An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs c...
Saved in:
| Published in: | Cell reports (Cambridge) Vol. 43; no. 4; p. 114020 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
23.04.2024
Elsevier |
| Subjects: | |
| ISSN: | 2211-1247, 2211-1247 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
[Display omitted]
•Thwarting LEC autophagy prevents lymphocyte egress from the lymph node (LN)•LEC autophagy governs the S1P gradient and the intranodal dynamics of T and NK cells•Loss of LEC autophagy remodels niche-specific LEC phenotypes in tumor-draining LNs•LEC-autophagy blockade blunts efficacy of ICBs by sequestering T and NK cells in the LNs
Houbaert et al. find that defective autophagy in lymphatic endothelial cells (LECs) prevents lymphocyte’s egress from lymph nodes. In tumor-bearing mice, LEC autophagy endorses the recruitment of peripheral T and NK cells to the tumor and ICB-driven antitumor immunity, further underscoring the lymph nodes as critical players in immunotherapy responses. |
|---|---|
| AbstractList | Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
[Display omitted]
•Thwarting LEC autophagy prevents lymphocyte egress from the lymph node (LN)•LEC autophagy governs the S1P gradient and the intranodal dynamics of T and NK cells•Loss of LEC autophagy remodels niche-specific LEC phenotypes in tumor-draining LNs•LEC-autophagy blockade blunts efficacy of ICBs by sequestering T and NK cells in the LNs
Houbaert et al. find that defective autophagy in lymphatic endothelial cells (LECs) prevents lymphocyte’s egress from lymph nodes. In tumor-bearing mice, LEC autophagy endorses the recruitment of peripheral T and NK cells to the tumor and ICB-driven antitumor immunity, further underscoring the lymph nodes as critical players in immunotherapy responses. Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics. Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics. |
| ArticleNumber | 114020 |
| Author | Nobis, Max Bergers, Gabriele Jacobs, Kathryn A. Swoboda, Magdalena Ganne, Maarten Houbaert, Diede Rillaerts, Kristine Boon, Louis Bosisio, Francesca Roels, Jana Mourao, Larissa Agrawal, Madhur More, Sanket Scheele, Colinda L.G.J. Vandamme, Niels Agostinis, Patrizia Meçe, Odeta Nikolakopoulos, Apostolos Panagiotis Shankar, Gautam |
| Author_xml | – sequence: 1 givenname: Diede surname: Houbaert fullname: Houbaert, Diede organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 2 givenname: Apostolos Panagiotis surname: Nikolakopoulos fullname: Nikolakopoulos, Apostolos Panagiotis organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 3 givenname: Kathryn A. surname: Jacobs fullname: Jacobs, Kathryn A. organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 4 givenname: Odeta surname: Meçe fullname: Meçe, Odeta organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 5 givenname: Jana surname: Roels fullname: Roels, Jana organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium – sequence: 6 givenname: Gautam surname: Shankar fullname: Shankar, Gautam organization: Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium – sequence: 7 givenname: Madhur surname: Agrawal fullname: Agrawal, Madhur organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 8 givenname: Sanket surname: More fullname: More, Sanket organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 9 givenname: Maarten surname: Ganne fullname: Ganne, Maarten organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 10 givenname: Kristine surname: Rillaerts fullname: Rillaerts, Kristine organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 11 givenname: Louis surname: Boon fullname: Boon, Louis organization: JJP Biologics, Warsaw, Poland – sequence: 12 givenname: Magdalena surname: Swoboda fullname: Swoboda, Magdalena organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium – sequence: 13 givenname: Max surname: Nobis fullname: Nobis, Max organization: Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium – sequence: 14 givenname: Larissa surname: Mourao fullname: Mourao, Larissa organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium – sequence: 15 givenname: Francesca surname: Bosisio fullname: Bosisio, Francesca organization: Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium – sequence: 16 givenname: Niels surname: Vandamme fullname: Vandamme, Niels organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium – sequence: 17 givenname: Gabriele surname: Bergers fullname: Bergers, Gabriele organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium – sequence: 18 givenname: Colinda L.G.J. surname: Scheele fullname: Scheele, Colinda L.G.J. organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium – sequence: 19 givenname: Patrizia surname: Agostinis fullname: Agostinis, Patrizia email: patrizia.agostinis@kuleuven.be organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38554280$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9v3CAQxa0qVZOm-QZVxbGX3QIG2-mhUhT1T6RIvewdjWHYZWODC7jSfvvgOo2qHlouMMPvvZHevK7OfPBYVW8Z3TLKmg_HrcYh4rTllIstY4Jy-qK64JyxDeOiPfvjfV5dpXSk5TSUsWvxqjqvOykF7-hFNd94AnMO0wH2JzLFsI8wknyAvBRjyJjIjpRhA8F9xJSILe0CIBlO43QgPhgkOvgcw5BIIabgUxHlQNw4zr58HlA_TMH5TPoh6Acw-KZ6aWFIePV0X1a7L593t98299-_3t3e3G-0aEXeSGgs9h32FqTtrOyo6KwAtFgK0133NaXCQitNSy0FWfdcQl831HYdClFfVnerrQlwVFN0I8STCuDUr0aIewUxOz2gMhpaWwsqQFPRNwyK3LZGClpzio0pXu9XrxLLjxlTVqNLSy7gMcxJ1ZRz2UrZyYK-e0LnfkTzPPh36gUQK6BjSCmifUYYVct-1VGt-1XLftW63yL7-JdMuwzZLeGDG_4n_rSKseT902FUSTv0Go2LqHNJxP3b4BFMzcQa |
| CitedBy_id | crossref_primary_10_3390_microorganisms13020443 crossref_primary_10_1016_j_mad_2024_111975 |
| Cites_doi | 10.3389/fimmu.2019.01168 10.1038/nri3298 10.1016/j.it.2022.10.010 10.1172/JCI155478 10.3389/fonc.2018.00086 10.1146/annurev-immunol-081519-083952 10.1016/j.immuni.2008.12.016 10.1038/nature22352 10.3389/fimmu.2021.643291 10.3389/fcvm.2020.00052 10.1126/sciimmunol.aav1263 10.2177/jsci.32.92 10.1084/jem.20041509 10.1038/s41591-019-0357-y 10.1172/JCI96061 10.1016/j.celrep.2022.110331 10.1016/j.ccr.2014.06.025 10.7717/peerj.453 10.1172/jci.insight.124507 10.1016/j.ccell.2020.09.001 10.1038/emm.2014.38 10.1016/j.cell.2015.05.047 10.1038/nature03029 10.7554/eLife.53008 10.1038/s41418-019-0287-8 10.4049/jimmunol.180.11.7636 10.1038/s41577-020-0281-x 10.1371/journal.pbio.3000704 10.1016/j.celrep.2012.09.021 10.1158/0008-5472.CAN-22-0363 10.1016/j.immuni.2022.12.002 10.1161/ATVBAHA.118.309669 10.1146/annurev-immunol-020711-075011 10.1038/s41467-023-37825-x 10.1126/sciimmunol.abg7836 10.1002/cyto.a.22625 10.1369/0022155420911050 10.1080/2162402X.2016.1204505 10.1084/jem.20201776 10.1073/pnas.2025763118 10.1369/0022155417719419 10.1038/ni.1939 10.1038/s41592-019-0667-5 10.1038/s41592-019-0650-1 10.1109/83.506761 10.3389/fimmu.2021.736670 10.1038/ni1240 10.4049/jimmunol.1102515 10.1038/s41467-020-14921-w 10.1084/jem.20091619 10.4161/auto.19496 10.1016/j.immuni.2019.06.027 10.1016/j.tibs.2020.12.013 10.1038/nmeth.4463 10.1038/s41580-018-0033-y 10.1038/s41596-020-00414-z 10.1194/jlr.M051862 10.1038/nature22079 10.1016/j.cell.2020.01.015 10.1189/jlb.1106678 10.1172/JCI58050 10.1016/j.cell.2016.12.022 10.1016/j.smim.2005.09.001 10.1126/scitranslmed.aal4712 10.3389/fimmu.2015.00446 10.1080/15548627.2021.1895658 10.1242/jcs.241828 10.1038/ni.3619 10.1098/rsob.190187 10.1111/jmi.12404 10.1016/j.trecan.2021.05.003 10.1016/j.heliyon.2016.e00219 10.1126/science.1113640 10.1038/nri1222 10.1038/nmeth.4397 10.1016/j.ymeth.2016.09.016 10.1038/s41467-022-30490-6 10.1016/j.immuni.2017.08.005 10.1016/j.it.2015.10.005 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
| DOI | 10.1016/j.celrep.2024.114020 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| ExternalDocumentID | oai_doaj_org_article_dca7f3404ac04b61a443f7d540320e6d 38554280 10_1016_j_celrep_2024_114020 S2211124724003486 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO AAYWO ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 O-L O9- OK1 ROL SSZ AAYXX CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c474t-5a6feb8ebfa5f8f58048f4aefe8f5d89b3004fa75d70f0a53b25ab360f88e443 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240508500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Fri Oct 03 12:45:16 EDT 2025 Fri Jul 11 12:31:29 EDT 2025 Mon Jul 21 05:51:19 EDT 2025 Tue Nov 18 22:17:38 EST 2025 Thu Nov 13 04:24:07 EST 2025 Sat Aug 09 17:30:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | CP: Immunology autophagy lymph node CP: Cancer immunotherapy lymphatic endothelial cells cancer T cell trafficking |
| Language | English |
| License | This is an open access article under the CC BY-NC license. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-5a6feb8ebfa5f8f58048f4aefe8f5d89b3004fa75d70f0a53b25ab360f88e443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/dca7f3404ac04b61a443f7d540320e6d |
| PMID | 38554280 |
| PQID | 3022575585 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dca7f3404ac04b61a443f7d540320e6d proquest_miscellaneous_3022575585 pubmed_primary_38554280 crossref_primary_10_1016_j_celrep_2024_114020 crossref_citationtrail_10_1016_j_celrep_2024_114020 elsevier_sciencedirect_doi_10_1016_j_celrep_2024_114020 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-23 |
| PublicationDateYYYYMMDD | 2024-04-23 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Kalucka, de Rooij, Goveia, Rohlenova, Dumas, Meta, Conchinha, Taverna, Teuwen, Veys (bib59) 2020; 180 Haase, Royer, Steinbach, Schmidt, Dibrov, Schmidt, Weigert, Maghelli, Tomancak, Jug, Myers (bib70) 2020; 17 Hansen, Rubinsztein, Walker (bib24) 2018; 19 Riffelmacher, Clarke, Richter, Stranks, Pandey, Danielli, Hublitz, Yu, Johnson, Schwerd (bib57) 2017; 47 Prokhnevska, Cardenas, Valanparambil, Sobierajska, Barwick, Jansen, Reyes Moon, Gregorova, delBalzo, Greenwald (bib62) 2023; 56 van der Walt, Schönberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart, Yu (bib71) 2014; 2 Park (bib47) 2014; 46 Liu, Yang, Burns, Shrestha, Chi (bib43) 2010; 11 Caicedo, Cooper, Heigwer, Warchal, Qiu, Molnar, Vasilevich, Barry, Bansal, Kraus (bib82) 2017; 14 Huang, Postow, Orlowski, Mick, Bengsch, Manne, Xu, Harmon, Giles, Wenz (bib20) 2017; 545 Fang, Chaluvadi, Ramos-Perez, Mendoza, Baeyens, Rivera, Chun, Cammer, Schwab (bib39) 2017; 18 Alexaki, Gupta, Majumder, Kono (bib36) 2014; 55 Klionsky, Abdalla, Abeliovich, Abraham, Acevedo-Arozena, Adeli, Agholme, Agnello, Agostinis, Aguirre-Ghiso (bib34) 2012; 8 Payne, De Val, Neal (bib38) 2018; 38 Messal, Almagro, Zaw Thin, Tedeschi, Ciccarelli, Blackie, Anderson, Miguel-Aliaga, van Rheenen, Behrens (bib85) 2021; 16 Grant, Lou, Yao, Germain, Radtke (bib7) 2020; 133 Onyshchenko, Luo, Guffart, Gaedicke, Grosu, Firat, Niedermann (bib66) 2023; 14 Harlé, Kowalski, Dubrot, Brighouse, Clavel, Pick, Bessis, Niven, Scheiermann, Gannagé, Hugues (bib25) 2021; 218 Habenicht, Albershardt, Iritani, Ruddell (bib48) 2016; 5 Girard, Moussion, Förster (bib8) 2012; 12 van Pul, Fransen, van de Ven, de Gruijl (bib16) 2021; 12 Cyster, Schwab (bib9) 2012; 30 Bolognesi, Bosisio, Cattoretti (bib41) 2020; 68 Tang, Liang, Anders, Taube, Qiu, Mulgaonkar, Liu, Harrington, Guo, Xin (bib65) 2018; 128 Connolly, Kuchroo, Venkat, Khatun, Wang, William, Hornick, Fitzgerald, Damo, Kasmani (bib63) 2021; 6 Baeyens, Schwab (bib32) 2020; 38 Van Gassen, Callebaut, Van Helden, Lambrecht, Demeester, Dhaene, Saeys (bib84) 2015; 87 Xiong, Piao, Brinkman, Li, Kulinski, Olivera, Cartier, Hla, Hippen, Blazar (bib30) 2019; 4 Schaaf, Houbaert, Meçe, Agostinis (bib22) 2019; 26 Baeyens, Fang, Chen, Schwab (bib4) 2015; 36 Fujimoto, He, D’Addio, Tacconi, Detmar, Dieterich (bib15) 2020; 18 Aibar, González-Blas, Moerman, Huynh-Thu, Imrichova, Hulselmans, Rambow, Marine, Geurts, Aerts (bib45) 2017; 14 Nagahashi, Yamada, Aoyagi, Allegood, Wakai, Spiegel, Takabe (bib73) 2016; 2 Bolognesi, Manzoni, Scalia, Zannella, Bosisio, Faretta, Cattoretti (bib76) 2017; 65 Tinevez, Perry, Schindelin, Hoopes, Reynolds, Laplantine, Bednarek, Shorte, Eliceiri (bib72) 2017; 115 Mendoza, Fang, Chen, Serasinghe, Verma, Muller, Chaluvadi, Dustin, Hla, Elemento (bib26) 2017; 546 Spitzer, Carmi, Reticker-Flynn, Kwek, Madhireddy, Martins, Gherardini, Prestwood, Chabon, Bendall (bib19) 2017; 168 White, Lattime, Guo (bib56) 2021; 7 Huang, Orlowski, Xu, Mick, George, Yan, Manne, Kraya, Wubbenhorst, Dorfman (bib61) 2019; 25 Browaeys, Saelens, Saeys (bib49) 2020; 17 Chiba (bib12) 2009; 32 Mendoza, Bréart, Ramos-Perez, Pitt, Gobert, Sunkara, Lafaille, Morris, Schwab (bib35) 2012; 2 Sehrawat, Rouse (bib42) 2008; 180 Martens, Permanyer, Werth, Yu, Braun, Halle, Halle, Patzer, Bošnjak, Kiefer (bib5) 2020; 11 Takeda, Salmi, Jalkanen (bib14) 2023; 44 Seidel, Otsuka, Kabashima (bib55) 2018; 8 Lo, Xu, Proia, Cyster (bib29) 2005; 201 Takeda, Hollmén, Dermadi, Pan, Brulois, Kaukonen, Lönnberg, Boström, Koskivuo, Irjala (bib60) 2019; 51 Vella, Guelfi, Bergers (bib28) 2021; 12 Jalkanen, Salmi (bib1) 2020; 20 Antoranz, Van Herck, Bolognesi, Lynch, Rahman, Gallagher, Boecxstaens, Marine, Cattoretti, van den Oord (bib78) 2022; 82 Brandstadter, Maillard (bib50) 2019; 9 Bosisio, Antoranz, van Herck, Bolognesi, Marcelis, Chinello, Wouters, Magni, Alexopoulos, Stas (bib77) 2020; 9 Xiang, Grosso, Takeda, Pan, Bekkhus, Brulois, Dermadi, Nordling, Vanlandewijck, Jalkanen (bib13) 2020; 7 Menzel, Zschummel, Rehm (bib74) 2022; 3 Pham, Baluk, Xu, Grigorova, Bankovich, Pappu, Coughlin, McDonald, Schwab, Cyster (bib10) 2010; 207 Cahalan, Parker (bib31) 2005; 17 Tan, Xu, Cretegny, Visan, Yuan, Egan, Guidos (bib51) 2009; 30 Reddy, Chatterji (bib80) 1996; 5 Prasad, Qamri, Wu, Ganju (bib52) 2007; 82 Verhoeven, Jacobs, Rizzollo, Lodi, Hua, Poźniak, Srinivasan, Houbaert, Shankar, More (bib67) 2023 Fransen, Schoonderwoerd, Knopf, Camps, Hawinkels, Kneilling, van Hall, Ossendorp (bib17) 2018; 3 Korhonen, Murtomäki, Jha, Anisimov, Pink, Zhang, Stritt, Liaqat, Stanczuk, Alderfer (bib44) 2022; 132 von Andrian, Mempel (bib27) 2003; 3 Glatigny, Duhen, Oukka, Bettelli (bib53) 2011; 187 Nakamura, Yoshimori (bib33) 2018; 41 Kuma, Hatano, Matsui, Yamamoto, Nakaya, Yoshimori, Ohsumi, Tokuhisa, Mizushima (bib69) 2004; 432 Bastow, Bunting, Kara, McKenzie, Caon, Devi, Tolley, Mueller, Frazer, Harvey (bib46) 2021; 118 Meçe, Houbaert, Sassano, Durré, Maes, Schaaf, More, Ganne, García-Caballero, Borri (bib23) 2022; 13 Dammeijer, van Gulijk, Mulder, Lukkes, Klaase, van den Bosch, van Nimwegen, Lau, Latupeirissa, Schetters (bib64) 2020; 38 Bromley, Thomas, Luster (bib6) 2005; 6 Hampton, Chtanova (bib3) 2019; 10 Filali-Mouncef, Hunter, Roccio, Zagkou, Dupont, Primard, Proikas-Cezanne, Reggiori (bib58) 2022; 18 Hirosue, Dubrot (bib2) 2015; 6 Maes, Kuchnio, Peric, Moens, Nys, De Bock, Quaegebeur, Schoors, Georgiadou, Wouters (bib21) 2014; 26 Levine, Simonds, Bendall, Davis, Amir, Tadmor, Litvin, Fienberg, Jager, Zunder (bib83) 2015; 162 Nagasaki, Inozume, Sax, Ariyasu, Ishikawa, Yamashita, Kawazu, Ueno, Irie, Tanji (bib18) 2022; 38 Fankhauser, Broggi, Potin, Bordry, Jeanbart, Lund, Da Costa, Hauert, Rincon-Restrepo, Tremblay (bib54) 2017; 9 Bazigou, Lyons, Smith, Venn, Cope, Brown, Makinen (bib68) 2011; 121 Cattoretti, Cattoretti, Bosisio, Marcelis (bib40) 2018 Ferro-Novick, Reggiori, Brodsky (bib37) 2021; 46 Weigert, Schmidt, Haase, Sugawara, Myers (bib81) 2020 Schwab, Pereira, Matloubian, Xu, Huang, Cyster (bib11) 2005; 309 Lun, McCarthy, Marioni (bib75) 2016; 5 Kask, Palo, Hinnah, Pommerencke (bib79) 2016; 263 Bastow (10.1016/j.celrep.2024.114020_bib46) 2021; 118 Baeyens (10.1016/j.celrep.2024.114020_bib4) 2015; 36 Hampton (10.1016/j.celrep.2024.114020_bib3) 2019; 10 von Andrian (10.1016/j.celrep.2024.114020_bib27) 2003; 3 Schaaf (10.1016/j.celrep.2024.114020_bib22) 2019; 26 Xiong (10.1016/j.celrep.2024.114020_bib30) 2019; 4 Liu (10.1016/j.celrep.2024.114020_bib43) 2010; 11 Tang (10.1016/j.celrep.2024.114020_bib65) 2018; 128 Bosisio (10.1016/j.celrep.2024.114020_bib77) 2020; 9 Takeda (10.1016/j.celrep.2024.114020_bib60) 2019; 51 Lun (10.1016/j.celrep.2024.114020_bib75) 2016; 5 Meçe (10.1016/j.celrep.2024.114020_bib23) 2022; 13 Dammeijer (10.1016/j.celrep.2024.114020_bib64) 2020; 38 Aibar (10.1016/j.celrep.2024.114020_bib45) 2017; 14 Fankhauser (10.1016/j.celrep.2024.114020_bib54) 2017; 9 Browaeys (10.1016/j.celrep.2024.114020_bib49) 2020; 17 Maes (10.1016/j.celrep.2024.114020_bib21) 2014; 26 Bolognesi (10.1016/j.celrep.2024.114020_bib76) 2017; 65 Bazigou (10.1016/j.celrep.2024.114020_bib68) 2011; 121 Bolognesi (10.1016/j.celrep.2024.114020_bib41) 2020; 68 Fang (10.1016/j.celrep.2024.114020_bib39) 2017; 18 van der Walt (10.1016/j.celrep.2024.114020_bib71) 2014; 2 Haase (10.1016/j.celrep.2024.114020_bib70) 2020; 17 Chiba (10.1016/j.celrep.2024.114020_bib12) 2009; 32 Levine (10.1016/j.celrep.2024.114020_bib83) 2015; 162 Nagasaki (10.1016/j.celrep.2024.114020_bib18) 2022; 38 Tinevez (10.1016/j.celrep.2024.114020_bib72) 2017; 115 Spitzer (10.1016/j.celrep.2024.114020_bib19) 2017; 168 Klionsky (10.1016/j.celrep.2024.114020_bib34) 2012; 8 Xiang (10.1016/j.celrep.2024.114020_bib13) 2020; 7 Kuma (10.1016/j.celrep.2024.114020_bib69) 2004; 432 Nagahashi (10.1016/j.celrep.2024.114020_bib73) 2016; 2 Caicedo (10.1016/j.celrep.2024.114020_bib82) 2017; 14 Mendoza (10.1016/j.celrep.2024.114020_bib26) 2017; 546 Pham (10.1016/j.celrep.2024.114020_bib10) 2010; 207 Vella (10.1016/j.celrep.2024.114020_bib28) 2021; 12 Grant (10.1016/j.celrep.2024.114020_bib7) 2020; 133 Mendoza (10.1016/j.celrep.2024.114020_bib35) 2012; 2 Seidel (10.1016/j.celrep.2024.114020_bib55) 2018; 8 Park (10.1016/j.celrep.2024.114020_bib47) 2014; 46 Riffelmacher (10.1016/j.celrep.2024.114020_bib57) 2017; 47 Kalucka (10.1016/j.celrep.2024.114020_bib59) 2020; 180 Filali-Mouncef (10.1016/j.celrep.2024.114020_bib58) 2022; 18 Reddy (10.1016/j.celrep.2024.114020_bib80) 1996; 5 Nakamura (10.1016/j.celrep.2024.114020_bib33) 2018; 41 Habenicht (10.1016/j.celrep.2024.114020_bib48) 2016; 5 Kask (10.1016/j.celrep.2024.114020_bib79) 2016; 263 Takeda (10.1016/j.celrep.2024.114020_bib14) 2023; 44 White (10.1016/j.celrep.2024.114020_bib56) 2021; 7 Glatigny (10.1016/j.celrep.2024.114020_bib53) 2011; 187 Martens (10.1016/j.celrep.2024.114020_bib5) 2020; 11 Brandstadter (10.1016/j.celrep.2024.114020_bib50) 2019; 9 Connolly (10.1016/j.celrep.2024.114020_bib63) 2021; 6 Bromley (10.1016/j.celrep.2024.114020_bib6) 2005; 6 Ferro-Novick (10.1016/j.celrep.2024.114020_bib37) 2021; 46 Onyshchenko (10.1016/j.celrep.2024.114020_bib66) 2023; 14 Prasad (10.1016/j.celrep.2024.114020_bib52) 2007; 82 van Pul (10.1016/j.celrep.2024.114020_bib16) 2021; 12 Messal (10.1016/j.celrep.2024.114020_bib85) 2021; 16 Cattoretti (10.1016/j.celrep.2024.114020_bib40) 2018 Harlé (10.1016/j.celrep.2024.114020_bib25) 2021; 218 Huang (10.1016/j.celrep.2024.114020_bib61) 2019; 25 Hansen (10.1016/j.celrep.2024.114020_bib24) 2018; 19 Weigert (10.1016/j.celrep.2024.114020_bib81) 2020 Jalkanen (10.1016/j.celrep.2024.114020_bib1) 2020; 20 Verhoeven (10.1016/j.celrep.2024.114020_bib67) 2023 Van Gassen (10.1016/j.celrep.2024.114020_bib84) 2015; 87 Hirosue (10.1016/j.celrep.2024.114020_bib2) 2015; 6 Baeyens (10.1016/j.celrep.2024.114020_bib32) 2020; 38 Sehrawat (10.1016/j.celrep.2024.114020_bib42) 2008; 180 Alexaki (10.1016/j.celrep.2024.114020_bib36) 2014; 55 Cyster (10.1016/j.celrep.2024.114020_bib9) 2012; 30 Menzel (10.1016/j.celrep.2024.114020_bib74) 2022; 3 Antoranz (10.1016/j.celrep.2024.114020_bib78) 2022; 82 Fransen (10.1016/j.celrep.2024.114020_bib17) 2018; 3 Fujimoto (10.1016/j.celrep.2024.114020_bib15) 2020; 18 Tan (10.1016/j.celrep.2024.114020_bib51) 2009; 30 Cahalan (10.1016/j.celrep.2024.114020_bib31) 2005; 17 Schwab (10.1016/j.celrep.2024.114020_bib11) 2005; 309 Payne (10.1016/j.celrep.2024.114020_bib38) 2018; 38 Prokhnevska (10.1016/j.celrep.2024.114020_bib62) 2023; 56 Huang (10.1016/j.celrep.2024.114020_bib20) 2017; 545 Lo (10.1016/j.celrep.2024.114020_bib29) 2005; 201 Girard (10.1016/j.celrep.2024.114020_bib8) 2012; 12 Korhonen (10.1016/j.celrep.2024.114020_bib44) 2022; 132 |
| References_xml | – volume: 3 year: 2022 ident: bib74 article-title: Analyses of murine lymph node endothelial cell subsets using single-cell RNA sequencing and spectral flow cytometry publication-title: STAR Protoc. – volume: 16 start-page: 239 year: 2021 end-page: 262 ident: bib85 article-title: Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH publication-title: Nat. Protoc. – volume: 82 start-page: 3275 year: 2022 end-page: 3290 ident: bib78 article-title: Mapping the Immune Landscape in Metastatic Melanoma Reveals Localized Cell-Cell Interactions That Predict Immunotherapy Response publication-title: Cancer Res. – year: 2023 ident: bib67 article-title: Tumor Endothelial Cell Autophagy is a Key Vascular-Immune Checkpoint in Melanoma publication-title: bioRxiv – volume: 432 start-page: 1032 year: 2004 end-page: 1036 ident: bib69 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature – volume: 18 start-page: 50 year: 2022 end-page: 72 ident: bib58 article-title: The ménage à trois of autophagy, lipid droplets and liver disease publication-title: Autophagy – volume: 18 year: 2020 ident: bib15 article-title: Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes publication-title: PLoS Biol. – volume: 65 start-page: 431 year: 2017 end-page: 444 ident: bib76 article-title: Multiplex staining by sequential immunostaining and antibody removal on routine tissue sections publication-title: J. Histochem. Cytochem. – volume: 26 start-page: 665 year: 2019 end-page: 679 ident: bib22 article-title: Autophagy in endothelial cells and tumor angiogenesis publication-title: Cell Death Differ. – volume: 26 start-page: 190 year: 2014 end-page: 206 ident: bib21 article-title: Tumor vessel normalization by chloroquine independent of autophagy publication-title: Cancer Cell – volume: 207 start-page: 17 year: 2010 end-page: 27 ident: bib10 article-title: Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning publication-title: J. Exp. Med. – volume: 132 year: 2022 ident: bib44 article-title: Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression publication-title: J. Clin. Invest. – volume: 7 start-page: 778 year: 2021 end-page: 789 ident: bib56 article-title: Autophagy regulates stress responses, metabolism, and anticancer immunity publication-title: Trends Cancer – volume: 180 start-page: 764 year: 2020 end-page: 779.e20 ident: bib59 article-title: Single-Cell Transcriptome Atlas of Murine Endothelial Cells publication-title: Cell – volume: 38 start-page: 685 year: 2020 end-page: 700.e8 ident: bib64 article-title: The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes publication-title: Cancer Cell – volume: 180 start-page: 7636 year: 2008 end-page: 7647 ident: bib42 article-title: Anti-inflammatory effects of FTY720 against viral-induced immunopathology: role of drug-induced conversion of T cells to become Foxp3+ regulators publication-title: J. Immunol. – volume: 6 start-page: 446 year: 2015 ident: bib2 article-title: Modes of antigen presentation by lymph node stromal cells and their immunological implications publication-title: Front. Immunol. – volume: 201 start-page: 291 year: 2005 end-page: 301 ident: bib29 article-title: Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit publication-title: J. Exp. Med. – volume: 46 year: 2014 ident: bib47 article-title: CD36, a scavenger receptor implicated in atherosclerosis publication-title: Exp. Mol. Med. – volume: 9 year: 2017 ident: bib54 article-title: Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma publication-title: Sci. Transl. Med. – volume: 38 start-page: 2550 year: 2018 end-page: 2561 ident: bib38 article-title: Endothelial-Specific Cre Mouse Models publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 546 start-page: 158 year: 2017 end-page: 161 ident: bib26 article-title: Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells publication-title: Nature – volume: 545 start-page: 60 year: 2017 end-page: 65 ident: bib20 article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response publication-title: Nature – volume: 5 start-page: 1266 year: 1996 end-page: 1271 ident: bib80 article-title: An FFT-based technique for translation, rotation, and scale-invariant image registration publication-title: IEEE Trans. Image Process. – volume: 7 start-page: 52 year: 2020 ident: bib13 article-title: A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature publication-title: Front. Cardiovasc. Med. – volume: 38 start-page: 759 year: 2020 end-page: 784 ident: bib32 article-title: Finding a way out: S1P signaling and immune cell migration publication-title: Annu. Rev. Immunol. – volume: 187 start-page: 6176 year: 2011 end-page: 6179 ident: bib53 article-title: Cutting edge: loss of α4 integrin expression differentially affects the homing of Th1 and Th17 cells publication-title: J. Immunol. – volume: 5 year: 2016 ident: bib48 article-title: Distinct mechanisms of B and T lymphocyte accumulation generate tumor-draining lymph node hypertrophy publication-title: OncoImmunology – volume: 263 start-page: 328 year: 2016 end-page: 340 ident: bib79 article-title: Flat field correction for high-throughput imaging of fluorescent samples publication-title: J. Microsc. – volume: 17 start-page: 159 year: 2020 end-page: 162 ident: bib49 article-title: NicheNet: modeling intercellular communication by linking ligands to target genes publication-title: Nat. Methods – volume: 4 year: 2019 ident: bib30 article-title: CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration publication-title: Sci. Immunol. – volume: 17 start-page: 442 year: 2005 end-page: 451 ident: bib31 article-title: Close encounters of the first and second kind: T-DC and T-B interactions in the lymph node publication-title: Semin. Immunol. – volume: 2 year: 2016 ident: bib73 article-title: Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods publication-title: Heliyon – volume: 133 year: 2020 ident: bib7 article-title: The lymph node at a glance - how spatial organization optimizes the immune response publication-title: J. Cell Sci. – volume: 9 year: 2019 ident: bib50 article-title: Notch signalling in T cell homeostasis and differentiation publication-title: Open Biol. – volume: 14 start-page: 2087 year: 2023 ident: bib66 article-title: Expansion of circulating stem-like CD8+ T cells by adding CD122-directed IL-2 complexes to radiation and anti-PD1 therapies in mice publication-title: Nat. Commun. – volume: 9 year: 2020 ident: bib77 article-title: Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing publication-title: Elife – volume: 14 start-page: 1083 year: 2017 end-page: 1086 ident: bib45 article-title: SCENIC: single-cell regulatory network inference and clustering publication-title: Nat. Methods – volume: 3 start-page: 867 year: 2003 end-page: 878 ident: bib27 article-title: Homing and cellular traffic in lymph nodes publication-title: Nat. Rev. Immunol. – volume: 12 year: 2021 ident: bib16 article-title: Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy publication-title: Front. Immunol. – volume: 8 start-page: 445 year: 2012 end-page: 544 ident: bib34 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy publication-title: Autophagy – volume: 87 start-page: 636 year: 2015 end-page: 645 ident: bib84 article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data publication-title: Cytometry A. – volume: 118 year: 2021 ident: bib46 article-title: Scavenging of soluble and immobilized CCL21 by ACKR4 regulates peripheral dendritic cell emigration publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 849 year: 2017 end-page: 863 ident: bib82 article-title: Data-analysis strategies for image-based cell profiling publication-title: Nat. Methods – volume: 11 start-page: 1114 year: 2020 ident: bib5 article-title: Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance publication-title: Nat. Commun. – volume: 13 start-page: 2760 year: 2022 ident: bib23 article-title: Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis publication-title: Nat. Commun. – volume: 25 start-page: 454 year: 2019 end-page: 461 ident: bib61 article-title: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma publication-title: Nat. Med. – year: 2018 ident: bib40 article-title: Multiple Iteractive Labeling by Antibody Neodeposition (MILAN) – volume: 56 start-page: 107 year: 2023 end-page: 124.e5 ident: bib62 article-title: CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor publication-title: Immunity – volume: 55 start-page: 2521 year: 2014 end-page: 2531 ident: bib36 article-title: Autophagy regulates sphingolipid levels in the liver [S] publication-title: J. Lipid Res. – volume: 19 start-page: 579 year: 2018 end-page: 593 ident: bib24 article-title: Autophagy as a promoter of longevity: insights from model organisms publication-title: Nat. Rev. Mol. Cell Biol. – volume: 11 start-page: 1047 year: 2010 end-page: 1056 ident: bib43 article-title: The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells publication-title: Nat. Immunol. – volume: 36 start-page: 778 year: 2015 end-page: 787 ident: bib4 article-title: Exit strategies: S1P signaling and T cell migration publication-title: Trends Immunol. – volume: 18 start-page: 15 year: 2017 end-page: 25 ident: bib39 article-title: Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-γ response publication-title: Nat. Immunol. – volume: 82 start-page: 465 year: 2007 end-page: 476 ident: bib52 article-title: Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells publication-title: J. Leukoc. Biol. – volume: 68 start-page: 351 year: 2020 end-page: 353 ident: bib41 article-title: Unidentified variables may account for variability in multiplexing results publication-title: J. Histochem. Cytochem. – volume: 30 start-page: 69 year: 2012 end-page: 94 ident: bib9 article-title: Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs publication-title: Annu. Rev. Immunol. – volume: 17 start-page: 5 year: 2020 end-page: 6 ident: bib70 article-title: CLIJ: GPU-accelerated image processing for everyone publication-title: Nat. Methods – volume: 2 year: 2014 ident: bib71 article-title: scikit-image: image processing in Python publication-title: PeerJ – volume: 32 start-page: 92 year: 2009 end-page: 101 ident: bib12 article-title: [A new therapeutic approach for autoimmune diseases by the sphingosine 1-phosphate receptor modulator, fingolimod (FTY720)] publication-title: Nihon Rinsho Meneki Gakkai Kaishi – volume: 8 start-page: 86 year: 2018 ident: bib55 article-title: Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations publication-title: Front. Oncol. – start-page: 3666 year: 2020 end-page: 3673 ident: bib81 article-title: Star-convex polyhedra for 3D object detection and segmentation in microscopy publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision – volume: 38 year: 2022 ident: bib18 article-title: PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes publication-title: Cell Rep. – volume: 20 start-page: 566 year: 2020 end-page: 578 ident: bib1 article-title: Lymphatic endothelial cells of the lymph node publication-title: Nat. Rev. Immunol. – volume: 41 start-page: 65 year: 2018 end-page: 72 ident: bib33 article-title: Autophagy and Longevity publication-title: Mol. Cell. – volume: 30 start-page: 254 year: 2009 end-page: 263 ident: bib51 article-title: Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches publication-title: Immunity – volume: 44 start-page: 72 year: 2023 end-page: 86 ident: bib14 article-title: Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system publication-title: Trends Immunol. – volume: 168 start-page: 487 year: 2017 end-page: 502.e15 ident: bib19 article-title: Systemic immunity is required for effective cancer immunotherapy publication-title: Cell – volume: 46 start-page: 630 year: 2021 end-page: 639 ident: bib37 article-title: ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease publication-title: Trends Biochem. Sci. – volume: 6 start-page: 895 year: 2005 end-page: 901 ident: bib6 article-title: Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics publication-title: Nat. Immunol. – volume: 115 start-page: 80 year: 2017 end-page: 90 ident: bib72 article-title: TrackMate: An open and extensible platform for single-particle tracking publication-title: Methods – volume: 12 year: 2021 ident: bib28 article-title: High endothelial venules: A vascular perspective on tertiary lymphoid structures in cancer publication-title: Front. Immunol. – volume: 128 start-page: 580 year: 2018 end-page: 588 ident: bib65 article-title: PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression publication-title: J. Clin. Invest. – volume: 162 start-page: 184 year: 2015 end-page: 197 ident: bib83 article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis publication-title: Cell – volume: 47 start-page: 466 year: 2017 end-page: 480.e5 ident: bib57 article-title: Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation publication-title: Immunity – volume: 2 start-page: 1104 year: 2012 end-page: 1110 ident: bib35 article-title: The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate publication-title: Cell Rep. – volume: 5 start-page: 2122 year: 2016 ident: bib75 article-title: A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. [version 2; peer review: 3 approved, 2 approved with reservations] publication-title: F1000Res. – volume: 6 year: 2021 ident: bib63 article-title: A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response publication-title: Sci. Immunol. – volume: 51 start-page: 561 year: 2019 end-page: 572.e5 ident: bib60 article-title: Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell Heterogeneity and Mechanisms of Homing for Neutrophils publication-title: Immunity – volume: 121 start-page: 2984 year: 2011 end-page: 2992 ident: bib68 article-title: Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice publication-title: J. Clin. Invest. – volume: 309 start-page: 1735 year: 2005 end-page: 1739 ident: bib11 article-title: Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients publication-title: Science – volume: 3 year: 2018 ident: bib17 article-title: Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy publication-title: JCI Insight – volume: 10 start-page: 1168 year: 2019 ident: bib3 article-title: Lymphatic migration of immune cells publication-title: Front. Immunol. – volume: 218 year: 2021 ident: bib25 article-title: Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity publication-title: J. Exp. Med. – volume: 12 start-page: 762 year: 2012 end-page: 773 ident: bib8 article-title: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes publication-title: Nat. Rev. Immunol. – volume: 10 start-page: 1168 year: 2019 ident: 10.1016/j.celrep.2024.114020_bib3 article-title: Lymphatic migration of immune cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01168 – volume: 12 start-page: 762 year: 2012 ident: 10.1016/j.celrep.2024.114020_bib8 article-title: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3298 – volume: 44 start-page: 72 year: 2023 ident: 10.1016/j.celrep.2024.114020_bib14 article-title: Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system publication-title: Trends Immunol. doi: 10.1016/j.it.2022.10.010 – volume: 132 year: 2022 ident: 10.1016/j.celrep.2024.114020_bib44 article-title: Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression publication-title: J. Clin. Invest. doi: 10.1172/JCI155478 – volume: 8 start-page: 86 year: 2018 ident: 10.1016/j.celrep.2024.114020_bib55 article-title: Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00086 – volume: 38 start-page: 759 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib32 article-title: Finding a way out: S1P signaling and immune cell migration publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-081519-083952 – volume: 30 start-page: 254 year: 2009 ident: 10.1016/j.celrep.2024.114020_bib51 article-title: Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches publication-title: Immunity doi: 10.1016/j.immuni.2008.12.016 – volume: 546 start-page: 158 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib26 article-title: Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells publication-title: Nature doi: 10.1038/nature22352 – volume: 12 year: 2021 ident: 10.1016/j.celrep.2024.114020_bib16 article-title: Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.643291 – volume: 7 start-page: 52 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib13 article-title: A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.00052 – volume: 4 year: 2019 ident: 10.1016/j.celrep.2024.114020_bib30 article-title: CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aav1263 – volume: 32 start-page: 92 year: 2009 ident: 10.1016/j.celrep.2024.114020_bib12 article-title: [A new therapeutic approach for autoimmune diseases by the sphingosine 1-phosphate receptor modulator, fingolimod (FTY720)] publication-title: Nihon Rinsho Meneki Gakkai Kaishi doi: 10.2177/jsci.32.92 – volume: 201 start-page: 291 year: 2005 ident: 10.1016/j.celrep.2024.114020_bib29 article-title: Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit publication-title: J. Exp. Med. doi: 10.1084/jem.20041509 – volume: 25 start-page: 454 year: 2019 ident: 10.1016/j.celrep.2024.114020_bib61 article-title: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma publication-title: Nat. Med. doi: 10.1038/s41591-019-0357-y – volume: 128 start-page: 580 year: 2018 ident: 10.1016/j.celrep.2024.114020_bib65 article-title: PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression publication-title: J. Clin. Invest. doi: 10.1172/JCI96061 – volume: 38 year: 2022 ident: 10.1016/j.celrep.2024.114020_bib18 article-title: PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110331 – volume: 26 start-page: 190 year: 2014 ident: 10.1016/j.celrep.2024.114020_bib21 article-title: Tumor vessel normalization by chloroquine independent of autophagy publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.06.025 – volume: 2 year: 2014 ident: 10.1016/j.celrep.2024.114020_bib71 article-title: scikit-image: image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 3 year: 2018 ident: 10.1016/j.celrep.2024.114020_bib17 article-title: Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy publication-title: JCI Insight doi: 10.1172/jci.insight.124507 – volume: 38 start-page: 685 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib64 article-title: The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.09.001 – volume: 46 year: 2014 ident: 10.1016/j.celrep.2024.114020_bib47 article-title: CD36, a scavenger receptor implicated in atherosclerosis publication-title: Exp. Mol. Med. doi: 10.1038/emm.2014.38 – volume: 162 start-page: 184 year: 2015 ident: 10.1016/j.celrep.2024.114020_bib83 article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis publication-title: Cell doi: 10.1016/j.cell.2015.05.047 – volume: 432 start-page: 1032 year: 2004 ident: 10.1016/j.celrep.2024.114020_bib69 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature doi: 10.1038/nature03029 – volume: 9 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib77 article-title: Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing publication-title: Elife doi: 10.7554/eLife.53008 – volume: 26 start-page: 665 year: 2019 ident: 10.1016/j.celrep.2024.114020_bib22 article-title: Autophagy in endothelial cells and tumor angiogenesis publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0287-8 – start-page: 3666 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib81 article-title: Star-convex polyhedra for 3D object detection and segmentation in microscopy – volume: 180 start-page: 7636 year: 2008 ident: 10.1016/j.celrep.2024.114020_bib42 article-title: Anti-inflammatory effects of FTY720 against viral-induced immunopathology: role of drug-induced conversion of T cells to become Foxp3+ regulators publication-title: J. Immunol. doi: 10.4049/jimmunol.180.11.7636 – volume: 20 start-page: 566 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib1 article-title: Lymphatic endothelial cells of the lymph node publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0281-x – volume: 18 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib15 article-title: Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000704 – volume: 2 start-page: 1104 year: 2012 ident: 10.1016/j.celrep.2024.114020_bib35 article-title: The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.09.021 – volume: 82 start-page: 3275 year: 2022 ident: 10.1016/j.celrep.2024.114020_bib78 article-title: Mapping the Immune Landscape in Metastatic Melanoma Reveals Localized Cell-Cell Interactions That Predict Immunotherapy Response publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-22-0363 – volume: 56 start-page: 107 year: 2023 ident: 10.1016/j.celrep.2024.114020_bib62 article-title: CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor publication-title: Immunity doi: 10.1016/j.immuni.2022.12.002 – volume: 38 start-page: 2550 year: 2018 ident: 10.1016/j.celrep.2024.114020_bib38 article-title: Endothelial-Specific Cre Mouse Models publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.118.309669 – volume: 30 start-page: 69 year: 2012 ident: 10.1016/j.celrep.2024.114020_bib9 article-title: Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-020711-075011 – volume: 14 start-page: 2087 year: 2023 ident: 10.1016/j.celrep.2024.114020_bib66 article-title: Expansion of circulating stem-like CD8+ T cells by adding CD122-directed IL-2 complexes to radiation and anti-PD1 therapies in mice publication-title: Nat. Commun. doi: 10.1038/s41467-023-37825-x – volume: 6 year: 2021 ident: 10.1016/j.celrep.2024.114020_bib63 article-title: A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abg7836 – volume: 87 start-page: 636 year: 2015 ident: 10.1016/j.celrep.2024.114020_bib84 article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data publication-title: Cytometry A. doi: 10.1002/cyto.a.22625 – volume: 5 start-page: 2122 year: 2016 ident: 10.1016/j.celrep.2024.114020_bib75 article-title: A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. [version 2; peer review: 3 approved, 2 approved with reservations] publication-title: F1000Res. – year: 2023 ident: 10.1016/j.celrep.2024.114020_bib67 article-title: Tumor Endothelial Cell Autophagy is a Key Vascular-Immune Checkpoint in Melanoma publication-title: bioRxiv – volume: 68 start-page: 351 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib41 article-title: Unidentified variables may account for variability in multiplexing results publication-title: J. Histochem. Cytochem. doi: 10.1369/0022155420911050 – volume: 5 year: 2016 ident: 10.1016/j.celrep.2024.114020_bib48 article-title: Distinct mechanisms of B and T lymphocyte accumulation generate tumor-draining lymph node hypertrophy publication-title: OncoImmunology doi: 10.1080/2162402X.2016.1204505 – volume: 218 year: 2021 ident: 10.1016/j.celrep.2024.114020_bib25 article-title: Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity publication-title: J. Exp. Med. doi: 10.1084/jem.20201776 – volume: 118 year: 2021 ident: 10.1016/j.celrep.2024.114020_bib46 article-title: Scavenging of soluble and immobilized CCL21 by ACKR4 regulates peripheral dendritic cell emigration publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2025763118 – volume: 65 start-page: 431 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib76 article-title: Multiplex staining by sequential immunostaining and antibody removal on routine tissue sections publication-title: J. Histochem. Cytochem. doi: 10.1369/0022155417719419 – volume: 11 start-page: 1047 year: 2010 ident: 10.1016/j.celrep.2024.114020_bib43 article-title: The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells publication-title: Nat. Immunol. doi: 10.1038/ni.1939 – volume: 17 start-page: 159 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib49 article-title: NicheNet: modeling intercellular communication by linking ligands to target genes publication-title: Nat. Methods doi: 10.1038/s41592-019-0667-5 – volume: 17 start-page: 5 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib70 article-title: CLIJ: GPU-accelerated image processing for everyone publication-title: Nat. Methods doi: 10.1038/s41592-019-0650-1 – volume: 5 start-page: 1266 year: 1996 ident: 10.1016/j.celrep.2024.114020_bib80 article-title: An FFT-based technique for translation, rotation, and scale-invariant image registration publication-title: IEEE Trans. Image Process. doi: 10.1109/83.506761 – volume: 12 year: 2021 ident: 10.1016/j.celrep.2024.114020_bib28 article-title: High endothelial venules: A vascular perspective on tertiary lymphoid structures in cancer publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.736670 – volume: 6 start-page: 895 year: 2005 ident: 10.1016/j.celrep.2024.114020_bib6 article-title: Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics publication-title: Nat. Immunol. doi: 10.1038/ni1240 – volume: 187 start-page: 6176 year: 2011 ident: 10.1016/j.celrep.2024.114020_bib53 article-title: Cutting edge: loss of α4 integrin expression differentially affects the homing of Th1 and Th17 cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1102515 – volume: 11 start-page: 1114 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib5 article-title: Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance publication-title: Nat. Commun. doi: 10.1038/s41467-020-14921-w – volume: 207 start-page: 17 year: 2010 ident: 10.1016/j.celrep.2024.114020_bib10 article-title: Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning publication-title: J. Exp. Med. doi: 10.1084/jem.20091619 – volume: 41 start-page: 65 year: 2018 ident: 10.1016/j.celrep.2024.114020_bib33 article-title: Autophagy and Longevity publication-title: Mol. Cell. – volume: 8 start-page: 445 year: 2012 ident: 10.1016/j.celrep.2024.114020_bib34 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy publication-title: Autophagy doi: 10.4161/auto.19496 – year: 2018 ident: 10.1016/j.celrep.2024.114020_bib40 – volume: 51 start-page: 561 year: 2019 ident: 10.1016/j.celrep.2024.114020_bib60 article-title: Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell Heterogeneity and Mechanisms of Homing for Neutrophils publication-title: Immunity doi: 10.1016/j.immuni.2019.06.027 – volume: 46 start-page: 630 year: 2021 ident: 10.1016/j.celrep.2024.114020_bib37 article-title: ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2020.12.013 – volume: 14 start-page: 1083 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib45 article-title: SCENIC: single-cell regulatory network inference and clustering publication-title: Nat. Methods doi: 10.1038/nmeth.4463 – volume: 19 start-page: 579 year: 2018 ident: 10.1016/j.celrep.2024.114020_bib24 article-title: Autophagy as a promoter of longevity: insights from model organisms publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0033-y – volume: 16 start-page: 239 year: 2021 ident: 10.1016/j.celrep.2024.114020_bib85 article-title: Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH publication-title: Nat. Protoc. doi: 10.1038/s41596-020-00414-z – volume: 55 start-page: 2521 year: 2014 ident: 10.1016/j.celrep.2024.114020_bib36 article-title: Autophagy regulates sphingolipid levels in the liver [S] publication-title: J. Lipid Res. doi: 10.1194/jlr.M051862 – volume: 545 start-page: 60 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib20 article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response publication-title: Nature doi: 10.1038/nature22079 – volume: 180 start-page: 764 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib59 article-title: Single-Cell Transcriptome Atlas of Murine Endothelial Cells publication-title: Cell doi: 10.1016/j.cell.2020.01.015 – volume: 82 start-page: 465 year: 2007 ident: 10.1016/j.celrep.2024.114020_bib52 article-title: Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1106678 – volume: 121 start-page: 2984 year: 2011 ident: 10.1016/j.celrep.2024.114020_bib68 article-title: Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI58050 – volume: 168 start-page: 487 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib19 article-title: Systemic immunity is required for effective cancer immunotherapy publication-title: Cell doi: 10.1016/j.cell.2016.12.022 – volume: 17 start-page: 442 year: 2005 ident: 10.1016/j.celrep.2024.114020_bib31 article-title: Close encounters of the first and second kind: T-DC and T-B interactions in the lymph node publication-title: Semin. Immunol. doi: 10.1016/j.smim.2005.09.001 – volume: 9 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib54 article-title: Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aal4712 – volume: 6 start-page: 446 year: 2015 ident: 10.1016/j.celrep.2024.114020_bib2 article-title: Modes of antigen presentation by lymph node stromal cells and their immunological implications publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00446 – volume: 18 start-page: 50 year: 2022 ident: 10.1016/j.celrep.2024.114020_bib58 article-title: The ménage à trois of autophagy, lipid droplets and liver disease publication-title: Autophagy doi: 10.1080/15548627.2021.1895658 – volume: 133 year: 2020 ident: 10.1016/j.celrep.2024.114020_bib7 article-title: The lymph node at a glance - how spatial organization optimizes the immune response publication-title: J. Cell Sci. doi: 10.1242/jcs.241828 – volume: 18 start-page: 15 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib39 article-title: Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-γ response publication-title: Nat. Immunol. doi: 10.1038/ni.3619 – volume: 9 year: 2019 ident: 10.1016/j.celrep.2024.114020_bib50 article-title: Notch signalling in T cell homeostasis and differentiation publication-title: Open Biol. doi: 10.1098/rsob.190187 – volume: 263 start-page: 328 year: 2016 ident: 10.1016/j.celrep.2024.114020_bib79 article-title: Flat field correction for high-throughput imaging of fluorescent samples publication-title: J. Microsc. doi: 10.1111/jmi.12404 – volume: 7 start-page: 778 year: 2021 ident: 10.1016/j.celrep.2024.114020_bib56 article-title: Autophagy regulates stress responses, metabolism, and anticancer immunity publication-title: Trends Cancer doi: 10.1016/j.trecan.2021.05.003 – volume: 2 year: 2016 ident: 10.1016/j.celrep.2024.114020_bib73 article-title: Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods publication-title: Heliyon doi: 10.1016/j.heliyon.2016.e00219 – volume: 309 start-page: 1735 year: 2005 ident: 10.1016/j.celrep.2024.114020_bib11 article-title: Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients publication-title: Science doi: 10.1126/science.1113640 – volume: 3 start-page: 867 year: 2003 ident: 10.1016/j.celrep.2024.114020_bib27 article-title: Homing and cellular traffic in lymph nodes publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1222 – volume: 14 start-page: 849 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib82 article-title: Data-analysis strategies for image-based cell profiling publication-title: Nat. Methods doi: 10.1038/nmeth.4397 – volume: 115 start-page: 80 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib72 article-title: TrackMate: An open and extensible platform for single-particle tracking publication-title: Methods doi: 10.1016/j.ymeth.2016.09.016 – volume: 3 year: 2022 ident: 10.1016/j.celrep.2024.114020_bib74 article-title: Analyses of murine lymph node endothelial cell subsets using single-cell RNA sequencing and spectral flow cytometry publication-title: STAR Protoc. – volume: 13 start-page: 2760 year: 2022 ident: 10.1016/j.celrep.2024.114020_bib23 article-title: Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis publication-title: Nat. Commun. doi: 10.1038/s41467-022-30490-6 – volume: 47 start-page: 466 year: 2017 ident: 10.1016/j.celrep.2024.114020_bib57 article-title: Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation publication-title: Immunity doi: 10.1016/j.immuni.2017.08.005 – volume: 36 start-page: 778 year: 2015 ident: 10.1016/j.celrep.2024.114020_bib4 article-title: Exit strategies: S1P signaling and T cell migration publication-title: Trends Immunol. doi: 10.1016/j.it.2015.10.005 |
| SSID | ssj0000601194 |
| Score | 2.412761 |
| Snippet | Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to... Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to... |
| SourceID | doaj proquest pubmed crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 114020 |
| SubjectTerms | Animals autophagy Autophagy - drug effects Autophagy-Related Protein 5 - genetics Autophagy-Related Protein 5 - metabolism cancer Cell Movement CP: Cancer CP: Immunology Endothelial Cells - metabolism Humans Immune Checkpoint Inhibitors - pharmacology Immune Checkpoint Inhibitors - therapeutic use immunotherapy Immunotherapy - methods lymph node Lymph Nodes - immunology lymphatic endothelial cells Lysophospholipids - metabolism Mice Mice, Inbred C57BL Sphingosine - analogs & derivatives Sphingosine - metabolism Sphingosine - pharmacology T cell trafficking T-Lymphocytes - immunology T-Lymphocytes - metabolism |
| Title | An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade |
| URI | https://dx.doi.org/10.1016/j.celrep.2024.114020 https://www.ncbi.nlm.nih.gov/pubmed/38554280 https://www.proquest.com/docview/3022575585 https://doaj.org/article/dca7f3404ac04b61a443f7d540320e6d |
| Volume | 43 |
| WOSCitedRecordID | wos001240508500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgBRIXxPJZYFdG4hrhjZ3aPS6IFYfVag899GaN4zFbtkpWbYrUf89MnFTlgHrh6MRORn5jz0wyfiPE59KWIWLtCnSgCpOCK1xgFlGkG0AmPmSe2Wt7c-MWi9ntQakvzgnL9MB54r7EGmzSRhmolQnTCzBGJxvJ0dClwmnk3Ze8noNgKu_BzGVmxrNyfUJXjas1MkVlaZghV3GJ7wNb1FP2_2WS_uVy9qbn6oV4PviM8jLLeioeYfNSPM1VJHevxPaykbBlggD4uZNDwpXs7qDjBkGBGzmX_IVeYh9dSz5TQh1QrnYEpmzaiHLIWd_Idc6apUFdK5d8fIRu3mF9_9Aum04Gsn73EPG1mF99n3_7UQzVFIraWNMVFUwTBochQZVcqhyt3WQAE1Ijullg7q0EtopWJQWVDmUFQU9Vcg5p0t-Ik6Zt8J2QZobKWXCB8Dc2RDChnhFIqbpIgYLtidDjtPp6YBrnghcrP6aU_fIZDM9g-AzGRBT7UQ-ZaeNI_6-M2L4v82T3F0h7_KA9_pj2TIQd8faDy5FdCXrU8sjrP43q4WlFMojQYLvdeE1uETnBFIdNxNusN3shNWcFlk69_x_CfxDPWCD-t1Xqj-KkW2_xTDypf3fLzfpcPLYLd94viz9T9RLw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autophagy+program+that+promotes+T+cell+egress+from+the+lymph+node+controls+responses+to+immune+checkpoint+blockade&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Diede+Houbaert&rft.au=Apostolos+Panagiotis+Nikolakopoulos&rft.au=Kathryn+A.+Jacobs&rft.au=Odeta+Me%C3%A7e&rft.date=2024-04-23&rft.pub=Elsevier&rft.eissn=2211-1247&rft.volume=43&rft.issue=4&rft.spage=114020&rft_id=info:doi/10.1016%2Fj.celrep.2024.114020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dca7f3404ac04b61a443f7d540320e6d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |