1016_j_coisb_2021_05_001
crossref_primary_10_1016_j_mbs_2022_108830
crossref_primary_10_1186_s12859_022_04660_8
crossref_primary_10_1371_journal_pcbi_1011436
crossref_primary_10_1016_j_apenergy_2023_121165
crossref_primary_10_1016_j_jmps_2023_105245
crossref_primary_10_1007_s00366_022_01733_3
crossref_primary_10_1016_j_rinam_2025_100589
crossref_primary_10_1007_s11831_023_10009_y
crossref_primary_10_1371_journal_pcbi_1010902
crossref_primary_10_1016_j_biotechadv_2024_108470
Cites_doi 10.1093/bioinformatics/btz199
10.1101/579706
10.1371/journal.pcbi.1005920
10.1093/sleep/zsz095
10.1002/cpt.1482
10.1093/bioinformatics/btz310
10.7554/eLife.44494.001
10.1007/s10237-019-01190-w
10.3389/fphy.2020.00042
10.1038/s41746-019-0121-1
10.1023/A:1023283917997
10.1016/j.cma.2019.07.007
10.1115/1.2472369
10.1073/pnas.1421200112
10.1016/j.jcp.2019.05.027
10.1093/brain/awx018
10.1109/ACCESS.2019.2909828
10.1016/j.jcp.2012.08.013
10.1038/nchembio.186
10.1137/18M1188227
10.1016/j.jcp.2017.07.050
10.1016/j.jcp.2018.10.045
10.1038/s41591-018-0268-3
10.1109/TBME.2016.2603418
10.1109/TNB.2004.833688
10.1038/d41586-019-02308-x
10.1016/S0021-9991(03)00273-0
10.1016/j.cma.2019.112724
10.1016/j.cma.2003.12.073
10.1016/j.jmps.2013.12.011
10.1126/science.aat2663
10.1007/s10439-012-0579-3
10.1016/j.jmps.2010.12.011
10.1073/pnas.1718942115
10.1016/j.epidem.2018.05.010
10.1109/TMBMC.2016.2633265
10.1016/j.bpj.2020.01.012
10.1109/CVPR.2015.7298640
10.1016/j.euromechsol.2014.04.001
10.1038/s41591-018-0300-7
10.1038/d41586-019-02307-y
10.1007/s00205-017-1214-0
10.3389/fgene.2018.00031
10.1063/1.5027470
10.1146/annurev.bioeng.10.061807.160521
10.1038/s41540-018-0054-3
10.3390/metabo8010004
10.1016/j.jmps.2018.10.013
10.1007/s11538-017-0277-2
10.1093/cercor/bhy174
10.1016/j.jtbi.2019.01.017
10.1016/j.jcp.2017.11.039
10.1146/annurev.physchem.58.032806.104637
10.1111/1467-9868.00294
10.1016/j.cma.2018.10.025
10.1177/1535759719842236
10.1098/rsfs.2015.0083
10.1073/pnas.1517384113
10.1007/s40708-017-0067-5
10.1007/s40304-017-0117-6
10.1007/s10237-018-1061-4
10.1038/nchembio.2077
10.1109/CVPRW.2018.00143
10.3390/systems7010001
10.1016/j.cma.2019.112579
10.1137/16M1071328
10.1007/s004660000212
10.1016/j.cma.2019.112602
10.1016/j.jcp.2017.01.060
10.1126/science.1069492
10.1016/j.actbio.2018.12.053
10.1038/s42256-019-0025-4
10.1016/j.cma.2019.01.033
10.1016/j.jcp.2018.02.039
10.1093/brain/awx004
10.1126/sciadv.1602614
10.1016/j.engstruct.2007.12.021
10.1038/nbt0402-370
10.1006/mben.2001.0187
10.1103/PhysRevLett.121.158101
10.1007/978-3-319-50257-1_98-1
10.1371/journal.pone.0183810
10.3390/pr6050056
10.1016/j.cma.2015.03.012
10.1016/j.semcancer.2014.04.013
10.1038/msb.2008.61
10.1007/s11633-017-1054-2
10.1016/j.cma.2019.05.019
10.1146/annurev-biochem-061516-044952
10.1177/1535759719835349
10.1038/nature14539
10.1109/MEMB.2009.932388
10.1016/j.pbiomolbio.2007.07.019
10.1016/j.neuron.2017.06.011
10.1016/0022-2836(76)90311-9
10.1098/rsif.2019.0233
10.1073/pnas.0903716106
10.1161/CIRCULATIONAHA.115.001593
10.1038/s41746-019-0193-y
10.1073/pnas.1420753112
10.1016/j.cma.2018.10.024
10.1038/267585a0
10.1152/jn.00570.2016
10.1016/j.tics.2019.02.006
10.1021/ac010617e
10.1038/nature21056
10.1002/nme.5188
10.1098/rsif.2015.1107
ContentType Journal Article
Copyright CIMNE, Barcelona, Spain 2020
CIMNE, Barcelona, Spain 2020.
Copyright_xml – notice: CIMNE, Barcelona, Spain 2020
– notice: CIMNE, Barcelona, Spain 2020.
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1007/s11831-020-09405-5
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList

PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 1037
ExternalDocumentID PMC8172124
34093005
10_1007_s11831_020_09405_5
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health (US)
  grantid: U24 EB028998; U01 HL116323
– fundername: National Institutes of Health (US)
  grantid: R01 EB014877; U01 HL119578
– fundername: National Institutes of Health (US)
  grantid: U01 EB022546; R01 CA197491
– fundername: National Institutes of Health (US)
  grantid: U01 HL142518; U01 EB017695
– fundername: Defense Advanced Research Projects Agency
  grantid: HR0011199002
  funderid: http://dx.doi.org/10.13039/100000185
– fundername: National Institutes of Health (US)
  grantid: U01 HL116330; R01 AR074525
– fundername: NIBIB NIH HHS
  grantid: R01 EB014877
– fundername: NHLBI NIH HHS
  grantid: U01 HL116330
– fundername: NIBIB NIH HHS
  grantid: U01 EB017695
– fundername: NHLBI NIH HHS
  grantid: U01 HL116323
– fundername: NCI NIH HHS
  grantid: R01 CA197491
– fundername: NIBIB NIH HHS
  grantid: U01 EB022546
– fundername: NIAMS NIH HHS
  grantid: R01 AR074525
– fundername: NIBIB NIH HHS
  grantid: U24 EB028998
– fundername: NHLBI NIH HHS
  grantid: U01 HL119578
– fundername: NHLBI NIH HHS
  grantid: U01 HL142518
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
PQGLB
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c474t-5fe6a1d47b4a61ce00f139be92b20b4300f0cb66d8dcef0fd1ffcdab998574153
IEDL.DBID RSV
ISICitedReferencesCount 257
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520045900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-3060
1886-1784
IngestDate Tue Nov 04 01:58:37 EST 2025
Thu Sep 04 15:30:24 EDT 2025
Thu Sep 18 00:02:38 EDT 2025
Wed Feb 19 02:06:19 EST 2025
Sat Nov 29 06:21:46 EST 2025
Tue Nov 18 21:19:39 EST 2025
Fri Feb 21 02:48:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Biomedicine
Physics-based simulation
Multiscale modeling
Machine learning
physics-based simulation
biomedicine
multiscale modeling
Language English
License Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-terms-v1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-5fe6a1d47b4a61ce00f139be92b20b4300f0cb66d8dcef0fd1ffcdab998574153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6283-935X
OpenAccessLink http://hdl.handle.net/20.500.12648/8563
PMID 34093005
PQID 2515765370
PQPubID 1486352
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8172124
proquest_miscellaneous_2538047105
proquest_journals_2515765370
pubmed_primary_34093005
crossref_citationtrail_10_1007_s11831_020_09405_5
crossref_primary_10_1007_s11831_020_09405_5
springer_journals_10_1007_s11831_020_09405_5
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationTitleAlternate Arch Comput Methods Eng
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Leal, David, Jarvelin, Sebert, Ruddock, Karhunen, Sternberg (CR52) 2019; 35
Sankaran, Moghadam, Kahn, Tseng, Guccione, Marsden (CR108) 2012; 40
Ognjanovski, Broussard, Zochowski, Aton (CR79) 2018; 28
Park, Rubin, Amador-Noguz, Fan, Shlomi, Rabinowitz (CR80) 2016; 12
Quade, Abel, Kutz, Brunton (CR88) 2018; 28
Sanchez-Lengeling, Aspuru-Guzik (CR106) 2018; 361
Lu, Su, Klein, Lewis, Fiehn, Rabinowitz (CR62) 2017; 86
Weickenmeier, Jucker, Goriely, Kuhl (CR133) 2019; 124
Dura-Bernal, Suter, Gleeson, Cantarelli, Quintana, Rodriguez, Lytton (CR30) 2019; 8
CR36
Sahli Costabal, Yang, Perdikaris, Hurtado, Kuhl (CR105) 2020
Sander, Stylianopoulos, Tranquillo, Barocas (CR107) 2009; 106
Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (CR3) 2019; 2
Ambrosi, Ateshian, Arruda, Cowin, Dumais, Goriely, Holzapfel, Humphrey, Kemkemer, Kuhl, Olberding, Taber, Garikipati (CR4) 2011; 59
Botvinick, Ritter, Wang, Kurth-Nelson, Blundell, Hassabis (CR12) 2019; 23
Leary, Bhaskar, Keane (CR53) 2003; 26
Lytton, Arle, Bobashev, Ji, Klassen, Marmarelis, Sanger (CR64) 2017; 4
Booth, Xique, Diniz Behn (CR11) 2017; 16
Neftci, Averbeck (CR75) 2019; 1
Tran, Schiavazzi, Kahn, Marsden (CR126) 2019; 345
Sahli Costabal, Matsuno, Yao, Perdikaris, Kuhl (CR102) 2019; 348
Zhao, Li, Caswell, Ouyang, Karniadakis (CR143) 2018; 363
Stelling, Gilles (CR115) 2004; 3
Geers, Kouznetsova, Brekelmans (CR33) 2010; 234
Bennett, Kimball, Gao, Osterhout, Van Dien, Rabinowitz (CR10) 2009; 5
Gerlee, Kim, Anderson (CR34) 2015; 30
CR46
Peng (CR82) 2016; 63
Raissi, Perdikaris, Karniadakis (CR90) 2017; 335
Snowden, van der Graaf, Tindall (CR112) 2017; 79
Southern, Pitt-Francis, Whiteley, Stokeley, Kobashi, Nobes, Kadooka, Gavaghan (CR114) 2008; 96
Athreya, Neavin, Carrillo-Roa, Skime, Biernacka, Frye, Rush, Wang, Binder, Iyer, Weinshilboum, Bobo (CR7) 2019; 106
Luebberding, Krueger, Kerscher (CR63) 2014; 20
Mangan, Askham, Brunton, Kutz, Proctor (CR69) 2019; 475
Baillargeon, Rebelo, Fox, Taylor, Kuhl (CR8) 2014; 48
Le, Yvonnet, He (CR51) 2015; 104
White, Peng, Demir (CR136) 2009; 28
Neymotin, Suter, Dura-Bernal, Shepherd, Migliore, Lytton (CR77) 2016; 117
Dura-Bernal, Neymotin, Kerr, Sivagnanam, Majumdar, Francis, Lytton (CR29) 2017; 61
Sahli Costabal, Perdikaris, Kuhl, Hurtado (CR103) 2019; 357
CR140
CR59
Rudy, Brunton, Proctor, Kutz (CR100) 2017; 3
Marino, Vairo (CR70) 2012; 17
CR138
Zangooei, Habibi (CR142) 2017; 12
Buehler (CR15) 2006; 21
Topol (CR123) 2019
Weickenmeier, Kuhl, Goriely (CR132) 2018; 121
Hunter, Borg (CR43) 2003; 4
Conti, Müller, Ortiz (CR22) 2018; 229
Nazari, Pearson, Nor, Jackson (CR74) 2018; 14
Yang, Perdikaris (CR141) 2019; 394
Cuperlovic-Culf (CR24) 2018; 8
Kim, Li, Sejnowski (CR45) 2019; 116
Huan, Marzouk (CR41) 2013; 232
Brunton, Proctor, Kutz (CR13) 2016; 113
Carlson, Nageswaran, Dutt, Krichmar (CR16) 2014; 8
Sahli Costabal, Seo, Ashley, Kuhl (CR104) 2020; 118
Mihai, Woolley, Goriely (CR72) 2018; 474
DeWoskin, Myung, Belle, Piggins, Takumi, Forger (CR28) 2015; 112
Madni, Madni, Lucerno (CR67) 2019; 7
Topol (CR124) 2019; 25
Rhodes, Knight, Kirschner, White, Evans (CR97) 2019; 465
Kennedy, O’Hagan (CR44) 2001; 63
Perdikaris, Karniadakis (CR83) 2016; 13
Myung, Hong, DeWoskin, De Schutter, Forger, Takumi (CR73) 2015; 112
Lytton (CR65) 2017; 140
Deo (CR27) 2015; 132
Weinan, Yu (CR135) 2018; 6
Neymotin, Dura-Bernal, Moreno, Lytton (CR76) 2016; 19
Chabiniok, Wang, Hadjicharalambous, Asner, Lee, Sermesant, Kuhl, Young, Moireau, Nash, Chapelle, Nordsletten (CR18) 2016; 6
Liu, Wu, Koishi (CR61) 2019; 345
Wiechert (CR137) 2001; 2
Deist, Patti, Wang, Krane, Sorenson, Craft (CR26) 2019; 35
CR78
Fritzen, Hodapp (CR32) 2016; 107
CR116
Han, Jentzen, Weinan (CR37) 2018; 115
Sahli Costabal, Choy, Sack, Guccione, Kassab, Kuhl (CR101) 2019; 86
Champion, Brunton, Kutz (CR19) 2019; 18
Liu, Zhang, Yang, Zhou, Ren, Liu, Pang, Deen (CR60) 2019; 7
Shaked, Oberhardt, Atias, Sharan, Ruppin (CR110) 2018; 2
Song, Hugenberg, Oberai (CR113) 2019; 357
CR119
CR117
CR118
Lange, Picotti, Domon, Aebersold (CR50) 2008; 4
Proix, Bartolomei, Guye, Jirsa (CR86) 2017; 140
Gillespie (CR35) 2007; 58
Poggio, Mhaskar, Rosasco, Miranda, Liao (CR85) 2017; 14
Puentes-Mestril, Roach, Niethard, Zochowski, Aton (CR87) 2019; zsz42
Weinan, Han, Jentzen (CR134) 2017; 5
CR6
Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz (CR111) 1999; 47
Costello, Martin (CR23) 2018; 4
Vu, Adali, Ba, Buzsaki, Carlson, Heller, Dzirasa (CR128) 2018; 38
Perdikaris, Raissi, Damianou, Lawrence, Karniadakis (CR84) 2016; 473
Raissi, Perdikaris, Karniadakis (CR96) 2019; 378
Topol (CR125) 2019; 572
CR127
McCammon, Gelin, Karplus (CR71) 1977; 267
Warshel, Levitt (CR131) 1976; 103
Kouznetsova, Brekelmans, Baaijens (CR48) 2001; 27
Teichert, Garikipati (CR121) 2019; 344
Hunt, Erdemir, Lytton, Mac Gabhann, Sander, Transtrum, Mulugeta (CR42) 2018; 6
Lee, Gosain, Bilionis, Buganza Tepole (CR56) 2019; 125
De, Wongmuk, Kuhl (CR25) 2014
Riley (CR98) 2019; 572
Ahmed, John (CR2) 2019; 19
Madireddy, Sista, Vemaganti (CR66) 2015; 291
Hassabis, Kumaran, Summerfield, Botvinick (CR39) 2017; 95
Baydin, Pearlmutter, Radul, Siskind (CR9) 2018; 18
Lee, Bilionis, Buganza Tepole (CR57) 2020; 359
Raissi, Perdikaris, Karniadakis (CR91) 2017; 348
Teichert, Natarajan, Van der Ven, Garikipati (CR122) 2019; 353
Kouznetsova, Geers, Brekelmans (CR49) 2004; 193
Wang, Huan, Garikipati (CR130) 2019; 356
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR31) 2017; 542
CR99
Hicks, Althoff, Sosic, Kuhar, Bostjancic, King, Leskovec, Delp (CR40) 2019; 2
Raissi, Karniadakis (CR94) 2018; 357
CR95
CR93
LeCun, Bengio, Hinton (CR54) 2015; 521
CR92
Raina, Linder (CR89) 2014; 65
Ahmed, Sudhakar (CR1) 2019; 19
Mangan, Brunton, Proctor, Kutz (CR68) 2016; 2
Bruynseels, Santoni de Sio, van den Hoven (CR14) 2018; 9
Cao, Eisenberg (CR17) 2018; 25
Ambrosi, BenAmar, Cyron, DeSimone, Goriely, Humphrey, Kuhl (CR5) 2019; 16
Lee, Turin, Gosain, Bilionis, Buganza Tepole (CR55) 2018; 17
Wagner, Liu (CR129) 2003; 190
Wolters, Washburn, Yates (CR139) 2001; 73
Peirlinck, Sahli Costabal, Sack, Choy, Kassab, Guccione, De Beule, Segers, Kuhl (CR81) 2019; 18
Taylor, Figueroa (CR120) 2009; 11
CR21
Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (CR38) 2019; 25
Chandran, Barocas (CR20) 2007; 129
Kitano (CR47) 2002; 295
Liang, Chandrashekhara (CR58) 2008; 30
Schoeberl, Eichler-Jonsson, Gilles, Mller (CR109) 2002; 20
WW Lytton (9405_CR64) 2017; 4
V Lange (9405_CR50) 2008; 4
CA Taylor (9405_CR120) 2009; 11
J Weickenmeier (9405_CR132) 2018; 121
E Weinan (9405_CR134) 2017; 5
M Raissi (9405_CR90) 2017; 335
D Song (9405_CR113) 2019; 357
T Proix (9405_CR86) 2017; 140
SA Neymotin (9405_CR77) 2016; 117
EO Neftci (9405_CR75) 2019; 1
GCY Peng (9405_CR82) 2016; 63
T Poggio (9405_CR85) 2017; 14
DA Wolters (9405_CR139) 2001; 73
A Warshel (9405_CR131) 1976; 103
PJ Hunter (9405_CR43) 2003; 4
9405_CR59
L Zhao (9405_CR143) 2018; 363
J Stelling (9405_CR115) 2004; 3
CA Hunt (9405_CR42) 2018; 6
T Lee (9405_CR56) 2019; 125
AP Athreya (9405_CR7) 2019; 106
MJ Buehler (9405_CR15) 2006; 21
Z Wang (9405_CR130) 2019; 356
T Lee (9405_CR55) 2018; 17
M Quade (9405_CR88) 2018; 28
M Raissi (9405_CR94) 2018; 357
H Kitano (9405_CR47) 2002; 295
P Perdikaris (9405_CR83) 2016; 13
F Sahli Costabal (9405_CR104) 2020; 118
9405_CR46
Y LeCun (9405_CR54) 2015; 521
K Bruynseels (9405_CR14) 2018; 9
J Han (9405_CR37) 2018; 115
D DeWoskin (9405_CR28) 2015; 112
F Nazari (9405_CR74) 2018; 14
MH Zangooei (9405_CR142) 2017; 12
E Weinan (9405_CR135) 2018; 6
I Shaked (9405_CR110) 2018; 2
V Booth (9405_CR11) 2017; 16
AM Madni (9405_CR67) 2019; 7
9405_CR36
N Ognjanovski (9405_CR79) 2018; 28
B Sanchez-Lengeling (9405_CR106) 2018; 361
EJ Topol (9405_CR124) 2019; 25
M Alber (9405_CR3) 2019; 2
F Fritzen (9405_CR32) 2016; 107
KP Champion (9405_CR19) 2019; 18
SJ Rhodes (9405_CR97) 2019; 465
EA Sander (9405_CR107) 2009; 106
DT Gillespie (9405_CR35) 2007; 58
LA Mihai (9405_CR72) 2018; 474
M Raissi (9405_CR96) 2019; 378
PL Chandran (9405_CR20) 2007; 129
S Madireddy (9405_CR66) 2015; 291
S Conti (9405_CR22) 2018; 229
B Baillargeon (9405_CR8) 2014; 48
NM Mangan (9405_CR68) 2016; 2
VB Shenoy (9405_CR111) 1999; 47
(9405_CR25) 2014
OJ Ahmed (9405_CR1) 2019; 19
JS Tran (9405_CR126) 2019; 345
S Luebberding (9405_CR63) 2014; 20
MAT Vu (9405_CR128) 2018; 38
KD Carlson (9405_CR16) 2014; 8
TM Deist (9405_CR26) 2019; 35
BA Le (9405_CR51) 2015; 104
D Ambrosi (9405_CR4) 2011; 59
X Huan (9405_CR41) 2013; 232
YH Cao (9405_CR17) 2018; 25
J Southern (9405_CR114) 2008; 96
P Riley (9405_CR98) 2019; 572
BD Bennett (9405_CR10) 2009; 5
J Weickenmeier (9405_CR133) 2019; 124
EJ Topol (9405_CR125) 2019; 572
9405_CR21
NM Mangan (9405_CR69) 2019; 475
A Esteva (9405_CR31) 2017; 542
SH Rudy (9405_CR100) 2017; 3
Y Liu (9405_CR60) 2019; 7
RC Deo (9405_CR27) 2015; 132
R Chabiniok (9405_CR18) 2016; 6
VG Kouznetsova (9405_CR49) 2004; 193
OJ Ahmed (9405_CR2) 2019; 19
M Cuperlovic-Culf (9405_CR24) 2018; 8
9405_CR6
EJ Topol (9405_CR123) 2019
F Sahli Costabal (9405_CR102) 2019; 348
JL Hicks (9405_CR40) 2019; 2
C Puentes-Mestril (9405_CR87) 2019; zsz42
P Perdikaris (9405_CR84) 2016; 473
M Peirlinck (9405_CR81) 2019; 18
R Kim (9405_CR45) 2019; 116
9405_CR92
9405_CR93
F Sahli Costabal (9405_CR105) 2020
G Teichert (9405_CR121) 2019; 344
9405_CR95
GJ Wagner (9405_CR129) 2003; 190
W Wiechert (9405_CR137) 2001; 2
SA Neymotin (9405_CR76) 2016; 19
9405_CR117
G Liang (9405_CR58) 2008; 30
9405_CR116
Z Liu (9405_CR61) 2019; 345
9405_CR99
9405_CR119
9405_CR118
P Gerlee (9405_CR34) 2015; 30
F Sahli Costabal (9405_CR101) 2019; 86
M Botvinick (9405_CR12) 2019; 23
R White (9405_CR136) 2009; 28
W Lu (9405_CR62) 2017; 86
GH Teichert (9405_CR122) 2019; 353
AY Hannun (9405_CR38) 2019; 25
TJ Snowden (9405_CR112) 2017; 79
S Dura-Bernal (9405_CR30) 2019; 8
M Kennedy (9405_CR44) 2001; 63
SL Brunton (9405_CR13) 2016; 113
B Schoeberl (9405_CR109) 2002; 20
A Raina (9405_CR89) 2014; 65
WW Lytton (9405_CR65) 2017; 140
9405_CR127
M Raissi (9405_CR91) 2017; 348
T Lee (9405_CR57) 2020; 359
M Marino (9405_CR70) 2012; 17
F Sahli Costabal (9405_CR103) 2019; 357
D Hassabis (9405_CR39) 2017; 95
LG Leal (9405_CR52) 2019; 35
MGD Geers (9405_CR33) 2010; 234
9405_CR140
Y Yang (9405_CR141) 2019; 394
S Dura-Bernal (9405_CR29) 2017; 61
Z Costello (9405_CR23) 2018; 4
S Sankaran (9405_CR108) 2012; 40
AG Baydin (9405_CR9) 2018; 18
JA McCammon (9405_CR71) 1977; 267
V Kouznetsova (9405_CR48) 2001; 27
J Myung (9405_CR73) 2015; 112
JO Park (9405_CR80) 2016; 12
D Ambrosi (9405_CR5) 2019; 16
SJ Leary (9405_CR53) 2003; 26
9405_CR138
9405_CR78
References_xml – volume: 5
  start-page: 349
  issue: 4
  year: 2017
  end-page: 380
  ident: CR134
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun Math Stat
– volume: 35
  start-page: 4072
  year: 2019
  end-page: 4080
  ident: CR26
  article-title: Simulation assisted machine learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz199
– volume: 129
  start-page: 137147
  year: 2007
  ident: CR20
  article-title: Deterministic material-based averaging theory model of collagen gel micromechanics
  publication-title: J Biomech Eng
– year: 2014
  ident: CR25
  publication-title: Multiscale modeling in biomechanics and mechanobiology
– ident: CR138
– volume: 103
  start-page: 227
  year: 1976
  end-page: 249
  ident: CR131
  article-title: Theoretical studies of enzymic reactions–dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme
  publication-title: J Mol Biol
– volume: 26
  start-page: 297319
  issue: 3
  year: 2003
  ident: CR53
  article-title: A knowledge-based approach to response surface modelling in multifidelity optimization
  publication-title: J Glob Optim
– volume: 20
  start-page: 370375
  year: 2002
  ident: CR109
  article-title: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors
  publication-title: Nat Biotechnol
– volume: 124
  start-page: 264
  year: 2019
  end-page: 281
  ident: CR133
  article-title: A physics-based model explains the prion-like features of neurodegeneration in Alzheimers disease, Parkinsons disease, and amyotrophic lateral sclerosis
  publication-title: J Mech Phys Solids
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  end-page: 8510
  ident: CR37
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc Natl Acad Sci
– volume: 140
  start-page: 651
  year: 2017
  end-page: 654
  ident: CR86
  article-title: Individual brain structure and modeling predict seizure propagation
  publication-title: Brain
– volume: 125
  start-page: 572590
  year: 2019
  ident: CR56
  article-title: Predicting the effect of aging and defect size on the stress profiles of skin from advancement, rotation and transposition flap surgeries
  publication-title: J Mech Phys Solids
– volume: 378
  start-page: 686707
  year: 2019
  ident: CR96
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 7
  start-page: 1
  year: 2019
  end-page: 13
  ident: CR67
  article-title: Leveraging Digital Twin technology in model-based systems enginereering
  publication-title: Systems
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: CR31
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 17
  start-page: 1130
  year: 2012
  ident: CR70
  article-title: Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 12
  start-page: 482
  issue: 7
  year: 2016
  end-page: 489
  ident: CR80
  article-title: Metabolite concentrations, fluxes and free energies imply efficient enzyme usage
  publication-title: Nat Chem Biol
– volume: 25
  start-page: 65
  year: 2019
  end-page: 69
  ident: CR38
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat Med
– ident: CR92
– volume: 361
  start-page: 360
  year: 2018
  end-page: 365
  ident: CR106
  article-title: Inverse molecular design using machine learning: generative models for matter engineering
  publication-title: Science
– volume: 132
  start-page: 1920
  year: 2015
  end-page: 1930
  ident: CR27
  article-title: Machine learning in medicine
  publication-title: Circulation
– volume: 335
  start-page: 736746
  year: 2017
  ident: CR90
  article-title: Inferring solutions of differential equations using noisy multi-fidelity data
  publication-title: J Comput Phys
– volume: 348
  start-page: 683
  year: 2017
  end-page: 693
  ident: CR91
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J Comput Phys
– volume: 394
  start-page: 136
  year: 2019
  end-page: 152
  ident: CR141
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J Comput Phys
– volume: 121
  start-page: 158101
  year: 2018
  ident: CR132
  article-title: The multiphysics of prion-like diseases: progression and atrophy
  publication-title: Phys Rev Lett
– volume: 4
  start-page: 19
  year: 2018
  ident: CR23
  article-title: A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data
  publication-title: NPJ Syst Biol Appl
– ident: CR36
– volume: 190
  start-page: 249274
  year: 2003
  ident: CR129
  article-title: Coupling of atomistic and continuum simulations using a bridging scale decomposition
  publication-title: J Comput Phys
– year: 2019
  ident: CR123
  publication-title: Deep medicine: how artificial intelligence can make healthcare human again
– volume: 18
  start-page: 312
  year: 2019
  end-page: 333
  ident: CR19
  article-title: Discovery of nonlinear multiscale systems: sampling strategies and embeddings
  publication-title: SIAM J Appl Dyn Syst
– volume: 107
  start-page: 853881
  year: 2016
  ident: CR32
  article-title: The finite element square reduced (FE2R) method with GPU acceleration: towards three-dimensional two-scale simulations
  publication-title: Int J Numer Methods Eng
– volume: 116
  start-page: 22811
  year: 2019
  end-page: 22820
  ident: CR45
  article-title: Simple framework for constructing functional spiking recurrent neural networks
  publication-title: Proc Natl Acad Sci
  doi: 10.1101/579706
– volume: 14
  start-page: e1005920
  year: 2018
  ident: CR74
  article-title: A mathematical model for IL-6-mediated, stem cell driven tumor growth and targeted treatment
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1005920
– volume: 359
  start-page: 112724
  year: 2020
  ident: CR57
  article-title: Propagation of uncertainty in the mechanical and biological response of growing tissues using multi-fidelity Gaussian process regression
  publication-title: Comput Methods Appl Mech Eng
– volume: 2
  start-page: 52
  year: 2016
  end-page: 63
  ident: CR68
  article-title: Inferring biological networks by sparse identification of nonlinear dynamics
  publication-title: IEEE Trans Mol Biol Multi-Scale Commun
– volume: 19
  start-page: 184
  issue: 3
  year: 2019
  end-page: 186
  ident: CR1
  article-title: High frequency activity during stereotyped low frequency events might help to identify the seizure onset zone
  publication-title: Epilepsy Curr
– volume: 193
  start-page: 55255550
  year: 2004
  ident: CR49
  article-title: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy
  publication-title: Comput Methods Appl Mech Eng
– ident: CR117
– volume: 474
  start-page: 0858
  year: 2018
  ident: CR72
  article-title: Stochastic isotropic hyperelastic materials: constitutive calibration and model selection
  publication-title: Proc R Soc A/Math Phys Eng Sci
– volume: 1
  start-page: 133
  year: 2019
  end-page: 143
  ident: CR75
  article-title: Reinforcement learning in artificial and biological systems
  publication-title: Nat Mach Intell
– volume: 2
  start-page: 209213
  year: 2018
  ident: CR110
  article-title: Metabolic network prediction of drug side effects
  publication-title: Cell Systems
– volume: 465
  start-page: 51
  year: 2019
  end-page: 55
  ident: CR97
  article-title: Dose finding for new vaccines: the role for immunostimulation/immunodynamic modelling
  publication-title: J Theor Biol
– ident: CR6
– volume: 112
  start-page: E2920
  year: 2015
  ident: CR73
  article-title: GABA-mediated repulsive coupling between circadian clock neurons encodes seasonal time
  publication-title: Proc Natl Acad Sci
– volume: 14
  start-page: 503
  year: 2017
  end-page: 519
  ident: CR85
  article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review
  publication-title: Int J Autom Comput
– volume: 20
  start-page: 127135
  year: 2014
  ident: CR63
  article-title: Mechanical properties of human skin in vivo: a comparative evaluation in 300 men and women
  publication-title: Skin Res Technol
– volume: 473
  start-page: 0751
  year: 2016
  ident: CR84
  article-title: Nonlinear information fusion algorithms for robust multi-fidelity modeling
  publication-title: Proc R Soc A/Math Phys Eng Sci
– volume: zsz42
  start-page: 095
  year: 2019
  ident: CR87
  article-title: How rhythms of the sleeping brain tune memory and synaptic plasticity
  publication-title: Sleep
  doi: 10.1093/sleep/zsz095
– volume: 19
  start-page: 5157
  year: 2016
  ident: CR76
  article-title: Computer modeling for pharmacological treatments for dystonia
  publication-title: Drug Discov Today Disease Models
– volume: 572
  start-page: 36
  year: 2019
  end-page: 37
  ident: CR125
  article-title: Deep learning detects impending organ injury
  publication-title: Nature
– volume: 112
  start-page: E2911
  year: 2015
  ident: CR28
  article-title: Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping
  publication-title: Proc Natl Acad Sci
– volume: 234
  start-page: 21752182
  year: 2010
  ident: CR33
  article-title: Multi-scale computational homogenization: trends and challenges
  publication-title: J Comput Appl Math
– volume: 30
  start-page: 3041
  year: 2015
  ident: CR34
  article-title: Bridging scales in cancer progression: mapping genotype to phenotype using neural networks
  publication-title: Semin Cancer Biol
– volume: 118
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR104
  article-title: Classifying drugs by their arrhythmogenic risk using machine learning
  publication-title: Biophys J
– volume: 61
  start-page: 114
  issue: 6
  year: 2017
  ident: CR29
  article-title: Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis
  publication-title: IBM J Res Dev
– volume: 11
  start-page: 109134
  year: 2009
  ident: CR120
  article-title: Patient-specific modeling of cardiovascular mechanics
  publication-title: Annu Rev Biomed Eng
– volume: 363
  start-page: 116
  year: 2018
  end-page: 127
  ident: CR143
  article-title: Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows
  publication-title: J Comput Phys
– volume: 86
  start-page: 66
  year: 2019
  end-page: 76
  ident: CR101
  article-title: Multiscale characterization of heart failure
  publication-title: Acta Biomater
– volume: 267
  start-page: 585
  year: 1977
  end-page: 590
  ident: CR71
  article-title: Dynamics of folded proteins
  publication-title: Nature
– volume: 28
  start-page: 12
  year: 2009
  end-page: 13
  ident: CR136
  article-title: Multiscale modeling of biomedical, biological, and behavioral systems
  publication-title: IEEE Eng Med
– volume: 8
  start-page: 4
  year: 2018
  ident: CR24
  article-title: Machine learning methods for analysis of metabolic data and metabolic pathway modeling
  publication-title: Metabolites
– volume: 58
  start-page: 3555
  year: 2007
  ident: CR35
  article-title: Stochastic simulation of chemical kinetics
  publication-title: Ann Rev Phys Chem
– volume: 2
  start-page: 45
  year: 2019
  ident: CR40
  article-title: Best practices for analyzing large-scale health data from wearables and smartphone apps
  publication-title: NPJ Digit Med
– volume: 140
  start-page: 516
  issue: 3
  year: 2017
  end-page: 526
  ident: CR65
  article-title: Computers, causality and cure in epilepsy
  publication-title: Brain
– volume: 572
  start-page: 27
  year: 2019
  end-page: 28
  ident: CR98
  article-title: Three pitfalls to avoid in machine learning
  publication-title: Nature
– volume: 353
  start-page: 201
  year: 2019
  end-page: 216
  ident: CR122
  article-title: Machine learning materials physics: integrable deep neural networks enable scale bridging by learning free energy functions
  publication-title: Comput Methods Appl Mech Eng
– volume: 106
  start-page: 855
  year: 2019
  end-page: 865
  ident: CR7
  article-title: Pharmacogenomics-driven prediction of antidepressant treatment outcomes: a machine learning approach with multi-trial replication
  publication-title: Clin Pharmacol Thera
  doi: 10.1002/cpt.1482
– volume: 30
  start-page: 20022011
  year: 2008
  ident: CR58
  article-title: Neural network based constitutive model for elastomeric foams
  publication-title: Eng Struct
– ident: CR93
– volume: 79
  start-page: 14491486
  issue: 7
  year: 2017
  ident: CR112
  article-title: Methods of model reduction for large-scale biological systems: a survey of current methods and trends
  publication-title: Bull Math Biol
– volume: 5
  start-page: 593
  issue: 8
  year: 2009
  end-page: 539
  ident: CR10
  article-title: Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
  publication-title: Nat Chem Biol
– volume: 59
  start-page: 863
  year: 2011
  end-page: 883
  ident: CR4
  article-title: Perspectives on biological growth and remodeling
  publication-title: J Mech Phys Solids
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: CR13
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc Natl Acad Sci
– volume: 13
  start-page: 20151107
  issue: 118
  year: 2016
  ident: CR83
  article-title: Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond
  publication-title: J R Soc Interface
– volume: 232
  start-page: 288
  year: 2013
  end-page: 317
  ident: CR41
  article-title: Simulation-based optimal experimental design for nonlinear systems
  publication-title: J Comput Phys
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR54
  article-title: Deep learning
  publication-title: Nature
– ident: CR119
– volume: 35
  start-page: 5182
  year: 2019
  end-page: 5190
  ident: CR52
  article-title: Identification of disease-associated loci using machine learning for genotype and network data integration
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz310
– volume: 9
  start-page: 31
  year: 2018
  ident: CR14
  article-title: Digital Twins in health care: ethical implications of an emerging engineering paradigm
  publication-title: Front Genet
– volume: 27
  start-page: 3748
  year: 2001
  ident: CR48
  article-title: Approach to micro-macro modeling of heterogeneous materials
  publication-title: Comput Mech
– volume: 295
  start-page: 16621664
  year: 2002
  ident: CR47
  article-title: Systems biology: a brief overview
  publication-title: Science
– volume: 344
  start-page: 666
  year: 2019
  end-page: 693
  ident: CR121
  article-title: Machine learning materials physics: surrogate optimization and multi-fidelity algorithms predict precipitate morphology in an alternative to phase field dynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 2
  start-page: 115
  year: 2019
  ident: CR3
  article-title: Integrating machine learning and multiscale modeling: perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
  publication-title: NPJ Digit Med
– volume: 345
  start-page: 11381168
  year: 2019
  ident: CR61
  article-title: A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 28
  start-page: 1
  issue: 10
  year: 2018
  end-page: 13
  ident: CR79
  article-title: Hippocampal network oscillations drive memory consolidation in the absence of sleep
  publication-title: Cereb Cortex
– volume: 38
  start-page: 16011607
  issue: 7
  year: 2018
  ident: CR128
  article-title: A shared vision for machine learning in neuroscience
  publication-title: J Neurosci
– volume: 23
  start-page: 408
  year: 2019
  end-page: 422
  ident: CR12
  article-title: Reinforcement learning, fast and slow
  publication-title: Trends Cognit Sci
– volume: 6
  start-page: 20150083
  year: 2016
  ident: CR18
  article-title: Multiphysics and multiscale modeling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics
  publication-title: Interface Focus
– volume: 65
  start-page: 1234
  year: 2014
  ident: CR89
  article-title: A homogenization approach for nonwoven materials based on fiber undulations and reorientation
  publication-title: J Mech Phys Solids
– ident: CR140
– ident: CR21
– ident: CR46
– volume: 229
  start-page: 79
  year: 2018
  end-page: 123
  ident: CR22
  article-title: Data-driven problems in elasticity
  publication-title: Arch Ration Mech Anal
– volume: 73
  start-page: 5683
  issue: 23
  year: 2001
  end-page: 5090
  ident: CR139
  article-title: An automated multidimensional protein identification technology for shotgun proteomics
  publication-title: Anal Chem
– volume: 4
  start-page: 237
  year: 2003
  end-page: 243
  ident: CR43
  article-title: Integration from proteins to organs: the physiome project
  publication-title: Processes
– volume: 475
  start-page: 20180534
  year: 2019
  ident: CR69
  article-title: Model selection for hybrid dynamical systems via sparse regression
  publication-title: Proceedings R Soc A Math Phys Eng Sci
– volume: 96
  start-page: 6089
  year: 2008
  ident: CR114
  article-title: Multi-scale computational modelling in biology and physiology
  publication-title: Prog Biophys Mol Biol
– volume: 357
  start-page: 112579
  year: 2019
  ident: CR113
  article-title: Three-dimensional traction microscopy with a fiber-based constitutive model
  publication-title: Comput Methods Appl Mech Eng
– ident: CR116
– volume: 19
  start-page: 115
  issue: 2
  year: 2019
  end-page: 116
  ident: CR2
  article-title: A straw can break a neural network’s back and lead to seizures but only when delivered at the right time
  publication-title: Epilepsy Currents
– volume: 63
  start-page: 425
  year: 2001
  end-page: 464
  ident: CR44
  article-title: Bayesian calibration of computer models (with discussion)
  publication-title: J Roy Stat Soc B
– volume: 348
  start-page: 313
  year: 2019
  end-page: 333
  ident: CR102
  article-title: Machine learning in drug development: characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification
  publication-title: Comput Methods Appl Mech Eng
– volume: 8
  start-page: e44494
  year: 2019
  ident: CR30
  article-title: NetPyNE, a tool for data-driven multiscale modeling of brain circuits
  publication-title: Elife
  doi: 10.7554/eLife.44494.001
– volume: 28
  start-page: 063116
  year: 2018
  ident: CR88
  article-title: Sparse identification of nonlinear dynamics for rapid model recovery
  publication-title: Chaos
– ident: CR78
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  ident: CR135
  article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun Math Stat
– volume: 17
  start-page: 1857
  issue: 6
  year: 2018
  end-page: 18731
  ident: CR55
  article-title: Propagation of material behavior uncertainty in a nonlinear finite element model of reconstructive surgery
  publication-title: Biomech Model Mechanobiol
– volume: 7
  start-page: 49088
  year: 2019
  end-page: 49101
  ident: CR60
  article-title: A novel cloud-based framework for the elderly healthcare services using Digital Twin
  publication-title: IEEE Access
– ident: CR99
– volume: 18
  start-page: 153
  year: 2018
  ident: CR9
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J Mach Learn Res
– volume: 106
  start-page: 1767517680
  year: 2009
  ident: CR107
  article-title: Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels
  publication-title: Proc Natl Acad Sci
– volume: 117
  start-page: 148
  year: 2016
  end-page: 162
  ident: CR77
  article-title: Optimizing computer models of corticospinal neurons to replicate in vitro dynamics
  publication-title: J Neurophysiol
– volume: 6
  start-page: 56
  issue: 5
  year: 2018
  ident: CR42
  article-title: The spectrum of mechanism-oriented models and methods for explanations of biological phenomena
  publication-title: Processes
– ident: CR95
– volume: 16
  start-page: 20190233
  year: 2019
  ident: CR5
  article-title: Growth and remodelling of living tissues: perspectives, challenges, and opportunities
  publication-title: J R Soc Interface
– volume: 48
  start-page: 38
  year: 2014
  end-page: 47
  ident: CR8
  article-title: The living heart project: a robust and integrative simulator for human heart function
  publication-title: Eur J Mech A/Solids
– volume: 21
  start-page: 19471961
  year: 2006
  ident: CR15
  article-title: Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly
  publication-title: J Mater Res
– volume: 357
  start-page: 112602
  year: 2019
  ident: CR103
  article-title: Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models
  publication-title: Comput Methods Appl Mech Eng
– volume: 47
  start-page: 611642
  year: 1999
  ident: CR111
  article-title: An adaptive finite element approach to atomic scale mechanics-the quasicontinuum method
  publication-title: J Mech Phys Solids
– volume: 40
  start-page: 2228
  issue: 10
  year: 2012
  end-page: 2242
  ident: CR108
  article-title: Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery
  publication-title: Ann Biomed Eng
– volume: 3
  start-page: 172179
  year: 2004
  ident: CR115
  article-title: Mathematical modeling of complex regulatory networks
  publication-title: NanoBioscience, IEEE Transactions
– volume: 3
  start-page: e1602614
  issue: 4
  year: 2017
  ident: CR100
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci Adv
– volume: 8
  start-page: 00010
  issue: 10
  year: 2014
  ident: CR16
  article-title: An efficient automated parameter tuning framework for spiking neural networks
  publication-title: Front Neurosci
– volume: 95
  start-page: 245258
  issue: 2
  year: 2017
  ident: CR39
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: CR94
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 4
  start-page: 222
  year: 2008
  ident: CR50
  article-title: Selected reaction monitoring for quantitative proteomics: a tutorial
  publication-title: Mol Syst Biol
– ident: CR127
– volume: 4
  start-page: 219230
  issue: 4
  year: 2017
  ident: CR64
  article-title: Multiscale modeling in the clinic: diseases of the brain and nervous system
  publication-title: Brain Inform
– volume: 18
  start-page: 1987
  year: 2019
  end-page: 2001
  ident: CR81
  article-title: Using machine learning to characterize heart failure across the scales
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-019-01190-w
– volume: 63
  start-page: 1997
  year: 2016
  end-page: 1998
  ident: CR82
  article-title: Moving toward model reproducibility and reusability
  publication-title: IEEE Trans Biomed Eng
– volume: 12
  start-page: e0183810
  issue: 8
  year: 2017
  ident: CR142
  article-title: Hybrid multiscale modeling and prediction of cancer cell behavior
  publication-title: PLoS ONE
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: CR124
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
– ident: CR118
– year: 2020
  ident: CR105
  article-title: Physics-informed neural networks for cardiac activation mapping
  publication-title: Front Phys
  doi: 10.3389/fphy.2020.00042
– volume: 104
  start-page: 10611084
  year: 2015
  ident: CR51
  article-title: Computational homogenization of nonlinear elastic materials using neural networks
  publication-title: Int J Numer Methods Eng
– volume: 86
  start-page: 277
  year: 2017
  end-page: 304
  ident: CR62
  article-title: Metabolite measurement: pitfalls to avoid and practices to follow
  publication-title: Ann Rev Biochem
– volume: 2
  start-page: 195
  year: 2001
  end-page: 206
  ident: CR137
  article-title: 13C metabolic flux analysis
  publication-title: Metab Eng
– volume: 291
  start-page: 102122
  year: 2015
  ident: CR66
  article-title: A Bayesian approach to selecting hyperelastic constitutive models of soft tissue
  publication-title: Comput Methods Appl Mech Eng
– ident: CR59
– volume: 345
  start-page: 402
  year: 2019
  end-page: 428
  ident: CR126
  article-title: Uncertainty quantification of simulated biomechanical simuli in coronary artery bypass grafts
  publication-title: Comput Methods Appl Mech Eng
– volume: 16
  start-page: 1089
  year: 2017
  end-page: 1112
  ident: CR11
  article-title: One-dimensional map for the circadian modulation of sleep in a sleep-wake regulatory network model for human sleep
  publication-title: SIAM J Appl Dyn Syst
– volume: 25
  start-page: 89
  year: 2018
  end-page: 100
  ident: CR17
  article-title: Practical unidentifiability of a simple vector-borne disease model: implications for parameter estimation and intervention assessment
  publication-title: Epidemics
– volume: 356
  start-page: 44
  year: 2019
  end-page: 74
  ident: CR130
  article-title: Variational system identification of the partial differential equations governing the physics of pattern-formation: inference under varying fidelity and noise
  publication-title: Comput Methods Appl Mech Eng
– volume: 2
  start-page: 45
  year: 2019
  ident: 9405_CR40
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0121-1
– volume: 26
  start-page: 297319
  issue: 3
  year: 2003
  ident: 9405_CR53
  publication-title: J Glob Optim
  doi: 10.1023/A:1023283917997
– volume: 356
  start-page: 44
  year: 2019
  ident: 9405_CR130
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.07.007
– volume: 129
  start-page: 137147
  year: 2007
  ident: 9405_CR20
  publication-title: J Biomech Eng
  doi: 10.1115/1.2472369
– volume: 112
  start-page: E2920
  year: 2015
  ident: 9405_CR73
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1421200112
– volume: 394
  start-page: 136
  year: 2019
  ident: 9405_CR141
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.05.027
– ident: 9405_CR99
– volume: 140
  start-page: 516
  issue: 3
  year: 2017
  ident: 9405_CR65
  publication-title: Brain
  doi: 10.1093/brain/awx018
– volume: 234
  start-page: 21752182
  year: 2010
  ident: 9405_CR33
  publication-title: J Comput Appl Math
– ident: 9405_CR117
– volume: 7
  start-page: 49088
  year: 2019
  ident: 9405_CR60
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909828
– volume: 232
  start-page: 288
  year: 2013
  ident: 9405_CR41
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2012.08.013
– volume: 5
  start-page: 593
  issue: 8
  year: 2009
  ident: 9405_CR10
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.186
– volume: 18
  start-page: 312
  year: 2019
  ident: 9405_CR19
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/18M1188227
– volume: 348
  start-page: 683
  year: 2017
  ident: 9405_CR91
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.07.050
– volume: 378
  start-page: 686707
  year: 2019
  ident: 9405_CR96
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
– volume: 25
  start-page: 65
  year: 2019
  ident: 9405_CR38
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0268-3
– volume: 63
  start-page: 1997
  year: 2016
  ident: 9405_CR82
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2603418
– volume: 3
  start-page: 172179
  year: 2004
  ident: 9405_CR115
  publication-title: NanoBioscience, IEEE Transactions
  doi: 10.1109/TNB.2004.833688
– volume: 572
  start-page: 36
  year: 2019
  ident: 9405_CR125
  publication-title: Nature
  doi: 10.1038/d41586-019-02308-x
– volume: 190
  start-page: 249274
  year: 2003
  ident: 9405_CR129
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(03)00273-0
– volume: 359
  start-page: 112724
  year: 2020
  ident: 9405_CR57
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112724
– volume: 193
  start-page: 55255550
  year: 2004
  ident: 9405_CR49
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.073
– volume: 65
  start-page: 1234
  year: 2014
  ident: 9405_CR89
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2013.12.011
– volume: 361
  start-page: 360
  year: 2018
  ident: 9405_CR106
  publication-title: Science
  doi: 10.1126/science.aat2663
– volume: 40
  start-page: 2228
  issue: 10
  year: 2012
  ident: 9405_CR108
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-012-0579-3
– volume: 20
  start-page: 127135
  year: 2014
  ident: 9405_CR63
  publication-title: Skin Res Technol
– volume: 8
  start-page: 00010
  issue: 10
  year: 2014
  ident: 9405_CR16
  publication-title: Front Neurosci
– volume: 59
  start-page: 863
  year: 2011
  ident: 9405_CR4
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2010.12.011
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 9405_CR37
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1718942115
– ident: 9405_CR138
– volume: 25
  start-page: 89
  year: 2018
  ident: 9405_CR17
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2018.05.010
– volume: 473
  start-page: 0751
  year: 2016
  ident: 9405_CR84
  publication-title: Proc R Soc A/Math Phys Eng Sci
– ident: 9405_CR119
– volume: 2
  start-page: 52
  year: 2016
  ident: 9405_CR68
  publication-title: IEEE Trans Mol Biol Multi-Scale Commun
  doi: 10.1109/TMBMC.2016.2633265
– volume: 118
  start-page: 1
  year: 2020
  ident: 9405_CR104
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2020.01.012
– ident: 9405_CR78
  doi: 10.1109/CVPR.2015.7298640
– volume: 48
  start-page: 38
  year: 2014
  ident: 9405_CR8
  publication-title: Eur J Mech A/Solids
  doi: 10.1016/j.euromechsol.2014.04.001
– volume: 25
  start-page: 44
  year: 2019
  ident: 9405_CR124
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 572
  start-page: 27
  year: 2019
  ident: 9405_CR98
  publication-title: Nature
  doi: 10.1038/d41586-019-02307-y
– ident: 9405_CR36
– ident: 9405_CR93
– volume: 229
  start-page: 79
  year: 2018
  ident: 9405_CR22
  publication-title: Arch Ration Mech Anal
  doi: 10.1007/s00205-017-1214-0
– volume: 9
  start-page: 31
  year: 2018
  ident: 9405_CR14
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00031
– volume: 28
  start-page: 063116
  year: 2018
  ident: 9405_CR88
  publication-title: Chaos
  doi: 10.1063/1.5027470
– volume: 11
  start-page: 109134
  year: 2009
  ident: 9405_CR120
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.10.061807.160521
– volume: 4
  start-page: 19
  year: 2018
  ident: 9405_CR23
  publication-title: NPJ Syst Biol Appl
  doi: 10.1038/s41540-018-0054-3
– volume: 8
  start-page: 4
  year: 2018
  ident: 9405_CR24
  publication-title: Metabolites
  doi: 10.3390/metabo8010004
– volume: 475
  start-page: 20180534
  year: 2019
  ident: 9405_CR69
  publication-title: Proceedings R Soc A Math Phys Eng Sci
– volume: 19
  start-page: 5157
  year: 2016
  ident: 9405_CR76
  publication-title: Drug Discov Today Disease Models
– volume: 124
  start-page: 264
  year: 2019
  ident: 9405_CR133
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2018.10.013
– volume: 79
  start-page: 14491486
  issue: 7
  year: 2017
  ident: 9405_CR112
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-017-0277-2
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 9405_CR135
  publication-title: Commun Math Stat
– ident: 9405_CR116
– volume-title: Multiscale modeling in biomechanics and mechanobiology
  year: 2014
  ident: 9405_CR25
– volume: 116
  start-page: 22811
  year: 2019
  ident: 9405_CR45
  publication-title: Proc Natl Acad Sci
  doi: 10.1101/579706
– volume: 345
  start-page: 11381168
  year: 2019
  ident: 9405_CR61
  publication-title: Comput Methods Appl Mech Eng
– volume: 2
  start-page: 209213
  year: 2018
  ident: 9405_CR110
  publication-title: Cell Systems
– volume: 18
  start-page: 153
  year: 2018
  ident: 9405_CR9
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 1
  issue: 10
  year: 2018
  ident: 9405_CR79
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhy174
– volume: 474
  start-page: 0858
  year: 2018
  ident: 9405_CR72
  publication-title: Proc R Soc A/Math Phys Eng Sci
– volume: 465
  start-page: 51
  year: 2019
  ident: 9405_CR97
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2019.01.017
– volume: 357
  start-page: 125
  year: 2018
  ident: 9405_CR94
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.11.039
– volume: 58
  start-page: 3555
  year: 2007
  ident: 9405_CR35
  publication-title: Ann Rev Phys Chem
  doi: 10.1146/annurev.physchem.58.032806.104637
– volume: 63
  start-page: 425
  year: 2001
  ident: 9405_CR44
  publication-title: J Roy Stat Soc B
  doi: 10.1111/1467-9868.00294
– volume: 344
  start-page: 666
  year: 2019
  ident: 9405_CR121
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.025
– volume: 4
  start-page: 237
  year: 2003
  ident: 9405_CR43
  publication-title: Processes
– volume: 19
  start-page: 184
  issue: 3
  year: 2019
  ident: 9405_CR1
  publication-title: Epilepsy Curr
  doi: 10.1177/1535759719842236
– volume: 6
  start-page: 20150083
  year: 2016
  ident: 9405_CR18
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2015.0083
– volume: 113
  start-page: 3932
  year: 2016
  ident: 9405_CR13
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1517384113
– volume: 4
  start-page: 219230
  issue: 4
  year: 2017
  ident: 9405_CR64
  publication-title: Brain Inform
  doi: 10.1007/s40708-017-0067-5
– volume: 5
  start-page: 349
  issue: 4
  year: 2017
  ident: 9405_CR134
  publication-title: Commun Math Stat
  doi: 10.1007/s40304-017-0117-6
– volume: 35
  start-page: 5182
  year: 2019
  ident: 9405_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz310
– ident: 9405_CR6
– volume: 17
  start-page: 1857
  issue: 6
  year: 2018
  ident: 9405_CR55
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-018-1061-4
– volume: 35
  start-page: 4072
  year: 2019
  ident: 9405_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz199
– volume: 12
  start-page: 482
  issue: 7
  year: 2016
  ident: 9405_CR80
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2077
– ident: 9405_CR127
  doi: 10.1109/CVPRW.2018.00143
– volume: 7
  start-page: 1
  year: 2019
  ident: 9405_CR67
  publication-title: Systems
  doi: 10.3390/systems7010001
– ident: 9405_CR95
– volume: 357
  start-page: 112579
  year: 2019
  ident: 9405_CR113
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112579
– volume: 16
  start-page: 1089
  year: 2017
  ident: 9405_CR11
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/16M1071328
– volume: 27
  start-page: 3748
  year: 2001
  ident: 9405_CR48
  publication-title: Comput Mech
  doi: 10.1007/s004660000212
– volume: 357
  start-page: 112602
  year: 2019
  ident: 9405_CR103
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.112602
– volume: 335
  start-page: 736746
  year: 2017
  ident: 9405_CR90
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.01.060
– volume: 295
  start-page: 16621664
  year: 2002
  ident: 9405_CR47
  publication-title: Science
  doi: 10.1126/science.1069492
– volume: 86
  start-page: 66
  year: 2019
  ident: 9405_CR101
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.12.053
– volume: 1
  start-page: 133
  year: 2019
  ident: 9405_CR75
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0025-4
– volume: 348
  start-page: 313
  year: 2019
  ident: 9405_CR102
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.01.033
– volume: 38
  start-page: 16011607
  issue: 7
  year: 2018
  ident: 9405_CR128
  publication-title: J Neurosci
– volume: 363
  start-page: 116
  year: 2018
  ident: 9405_CR143
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.02.039
– volume: 140
  start-page: 651
  year: 2017
  ident: 9405_CR86
  publication-title: Brain
  doi: 10.1093/brain/awx004
– volume: 17
  start-page: 1130
  year: 2012
  ident: 9405_CR70
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 3
  start-page: e1602614
  issue: 4
  year: 2017
  ident: 9405_CR100
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1602614
– ident: 9405_CR118
– volume: 21
  start-page: 19471961
  year: 2006
  ident: 9405_CR15
  publication-title: J Mater Res
– volume: 30
  start-page: 20022011
  year: 2008
  ident: 9405_CR58
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2007.12.021
– volume-title: Deep medicine: how artificial intelligence can make healthcare human again
  year: 2019
  ident: 9405_CR123
– volume: 20
  start-page: 370375
  year: 2002
  ident: 9405_CR109
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0402-370
– volume: 2
  start-page: 195
  year: 2001
  ident: 9405_CR137
  publication-title: Metab Eng
  doi: 10.1006/mben.2001.0187
– volume: 121
  start-page: 158101
  year: 2018
  ident: 9405_CR132
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.158101
– volume: 104
  start-page: 10611084
  year: 2015
  ident: 9405_CR51
  publication-title: Int J Numer Methods Eng
– ident: 9405_CR59
  doi: 10.1007/978-3-319-50257-1_98-1
– ident: 9405_CR92
– volume: 12
  start-page: e0183810
  issue: 8
  year: 2017
  ident: 9405_CR142
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0183810
– volume: 6
  start-page: 56
  issue: 5
  year: 2018
  ident: 9405_CR42
  publication-title: Processes
  doi: 10.3390/pr6050056
– volume: 125
  start-page: 572590
  year: 2019
  ident: 9405_CR56
  publication-title: J Mech Phys Solids
– volume: 18
  start-page: 1987
  year: 2019
  ident: 9405_CR81
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-019-01190-w
– volume: 291
  start-page: 102122
  year: 2015
  ident: 9405_CR66
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2015.03.012
– volume: 8
  start-page: e44494
  year: 2019
  ident: 9405_CR30
  publication-title: Elife
  doi: 10.7554/eLife.44494.001
– volume: 30
  start-page: 3041
  year: 2015
  ident: 9405_CR34
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2014.04.013
– volume: 4
  start-page: 222
  year: 2008
  ident: 9405_CR50
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2008.61
– year: 2020
  ident: 9405_CR105
  publication-title: Front Phys
  doi: 10.3389/fphy.2020.00042
– volume: 14
  start-page: 503
  year: 2017
  ident: 9405_CR85
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-017-1054-2
– volume: 353
  start-page: 201
  year: 2019
  ident: 9405_CR122
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.05.019
– volume: zsz42
  start-page: 095
  year: 2019
  ident: 9405_CR87
  publication-title: Sleep
  doi: 10.1093/sleep/zsz095
– ident: 9405_CR140
– volume: 14
  start-page: e1005920
  year: 2018
  ident: 9405_CR74
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1005920
– volume: 86
  start-page: 277
  year: 2017
  ident: 9405_CR62
  publication-title: Ann Rev Biochem
  doi: 10.1146/annurev-biochem-061516-044952
– volume: 19
  start-page: 115
  issue: 2
  year: 2019
  ident: 9405_CR2
  publication-title: Epilepsy Currents
  doi: 10.1177/1535759719835349
– volume: 521
  start-page: 436
  year: 2015
  ident: 9405_CR54
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 28
  start-page: 12
  year: 2009
  ident: 9405_CR136
  publication-title: IEEE Eng Med
  doi: 10.1109/MEMB.2009.932388
– volume: 96
  start-page: 6089
  year: 2008
  ident: 9405_CR114
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2007.07.019
– volume: 95
  start-page: 245258
  issue: 2
  year: 2017
  ident: 9405_CR39
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.011
– volume: 103
  start-page: 227
  year: 1976
  ident: 9405_CR131
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(76)90311-9
– volume: 16
  start-page: 20190233
  year: 2019
  ident: 9405_CR5
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2019.0233
– ident: 9405_CR21
– volume: 106
  start-page: 1767517680
  year: 2009
  ident: 9405_CR107
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0903716106
– volume: 132
  start-page: 1920
  year: 2015
  ident: 9405_CR27
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– ident: 9405_CR46
– volume: 2
  start-page: 115
  year: 2019
  ident: 9405_CR3
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0193-y
– volume: 106
  start-page: 855
  year: 2019
  ident: 9405_CR7
  publication-title: Clin Pharmacol Thera
  doi: 10.1002/cpt.1482
– volume: 112
  start-page: E2911
  year: 2015
  ident: 9405_CR28
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1420753112
– volume: 345
  start-page: 402
  year: 2019
  ident: 9405_CR126
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.024
– volume: 267
  start-page: 585
  year: 1977
  ident: 9405_CR71
  publication-title: Nature
  doi: 10.1038/267585a0
– volume: 117
  start-page: 148
  year: 2016
  ident: 9405_CR77
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00570.2016
– volume: 23
  start-page: 408
  year: 2019
  ident: 9405_CR12
  publication-title: Trends Cognit Sci
  doi: 10.1016/j.tics.2019.02.006
– volume: 73
  start-page: 5683
  issue: 23
  year: 2001
  ident: 9405_CR139
  publication-title: Anal Chem
  doi: 10.1021/ac010617e
– volume: 61
  start-page: 114
  issue: 6
  year: 2017
  ident: 9405_CR29
  publication-title: IBM J Res Dev
– volume: 47
  start-page: 611642
  year: 1999
  ident: 9405_CR111
  publication-title: J Mech Phys Solids
– volume: 542
  start-page: 115
  year: 2017
  ident: 9405_CR31
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 107
  start-page: 853881
  year: 2016
  ident: 9405_CR32
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5188
– volume: 13
  start-page: 20151107
  issue: 118
  year: 2016
  ident: 9405_CR83
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2015.1107
SSID ssj0054992
Score 2.658265
Snippet Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1017
SubjectTerms Artificial intelligence
Biological models (mathematics)
Boundary conditions
Electrophysiology
Engineering
Machine learning
Mathematical and Computational Engineering
Object recognition
Original Paper
Parameter identification
Parameter sensitivity
Radiology
Robustness (mathematics)
System dynamics
Title Multiscale Modeling Meets Machine Learning: What Can We Learn?
URI https://link.springer.com/article/10.1007/s11831-020-09405-5
https://www.ncbi.nlm.nih.gov/pubmed/34093005
https://www.proquest.com/docview/2515765370
https://www.proquest.com/docview/2538047105
https://pubmed.ncbi.nlm.nih.gov/PMC8172124
Volume 28
WOSCitedRecordID wos000520045900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6VLQc4QHkUAlvkStwgkvN2OFAhBOoFhKCPvUV2bFMklEVk4fcz43V2u-Uh0WMS5-F5eGbimW8AdmOFTC4LHaaGWpjJpAyl0DqUuDJKiUYiqcfNJorzczEYlBe-KKztst27LUm3Uk-L3VD6MPTFcIcw37Iwm4OPaO4EqePl1a9u_aWAx-1xRgn988-5L5V5-Rmz5uiZj_k8VfKf_VJnhk6X_28Cn2DJu53saCwnK_DBNKuw7F1Q5hW8XYXFv_AJ1-DQlee2yEbDqGkala6zM2NGLTtzSZiGeXzW6wNGIODsWDbstz_7bR1-np78OP4e-oYLYZ0W6SjMrMllpNNCpTKPasO5RQdRmTJWMVdpgse8VnmuBdLDcqsja2stFYZsGXkmyWfoNcPGbAJD_tvYsVuUqbJC1LEuMqskenQa15QAoo7uVe3RyKkpxm01xVEmclVIrsqRq8oC2JvcczfG4nhzdL9jZ-X1sq3Qm8MAK0sKHsDXyWXUKNomkY0ZPtCYRHC02RwfsTHm_uR1CYbDBPAfQDEjF5MBhNY9e6W5-eNQuwUF23EawH4nHdPPen0WW-8bvg0LMSXduIzMPvRG9w_mC8zXjygs9zswVwzEjtOWJ4BBCyU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NDQl4WKGMkTGYJ_EGkZzE-drD0DRt2rS2QmzA3iI7tgEJpdPS8fdz5zrtugISe0zsOPHd2XcX3_0O4G2skMllrkNhqISZTMpQFlqHEndGKVFJJPW02EQ-GhWXl-VHnxTWdtHu3ZGk26nnyW4ofej6ortDmG9pmD6ANYEaiwL5Pp1_6fZfcnjcGWeU0D__jPtUmT-PsaiOlmzM5VDJO-elTg0d9-43gaew7s1OdjCVk2ewYpo-9LwJyvwCb_vw5BY-4XPYd-m5LbLRMCqaRqnrbGjMpGVDF4RpmMdn_bbHCAScHcqGffV3P2zA5-Oji8OT0BdcCGuRi0mYWpPJSItcCZlFteHcooGoTBmrmCuR4DWvVZbpAulhudWRtbWWCl22lCyT5AWsNuPGvASG_LexY3dRCmWLoo51nlol0aLTuKcEEHV0r2qPRk5FMX5WcxxlIleF5Kocuao0gHezZ66mWBz_7L3dsbPy67Kt0JpDBytNch7A7qwZVxQdk8jGjG-oT1Jw1Nkch9iccn_2ugTdYQL4DyBfkItZB0LrXmxpfnx3qN0FOduxCOB9Jx3zz_r7LLb-r_sOPDq5GA6qweno7BU8jikAx0VnbsPq5PrGvIaH9S8UnOs3bs38BsGbDSE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLcYoAkexsdg68YgSHvbKtI2_drDEGKcQMAJiX3wViVNAkioIO7g75-dpnccsEnTHtu4aRPbid3YPwN8jBUyucx1KAyVMJNJGcpC61DiyiglbhJJ3RabyPv94uysPHmQxe-i3bsjyTangVCamuHWjbZb48Q3lER0g9H1Ify3NExfwIygokHkr5_-7NZicn7ceWeU0P__jPu0mef7mNyantibT8MmH52dui2pt_D_g1mEV94cZTut_CzBlGmWYcGbpswr_mAZ5h_gFr6Gry5td4DsNYyKqVFKOzs2Zjhgxy440zCP23r-hRE4ONuVDfvl726vwI_e3vfd_dAXYghrkYthmFqTyUiLXAmZRbXh3KLhqEwZq5grkeA1r1WW6QLnxnKrI2trLRW6cilZLMkqTDfXjXkLDOXCxk4MilIoWxR1rPPUKomWnsa1JoCo40FVe5RyKpZxVY3xlWm6Kpyuyk1XlQbwafTMTYvR8VfqtY61ldfXQYVWHjpeaZLzADZHzahpdHwiG3N9RzRJwXEv59jFm1YSRq9L0E0m4P8A8gkZGREQivdkS3N54dC8C3LCYxHA505Sxp_151G8-zfyDXh58q1XHR30D9_DXExxOS5ocw2mh7d35gPM1vcoN7frTn1-A_6zFgU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+modeling+meets+machine+learning%3A+What+can+we+learn%3F&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Peng%2C+Grace+C+Y&rft.au=Alber%2C+Mark&rft.au=Tepole%2C+Adrian+Buganza&rft.au=Cannon%2C+William+R&rft.date=2021-05-01&rft.issn=1886-1784&rft.eissn=1886-1784&rft.volume=28&rft.issue=3&rft.spage=1017&rft_id=info:doi/10.1007%2Fs11831-020-09405-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon