An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs c...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) Vol. 43; no. 4; p. 114020
Main Authors: Houbaert, Diede, Nikolakopoulos, Apostolos Panagiotis, Jacobs, Kathryn A., Meçe, Odeta, Roels, Jana, Shankar, Gautam, Agrawal, Madhur, More, Sanket, Ganne, Maarten, Rillaerts, Kristine, Boon, Louis, Swoboda, Magdalena, Nobis, Max, Mourao, Larissa, Bosisio, Francesca, Vandamme, Niels, Bergers, Gabriele, Scheele, Colinda L.G.J., Agostinis, Patrizia
Format: Journal Article
Language:English
Published: United States Elsevier Inc 23.04.2024
Elsevier
Subjects:
ISSN:2211-1247, 2211-1247
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics. [Display omitted] •Thwarting LEC autophagy prevents lymphocyte egress from the lymph node (LN)•LEC autophagy governs the S1P gradient and the intranodal dynamics of T and NK cells•Loss of LEC autophagy remodels niche-specific LEC phenotypes in tumor-draining LNs•LEC-autophagy blockade blunts efficacy of ICBs by sequestering T and NK cells in the LNs Houbaert et al. find that defective autophagy in lymphatic endothelial cells (LECs) prevents lymphocyte’s egress from lymph nodes. In tumor-bearing mice, LEC autophagy endorses the recruitment of peripheral T and NK cells to the tumor and ICB-driven antitumor immunity, further underscoring the lymph nodes as critical players in immunotherapy responses.
AbstractList Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics. [Display omitted] •Thwarting LEC autophagy prevents lymphocyte egress from the lymph node (LN)•LEC autophagy governs the S1P gradient and the intranodal dynamics of T and NK cells•Loss of LEC autophagy remodels niche-specific LEC phenotypes in tumor-draining LNs•LEC-autophagy blockade blunts efficacy of ICBs by sequestering T and NK cells in the LNs Houbaert et al. find that defective autophagy in lymphatic endothelial cells (LECs) prevents lymphocyte’s egress from lymph nodes. In tumor-bearing mice, LEC autophagy endorses the recruitment of peripheral T and NK cells to the tumor and ICB-driven antitumor immunity, further underscoring the lymph nodes as critical players in immunotherapy responses.
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
ArticleNumber 114020
Author Nobis, Max
Bergers, Gabriele
Jacobs, Kathryn A.
Swoboda, Magdalena
Ganne, Maarten
Houbaert, Diede
Rillaerts, Kristine
Boon, Louis
Bosisio, Francesca
Roels, Jana
Mourao, Larissa
Agrawal, Madhur
More, Sanket
Scheele, Colinda L.G.J.
Vandamme, Niels
Agostinis, Patrizia
Meçe, Odeta
Nikolakopoulos, Apostolos Panagiotis
Shankar, Gautam
Author_xml – sequence: 1
  givenname: Diede
  surname: Houbaert
  fullname: Houbaert, Diede
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Apostolos Panagiotis
  surname: Nikolakopoulos
  fullname: Nikolakopoulos, Apostolos Panagiotis
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 3
  givenname: Kathryn A.
  surname: Jacobs
  fullname: Jacobs, Kathryn A.
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 4
  givenname: Odeta
  surname: Meçe
  fullname: Meçe, Odeta
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 5
  givenname: Jana
  surname: Roels
  fullname: Roels, Jana
  organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
– sequence: 6
  givenname: Gautam
  surname: Shankar
  fullname: Shankar, Gautam
  organization: Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
– sequence: 7
  givenname: Madhur
  surname: Agrawal
  fullname: Agrawal, Madhur
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 8
  givenname: Sanket
  surname: More
  fullname: More, Sanket
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 9
  givenname: Maarten
  surname: Ganne
  fullname: Ganne, Maarten
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 10
  givenname: Kristine
  surname: Rillaerts
  fullname: Rillaerts, Kristine
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 11
  givenname: Louis
  surname: Boon
  fullname: Boon, Louis
  organization: JJP Biologics, Warsaw, Poland
– sequence: 12
  givenname: Magdalena
  surname: Swoboda
  fullname: Swoboda, Magdalena
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
– sequence: 13
  givenname: Max
  surname: Nobis
  fullname: Nobis, Max
  organization: Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium
– sequence: 14
  givenname: Larissa
  surname: Mourao
  fullname: Mourao, Larissa
  organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
– sequence: 15
  givenname: Francesca
  surname: Bosisio
  fullname: Bosisio, Francesca
  organization: Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
– sequence: 16
  givenname: Niels
  surname: Vandamme
  fullname: Vandamme, Niels
  organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
– sequence: 17
  givenname: Gabriele
  surname: Bergers
  fullname: Bergers, Gabriele
  organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
– sequence: 18
  givenname: Colinda L.G.J.
  surname: Scheele
  fullname: Scheele, Colinda L.G.J.
  organization: VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
– sequence: 19
  givenname: Patrizia
  surname: Agostinis
  fullname: Agostinis, Patrizia
  email: patrizia.agostinis@kuleuven.be
  organization: Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38554280$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v3CAQxa0qVZOm-QZVxbGX3QIG2-mhUhT1T6RIvewdjWHYZWODC7jSfvvgOo2qHlouMMPvvZHevK7OfPBYVW8Z3TLKmg_HrcYh4rTllIstY4Jy-qK64JyxDeOiPfvjfV5dpXSk5TSUsWvxqjqvOykF7-hFNd94AnMO0wH2JzLFsI8wknyAvBRjyJjIjpRhA8F9xJSILe0CIBlO43QgPhgkOvgcw5BIIabgUxHlQNw4zr58HlA_TMH5TPoh6Acw-KZ6aWFIePV0X1a7L593t98299-_3t3e3G-0aEXeSGgs9h32FqTtrOyo6KwAtFgK0133NaXCQitNSy0FWfdcQl831HYdClFfVnerrQlwVFN0I8STCuDUr0aIewUxOz2gMhpaWwsqQFPRNwyK3LZGClpzio0pXu9XrxLLjxlTVqNLSy7gMcxJ1ZRz2UrZyYK-e0LnfkTzPPh36gUQK6BjSCmifUYYVct-1VGt-1XLftW63yL7-JdMuwzZLeGDG_4n_rSKseT902FUSTv0Go2LqHNJxP3b4BFMzcQa
CitedBy_id crossref_primary_10_3390_microorganisms13020443
crossref_primary_10_1016_j_mad_2024_111975
Cites_doi 10.3389/fimmu.2019.01168
10.1038/nri3298
10.1016/j.it.2022.10.010
10.1172/JCI155478
10.3389/fonc.2018.00086
10.1146/annurev-immunol-081519-083952
10.1016/j.immuni.2008.12.016
10.1038/nature22352
10.3389/fimmu.2021.643291
10.3389/fcvm.2020.00052
10.1126/sciimmunol.aav1263
10.2177/jsci.32.92
10.1084/jem.20041509
10.1038/s41591-019-0357-y
10.1172/JCI96061
10.1016/j.celrep.2022.110331
10.1016/j.ccr.2014.06.025
10.7717/peerj.453
10.1172/jci.insight.124507
10.1016/j.ccell.2020.09.001
10.1038/emm.2014.38
10.1016/j.cell.2015.05.047
10.1038/nature03029
10.7554/eLife.53008
10.1038/s41418-019-0287-8
10.4049/jimmunol.180.11.7636
10.1038/s41577-020-0281-x
10.1371/journal.pbio.3000704
10.1016/j.celrep.2012.09.021
10.1158/0008-5472.CAN-22-0363
10.1016/j.immuni.2022.12.002
10.1161/ATVBAHA.118.309669
10.1146/annurev-immunol-020711-075011
10.1038/s41467-023-37825-x
10.1126/sciimmunol.abg7836
10.1002/cyto.a.22625
10.1369/0022155420911050
10.1080/2162402X.2016.1204505
10.1084/jem.20201776
10.1073/pnas.2025763118
10.1369/0022155417719419
10.1038/ni.1939
10.1038/s41592-019-0667-5
10.1038/s41592-019-0650-1
10.1109/83.506761
10.3389/fimmu.2021.736670
10.1038/ni1240
10.4049/jimmunol.1102515
10.1038/s41467-020-14921-w
10.1084/jem.20091619
10.4161/auto.19496
10.1016/j.immuni.2019.06.027
10.1016/j.tibs.2020.12.013
10.1038/nmeth.4463
10.1038/s41580-018-0033-y
10.1038/s41596-020-00414-z
10.1194/jlr.M051862
10.1038/nature22079
10.1016/j.cell.2020.01.015
10.1189/jlb.1106678
10.1172/JCI58050
10.1016/j.cell.2016.12.022
10.1016/j.smim.2005.09.001
10.1126/scitranslmed.aal4712
10.3389/fimmu.2015.00446
10.1080/15548627.2021.1895658
10.1242/jcs.241828
10.1038/ni.3619
10.1098/rsob.190187
10.1111/jmi.12404
10.1016/j.trecan.2021.05.003
10.1016/j.heliyon.2016.e00219
10.1126/science.1113640
10.1038/nri1222
10.1038/nmeth.4397
10.1016/j.ymeth.2016.09.016
10.1038/s41467-022-30490-6
10.1016/j.immuni.2017.08.005
10.1016/j.it.2015.10.005
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2024.114020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID oai_doaj_org_article_dca7f3404ac04b61a443f7d540320e6d
38554280
10_1016_j_celrep_2024_114020
S2211124724003486
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
O-L
O9-
OK1
ROL
SSZ
AAYXX
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-5a6feb8ebfa5f8f58048f4aefe8f5d89b3004fa75d70f0a53b25ab360f88e443
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240508500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:45:16 EDT 2025
Fri Jul 11 12:31:29 EDT 2025
Mon Jul 21 05:51:19 EDT 2025
Tue Nov 18 22:17:38 EST 2025
Thu Nov 13 04:24:07 EST 2025
Sat Aug 09 17:30:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CP: Immunology
autophagy
lymph node
CP: Cancer
immunotherapy
lymphatic endothelial cells
cancer
T cell trafficking
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-5a6feb8ebfa5f8f58048f4aefe8f5d89b3004fa75d70f0a53b25ab360f88e443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/dca7f3404ac04b61a443f7d540320e6d
PMID 38554280
PQID 3022575585
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_dca7f3404ac04b61a443f7d540320e6d
proquest_miscellaneous_3022575585
pubmed_primary_38554280
crossref_primary_10_1016_j_celrep_2024_114020
crossref_citationtrail_10_1016_j_celrep_2024_114020
elsevier_sciencedirect_doi_10_1016_j_celrep_2024_114020
PublicationCentury 2000
PublicationDate 2024-04-23
PublicationDateYYYYMMDD 2024-04-23
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kalucka, de Rooij, Goveia, Rohlenova, Dumas, Meta, Conchinha, Taverna, Teuwen, Veys (bib59) 2020; 180
Haase, Royer, Steinbach, Schmidt, Dibrov, Schmidt, Weigert, Maghelli, Tomancak, Jug, Myers (bib70) 2020; 17
Hansen, Rubinsztein, Walker (bib24) 2018; 19
Riffelmacher, Clarke, Richter, Stranks, Pandey, Danielli, Hublitz, Yu, Johnson, Schwerd (bib57) 2017; 47
Prokhnevska, Cardenas, Valanparambil, Sobierajska, Barwick, Jansen, Reyes Moon, Gregorova, delBalzo, Greenwald (bib62) 2023; 56
van der Walt, Schönberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart, Yu (bib71) 2014; 2
Park (bib47) 2014; 46
Liu, Yang, Burns, Shrestha, Chi (bib43) 2010; 11
Caicedo, Cooper, Heigwer, Warchal, Qiu, Molnar, Vasilevich, Barry, Bansal, Kraus (bib82) 2017; 14
Huang, Postow, Orlowski, Mick, Bengsch, Manne, Xu, Harmon, Giles, Wenz (bib20) 2017; 545
Fang, Chaluvadi, Ramos-Perez, Mendoza, Baeyens, Rivera, Chun, Cammer, Schwab (bib39) 2017; 18
Alexaki, Gupta, Majumder, Kono (bib36) 2014; 55
Klionsky, Abdalla, Abeliovich, Abraham, Acevedo-Arozena, Adeli, Agholme, Agnello, Agostinis, Aguirre-Ghiso (bib34) 2012; 8
Payne, De Val, Neal (bib38) 2018; 38
Messal, Almagro, Zaw Thin, Tedeschi, Ciccarelli, Blackie, Anderson, Miguel-Aliaga, van Rheenen, Behrens (bib85) 2021; 16
Grant, Lou, Yao, Germain, Radtke (bib7) 2020; 133
Onyshchenko, Luo, Guffart, Gaedicke, Grosu, Firat, Niedermann (bib66) 2023; 14
Harlé, Kowalski, Dubrot, Brighouse, Clavel, Pick, Bessis, Niven, Scheiermann, Gannagé, Hugues (bib25) 2021; 218
Habenicht, Albershardt, Iritani, Ruddell (bib48) 2016; 5
Girard, Moussion, Förster (bib8) 2012; 12
van Pul, Fransen, van de Ven, de Gruijl (bib16) 2021; 12
Cyster, Schwab (bib9) 2012; 30
Bolognesi, Bosisio, Cattoretti (bib41) 2020; 68
Tang, Liang, Anders, Taube, Qiu, Mulgaonkar, Liu, Harrington, Guo, Xin (bib65) 2018; 128
Connolly, Kuchroo, Venkat, Khatun, Wang, William, Hornick, Fitzgerald, Damo, Kasmani (bib63) 2021; 6
Baeyens, Schwab (bib32) 2020; 38
Van Gassen, Callebaut, Van Helden, Lambrecht, Demeester, Dhaene, Saeys (bib84) 2015; 87
Xiong, Piao, Brinkman, Li, Kulinski, Olivera, Cartier, Hla, Hippen, Blazar (bib30) 2019; 4
Schaaf, Houbaert, Meçe, Agostinis (bib22) 2019; 26
Baeyens, Fang, Chen, Schwab (bib4) 2015; 36
Fujimoto, He, D’Addio, Tacconi, Detmar, Dieterich (bib15) 2020; 18
Aibar, González-Blas, Moerman, Huynh-Thu, Imrichova, Hulselmans, Rambow, Marine, Geurts, Aerts (bib45) 2017; 14
Nagahashi, Yamada, Aoyagi, Allegood, Wakai, Spiegel, Takabe (bib73) 2016; 2
Bolognesi, Manzoni, Scalia, Zannella, Bosisio, Faretta, Cattoretti (bib76) 2017; 65
Tinevez, Perry, Schindelin, Hoopes, Reynolds, Laplantine, Bednarek, Shorte, Eliceiri (bib72) 2017; 115
Mendoza, Fang, Chen, Serasinghe, Verma, Muller, Chaluvadi, Dustin, Hla, Elemento (bib26) 2017; 546
Spitzer, Carmi, Reticker-Flynn, Kwek, Madhireddy, Martins, Gherardini, Prestwood, Chabon, Bendall (bib19) 2017; 168
White, Lattime, Guo (bib56) 2021; 7
Huang, Orlowski, Xu, Mick, George, Yan, Manne, Kraya, Wubbenhorst, Dorfman (bib61) 2019; 25
Browaeys, Saelens, Saeys (bib49) 2020; 17
Chiba (bib12) 2009; 32
Mendoza, Bréart, Ramos-Perez, Pitt, Gobert, Sunkara, Lafaille, Morris, Schwab (bib35) 2012; 2
Sehrawat, Rouse (bib42) 2008; 180
Martens, Permanyer, Werth, Yu, Braun, Halle, Halle, Patzer, Bošnjak, Kiefer (bib5) 2020; 11
Takeda, Salmi, Jalkanen (bib14) 2023; 44
Seidel, Otsuka, Kabashima (bib55) 2018; 8
Lo, Xu, Proia, Cyster (bib29) 2005; 201
Takeda, Hollmén, Dermadi, Pan, Brulois, Kaukonen, Lönnberg, Boström, Koskivuo, Irjala (bib60) 2019; 51
Vella, Guelfi, Bergers (bib28) 2021; 12
Jalkanen, Salmi (bib1) 2020; 20
Antoranz, Van Herck, Bolognesi, Lynch, Rahman, Gallagher, Boecxstaens, Marine, Cattoretti, van den Oord (bib78) 2022; 82
Brandstadter, Maillard (bib50) 2019; 9
Bosisio, Antoranz, van Herck, Bolognesi, Marcelis, Chinello, Wouters, Magni, Alexopoulos, Stas (bib77) 2020; 9
Xiang, Grosso, Takeda, Pan, Bekkhus, Brulois, Dermadi, Nordling, Vanlandewijck, Jalkanen (bib13) 2020; 7
Menzel, Zschummel, Rehm (bib74) 2022; 3
Pham, Baluk, Xu, Grigorova, Bankovich, Pappu, Coughlin, McDonald, Schwab, Cyster (bib10) 2010; 207
Cahalan, Parker (bib31) 2005; 17
Tan, Xu, Cretegny, Visan, Yuan, Egan, Guidos (bib51) 2009; 30
Reddy, Chatterji (bib80) 1996; 5
Prasad, Qamri, Wu, Ganju (bib52) 2007; 82
Verhoeven, Jacobs, Rizzollo, Lodi, Hua, Poźniak, Srinivasan, Houbaert, Shankar, More (bib67) 2023
Fransen, Schoonderwoerd, Knopf, Camps, Hawinkels, Kneilling, van Hall, Ossendorp (bib17) 2018; 3
Korhonen, Murtomäki, Jha, Anisimov, Pink, Zhang, Stritt, Liaqat, Stanczuk, Alderfer (bib44) 2022; 132
von Andrian, Mempel (bib27) 2003; 3
Glatigny, Duhen, Oukka, Bettelli (bib53) 2011; 187
Nakamura, Yoshimori (bib33) 2018; 41
Kuma, Hatano, Matsui, Yamamoto, Nakaya, Yoshimori, Ohsumi, Tokuhisa, Mizushima (bib69) 2004; 432
Bastow, Bunting, Kara, McKenzie, Caon, Devi, Tolley, Mueller, Frazer, Harvey (bib46) 2021; 118
Meçe, Houbaert, Sassano, Durré, Maes, Schaaf, More, Ganne, García-Caballero, Borri (bib23) 2022; 13
Dammeijer, van Gulijk, Mulder, Lukkes, Klaase, van den Bosch, van Nimwegen, Lau, Latupeirissa, Schetters (bib64) 2020; 38
Bromley, Thomas, Luster (bib6) 2005; 6
Hampton, Chtanova (bib3) 2019; 10
Filali-Mouncef, Hunter, Roccio, Zagkou, Dupont, Primard, Proikas-Cezanne, Reggiori (bib58) 2022; 18
Hirosue, Dubrot (bib2) 2015; 6
Maes, Kuchnio, Peric, Moens, Nys, De Bock, Quaegebeur, Schoors, Georgiadou, Wouters (bib21) 2014; 26
Levine, Simonds, Bendall, Davis, Amir, Tadmor, Litvin, Fienberg, Jager, Zunder (bib83) 2015; 162
Nagasaki, Inozume, Sax, Ariyasu, Ishikawa, Yamashita, Kawazu, Ueno, Irie, Tanji (bib18) 2022; 38
Fankhauser, Broggi, Potin, Bordry, Jeanbart, Lund, Da Costa, Hauert, Rincon-Restrepo, Tremblay (bib54) 2017; 9
Bazigou, Lyons, Smith, Venn, Cope, Brown, Makinen (bib68) 2011; 121
Cattoretti, Cattoretti, Bosisio, Marcelis (bib40) 2018
Ferro-Novick, Reggiori, Brodsky (bib37) 2021; 46
Weigert, Schmidt, Haase, Sugawara, Myers (bib81) 2020
Schwab, Pereira, Matloubian, Xu, Huang, Cyster (bib11) 2005; 309
Lun, McCarthy, Marioni (bib75) 2016; 5
Kask, Palo, Hinnah, Pommerencke (bib79) 2016; 263
Bastow (10.1016/j.celrep.2024.114020_bib46) 2021; 118
Baeyens (10.1016/j.celrep.2024.114020_bib4) 2015; 36
Hampton (10.1016/j.celrep.2024.114020_bib3) 2019; 10
von Andrian (10.1016/j.celrep.2024.114020_bib27) 2003; 3
Schaaf (10.1016/j.celrep.2024.114020_bib22) 2019; 26
Xiong (10.1016/j.celrep.2024.114020_bib30) 2019; 4
Liu (10.1016/j.celrep.2024.114020_bib43) 2010; 11
Tang (10.1016/j.celrep.2024.114020_bib65) 2018; 128
Bosisio (10.1016/j.celrep.2024.114020_bib77) 2020; 9
Takeda (10.1016/j.celrep.2024.114020_bib60) 2019; 51
Lun (10.1016/j.celrep.2024.114020_bib75) 2016; 5
Meçe (10.1016/j.celrep.2024.114020_bib23) 2022; 13
Dammeijer (10.1016/j.celrep.2024.114020_bib64) 2020; 38
Aibar (10.1016/j.celrep.2024.114020_bib45) 2017; 14
Fankhauser (10.1016/j.celrep.2024.114020_bib54) 2017; 9
Browaeys (10.1016/j.celrep.2024.114020_bib49) 2020; 17
Maes (10.1016/j.celrep.2024.114020_bib21) 2014; 26
Bolognesi (10.1016/j.celrep.2024.114020_bib76) 2017; 65
Bazigou (10.1016/j.celrep.2024.114020_bib68) 2011; 121
Bolognesi (10.1016/j.celrep.2024.114020_bib41) 2020; 68
Fang (10.1016/j.celrep.2024.114020_bib39) 2017; 18
van der Walt (10.1016/j.celrep.2024.114020_bib71) 2014; 2
Haase (10.1016/j.celrep.2024.114020_bib70) 2020; 17
Chiba (10.1016/j.celrep.2024.114020_bib12) 2009; 32
Levine (10.1016/j.celrep.2024.114020_bib83) 2015; 162
Nagasaki (10.1016/j.celrep.2024.114020_bib18) 2022; 38
Tinevez (10.1016/j.celrep.2024.114020_bib72) 2017; 115
Spitzer (10.1016/j.celrep.2024.114020_bib19) 2017; 168
Klionsky (10.1016/j.celrep.2024.114020_bib34) 2012; 8
Xiang (10.1016/j.celrep.2024.114020_bib13) 2020; 7
Kuma (10.1016/j.celrep.2024.114020_bib69) 2004; 432
Nagahashi (10.1016/j.celrep.2024.114020_bib73) 2016; 2
Caicedo (10.1016/j.celrep.2024.114020_bib82) 2017; 14
Mendoza (10.1016/j.celrep.2024.114020_bib26) 2017; 546
Pham (10.1016/j.celrep.2024.114020_bib10) 2010; 207
Vella (10.1016/j.celrep.2024.114020_bib28) 2021; 12
Grant (10.1016/j.celrep.2024.114020_bib7) 2020; 133
Mendoza (10.1016/j.celrep.2024.114020_bib35) 2012; 2
Seidel (10.1016/j.celrep.2024.114020_bib55) 2018; 8
Park (10.1016/j.celrep.2024.114020_bib47) 2014; 46
Riffelmacher (10.1016/j.celrep.2024.114020_bib57) 2017; 47
Kalucka (10.1016/j.celrep.2024.114020_bib59) 2020; 180
Filali-Mouncef (10.1016/j.celrep.2024.114020_bib58) 2022; 18
Reddy (10.1016/j.celrep.2024.114020_bib80) 1996; 5
Nakamura (10.1016/j.celrep.2024.114020_bib33) 2018; 41
Habenicht (10.1016/j.celrep.2024.114020_bib48) 2016; 5
Kask (10.1016/j.celrep.2024.114020_bib79) 2016; 263
Takeda (10.1016/j.celrep.2024.114020_bib14) 2023; 44
White (10.1016/j.celrep.2024.114020_bib56) 2021; 7
Glatigny (10.1016/j.celrep.2024.114020_bib53) 2011; 187
Martens (10.1016/j.celrep.2024.114020_bib5) 2020; 11
Brandstadter (10.1016/j.celrep.2024.114020_bib50) 2019; 9
Connolly (10.1016/j.celrep.2024.114020_bib63) 2021; 6
Bromley (10.1016/j.celrep.2024.114020_bib6) 2005; 6
Ferro-Novick (10.1016/j.celrep.2024.114020_bib37) 2021; 46
Onyshchenko (10.1016/j.celrep.2024.114020_bib66) 2023; 14
Prasad (10.1016/j.celrep.2024.114020_bib52) 2007; 82
van Pul (10.1016/j.celrep.2024.114020_bib16) 2021; 12
Messal (10.1016/j.celrep.2024.114020_bib85) 2021; 16
Cattoretti (10.1016/j.celrep.2024.114020_bib40) 2018
Harlé (10.1016/j.celrep.2024.114020_bib25) 2021; 218
Huang (10.1016/j.celrep.2024.114020_bib61) 2019; 25
Hansen (10.1016/j.celrep.2024.114020_bib24) 2018; 19
Weigert (10.1016/j.celrep.2024.114020_bib81) 2020
Jalkanen (10.1016/j.celrep.2024.114020_bib1) 2020; 20
Verhoeven (10.1016/j.celrep.2024.114020_bib67) 2023
Van Gassen (10.1016/j.celrep.2024.114020_bib84) 2015; 87
Hirosue (10.1016/j.celrep.2024.114020_bib2) 2015; 6
Baeyens (10.1016/j.celrep.2024.114020_bib32) 2020; 38
Sehrawat (10.1016/j.celrep.2024.114020_bib42) 2008; 180
Alexaki (10.1016/j.celrep.2024.114020_bib36) 2014; 55
Cyster (10.1016/j.celrep.2024.114020_bib9) 2012; 30
Menzel (10.1016/j.celrep.2024.114020_bib74) 2022; 3
Antoranz (10.1016/j.celrep.2024.114020_bib78) 2022; 82
Fransen (10.1016/j.celrep.2024.114020_bib17) 2018; 3
Fujimoto (10.1016/j.celrep.2024.114020_bib15) 2020; 18
Tan (10.1016/j.celrep.2024.114020_bib51) 2009; 30
Cahalan (10.1016/j.celrep.2024.114020_bib31) 2005; 17
Schwab (10.1016/j.celrep.2024.114020_bib11) 2005; 309
Payne (10.1016/j.celrep.2024.114020_bib38) 2018; 38
Prokhnevska (10.1016/j.celrep.2024.114020_bib62) 2023; 56
Huang (10.1016/j.celrep.2024.114020_bib20) 2017; 545
Lo (10.1016/j.celrep.2024.114020_bib29) 2005; 201
Girard (10.1016/j.celrep.2024.114020_bib8) 2012; 12
Korhonen (10.1016/j.celrep.2024.114020_bib44) 2022; 132
References_xml – volume: 3
  year: 2022
  ident: bib74
  article-title: Analyses of murine lymph node endothelial cell subsets using single-cell RNA sequencing and spectral flow cytometry
  publication-title: STAR Protoc.
– volume: 16
  start-page: 239
  year: 2021
  end-page: 262
  ident: bib85
  article-title: Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH
  publication-title: Nat. Protoc.
– volume: 82
  start-page: 3275
  year: 2022
  end-page: 3290
  ident: bib78
  article-title: Mapping the Immune Landscape in Metastatic Melanoma Reveals Localized Cell-Cell Interactions That Predict Immunotherapy Response
  publication-title: Cancer Res.
– year: 2023
  ident: bib67
  article-title: Tumor Endothelial Cell Autophagy is a Key Vascular-Immune Checkpoint in Melanoma
  publication-title: bioRxiv
– volume: 432
  start-page: 1032
  year: 2004
  end-page: 1036
  ident: bib69
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
– volume: 18
  start-page: 50
  year: 2022
  end-page: 72
  ident: bib58
  article-title: The ménage à trois of autophagy, lipid droplets and liver disease
  publication-title: Autophagy
– volume: 18
  year: 2020
  ident: bib15
  article-title: Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes
  publication-title: PLoS Biol.
– volume: 65
  start-page: 431
  year: 2017
  end-page: 444
  ident: bib76
  article-title: Multiplex staining by sequential immunostaining and antibody removal on routine tissue sections
  publication-title: J. Histochem. Cytochem.
– volume: 26
  start-page: 665
  year: 2019
  end-page: 679
  ident: bib22
  article-title: Autophagy in endothelial cells and tumor angiogenesis
  publication-title: Cell Death Differ.
– volume: 26
  start-page: 190
  year: 2014
  end-page: 206
  ident: bib21
  article-title: Tumor vessel normalization by chloroquine independent of autophagy
  publication-title: Cancer Cell
– volume: 207
  start-page: 17
  year: 2010
  end-page: 27
  ident: bib10
  article-title: Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning
  publication-title: J. Exp. Med.
– volume: 132
  year: 2022
  ident: bib44
  article-title: Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression
  publication-title: J. Clin. Invest.
– volume: 7
  start-page: 778
  year: 2021
  end-page: 789
  ident: bib56
  article-title: Autophagy regulates stress responses, metabolism, and anticancer immunity
  publication-title: Trends Cancer
– volume: 180
  start-page: 764
  year: 2020
  end-page: 779.e20
  ident: bib59
  article-title: Single-Cell Transcriptome Atlas of Murine Endothelial Cells
  publication-title: Cell
– volume: 38
  start-page: 685
  year: 2020
  end-page: 700.e8
  ident: bib64
  article-title: The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes
  publication-title: Cancer Cell
– volume: 180
  start-page: 7636
  year: 2008
  end-page: 7647
  ident: bib42
  article-title: Anti-inflammatory effects of FTY720 against viral-induced immunopathology: role of drug-induced conversion of T cells to become Foxp3+ regulators
  publication-title: J. Immunol.
– volume: 6
  start-page: 446
  year: 2015
  ident: bib2
  article-title: Modes of antigen presentation by lymph node stromal cells and their immunological implications
  publication-title: Front. Immunol.
– volume: 201
  start-page: 291
  year: 2005
  end-page: 301
  ident: bib29
  article-title: Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit
  publication-title: J. Exp. Med.
– volume: 46
  year: 2014
  ident: bib47
  article-title: CD36, a scavenger receptor implicated in atherosclerosis
  publication-title: Exp. Mol. Med.
– volume: 9
  year: 2017
  ident: bib54
  article-title: Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma
  publication-title: Sci. Transl. Med.
– volume: 38
  start-page: 2550
  year: 2018
  end-page: 2561
  ident: bib38
  article-title: Endothelial-Specific Cre Mouse Models
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 546
  start-page: 158
  year: 2017
  end-page: 161
  ident: bib26
  article-title: Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells
  publication-title: Nature
– volume: 545
  start-page: 60
  year: 2017
  end-page: 65
  ident: bib20
  article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response
  publication-title: Nature
– volume: 5
  start-page: 1266
  year: 1996
  end-page: 1271
  ident: bib80
  article-title: An FFT-based technique for translation, rotation, and scale-invariant image registration
  publication-title: IEEE Trans. Image Process.
– volume: 7
  start-page: 52
  year: 2020
  ident: bib13
  article-title: A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature
  publication-title: Front. Cardiovasc. Med.
– volume: 38
  start-page: 759
  year: 2020
  end-page: 784
  ident: bib32
  article-title: Finding a way out: S1P signaling and immune cell migration
  publication-title: Annu. Rev. Immunol.
– volume: 187
  start-page: 6176
  year: 2011
  end-page: 6179
  ident: bib53
  article-title: Cutting edge: loss of α4 integrin expression differentially affects the homing of Th1 and Th17 cells
  publication-title: J. Immunol.
– volume: 5
  year: 2016
  ident: bib48
  article-title: Distinct mechanisms of B and T lymphocyte accumulation generate tumor-draining lymph node hypertrophy
  publication-title: OncoImmunology
– volume: 263
  start-page: 328
  year: 2016
  end-page: 340
  ident: bib79
  article-title: Flat field correction for high-throughput imaging of fluorescent samples
  publication-title: J. Microsc.
– volume: 17
  start-page: 159
  year: 2020
  end-page: 162
  ident: bib49
  article-title: NicheNet: modeling intercellular communication by linking ligands to target genes
  publication-title: Nat. Methods
– volume: 4
  year: 2019
  ident: bib30
  article-title: CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration
  publication-title: Sci. Immunol.
– volume: 17
  start-page: 442
  year: 2005
  end-page: 451
  ident: bib31
  article-title: Close encounters of the first and second kind: T-DC and T-B interactions in the lymph node
  publication-title: Semin. Immunol.
– volume: 2
  year: 2016
  ident: bib73
  article-title: Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods
  publication-title: Heliyon
– volume: 133
  year: 2020
  ident: bib7
  article-title: The lymph node at a glance - how spatial organization optimizes the immune response
  publication-title: J. Cell Sci.
– volume: 9
  year: 2019
  ident: bib50
  article-title: Notch signalling in T cell homeostasis and differentiation
  publication-title: Open Biol.
– volume: 14
  start-page: 2087
  year: 2023
  ident: bib66
  article-title: Expansion of circulating stem-like CD8+ T cells by adding CD122-directed IL-2 complexes to radiation and anti-PD1 therapies in mice
  publication-title: Nat. Commun.
– volume: 9
  year: 2020
  ident: bib77
  article-title: Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing
  publication-title: Elife
– volume: 14
  start-page: 1083
  year: 2017
  end-page: 1086
  ident: bib45
  article-title: SCENIC: single-cell regulatory network inference and clustering
  publication-title: Nat. Methods
– volume: 3
  start-page: 867
  year: 2003
  end-page: 878
  ident: bib27
  article-title: Homing and cellular traffic in lymph nodes
  publication-title: Nat. Rev. Immunol.
– volume: 12
  year: 2021
  ident: bib16
  article-title: Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy
  publication-title: Front. Immunol.
– volume: 8
  start-page: 445
  year: 2012
  end-page: 544
  ident: bib34
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy
  publication-title: Autophagy
– volume: 87
  start-page: 636
  year: 2015
  end-page: 645
  ident: bib84
  article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
  publication-title: Cytometry A.
– volume: 118
  year: 2021
  ident: bib46
  article-title: Scavenging of soluble and immobilized CCL21 by ACKR4 regulates peripheral dendritic cell emigration
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 849
  year: 2017
  end-page: 863
  ident: bib82
  article-title: Data-analysis strategies for image-based cell profiling
  publication-title: Nat. Methods
– volume: 11
  start-page: 1114
  year: 2020
  ident: bib5
  article-title: Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2760
  year: 2022
  ident: bib23
  article-title: Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis
  publication-title: Nat. Commun.
– volume: 25
  start-page: 454
  year: 2019
  end-page: 461
  ident: bib61
  article-title: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma
  publication-title: Nat. Med.
– year: 2018
  ident: bib40
  article-title: Multiple Iteractive Labeling by Antibody Neodeposition (MILAN)
– volume: 56
  start-page: 107
  year: 2023
  end-page: 124.e5
  ident: bib62
  article-title: CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor
  publication-title: Immunity
– volume: 55
  start-page: 2521
  year: 2014
  end-page: 2531
  ident: bib36
  article-title: Autophagy regulates sphingolipid levels in the liver [S]
  publication-title: J. Lipid Res.
– volume: 19
  start-page: 579
  year: 2018
  end-page: 593
  ident: bib24
  article-title: Autophagy as a promoter of longevity: insights from model organisms
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 11
  start-page: 1047
  year: 2010
  end-page: 1056
  ident: bib43
  article-title: The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells
  publication-title: Nat. Immunol.
– volume: 36
  start-page: 778
  year: 2015
  end-page: 787
  ident: bib4
  article-title: Exit strategies: S1P signaling and T cell migration
  publication-title: Trends Immunol.
– volume: 18
  start-page: 15
  year: 2017
  end-page: 25
  ident: bib39
  article-title: Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-γ response
  publication-title: Nat. Immunol.
– volume: 82
  start-page: 465
  year: 2007
  end-page: 476
  ident: bib52
  article-title: Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells
  publication-title: J. Leukoc. Biol.
– volume: 68
  start-page: 351
  year: 2020
  end-page: 353
  ident: bib41
  article-title: Unidentified variables may account for variability in multiplexing results
  publication-title: J. Histochem. Cytochem.
– volume: 30
  start-page: 69
  year: 2012
  end-page: 94
  ident: bib9
  article-title: Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs
  publication-title: Annu. Rev. Immunol.
– volume: 17
  start-page: 5
  year: 2020
  end-page: 6
  ident: bib70
  article-title: CLIJ: GPU-accelerated image processing for everyone
  publication-title: Nat. Methods
– volume: 2
  year: 2014
  ident: bib71
  article-title: scikit-image: image processing in Python
  publication-title: PeerJ
– volume: 32
  start-page: 92
  year: 2009
  end-page: 101
  ident: bib12
  article-title: [A new therapeutic approach for autoimmune diseases by the sphingosine 1-phosphate receptor modulator, fingolimod (FTY720)]
  publication-title: Nihon Rinsho Meneki Gakkai Kaishi
– volume: 8
  start-page: 86
  year: 2018
  ident: bib55
  article-title: Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations
  publication-title: Front. Oncol.
– start-page: 3666
  year: 2020
  end-page: 3673
  ident: bib81
  article-title: Star-convex polyhedra for 3D object detection and segmentation in microscopy
  publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision
– volume: 38
  year: 2022
  ident: bib18
  article-title: PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes
  publication-title: Cell Rep.
– volume: 20
  start-page: 566
  year: 2020
  end-page: 578
  ident: bib1
  article-title: Lymphatic endothelial cells of the lymph node
  publication-title: Nat. Rev. Immunol.
– volume: 41
  start-page: 65
  year: 2018
  end-page: 72
  ident: bib33
  article-title: Autophagy and Longevity
  publication-title: Mol. Cell.
– volume: 30
  start-page: 254
  year: 2009
  end-page: 263
  ident: bib51
  article-title: Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches
  publication-title: Immunity
– volume: 44
  start-page: 72
  year: 2023
  end-page: 86
  ident: bib14
  article-title: Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system
  publication-title: Trends Immunol.
– volume: 168
  start-page: 487
  year: 2017
  end-page: 502.e15
  ident: bib19
  article-title: Systemic immunity is required for effective cancer immunotherapy
  publication-title: Cell
– volume: 46
  start-page: 630
  year: 2021
  end-page: 639
  ident: bib37
  article-title: ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease
  publication-title: Trends Biochem. Sci.
– volume: 6
  start-page: 895
  year: 2005
  end-page: 901
  ident: bib6
  article-title: Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics
  publication-title: Nat. Immunol.
– volume: 115
  start-page: 80
  year: 2017
  end-page: 90
  ident: bib72
  article-title: TrackMate: An open and extensible platform for single-particle tracking
  publication-title: Methods
– volume: 12
  year: 2021
  ident: bib28
  article-title: High endothelial venules: A vascular perspective on tertiary lymphoid structures in cancer
  publication-title: Front. Immunol.
– volume: 128
  start-page: 580
  year: 2018
  end-page: 588
  ident: bib65
  article-title: PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression
  publication-title: J. Clin. Invest.
– volume: 162
  start-page: 184
  year: 2015
  end-page: 197
  ident: bib83
  article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis
  publication-title: Cell
– volume: 47
  start-page: 466
  year: 2017
  end-page: 480.e5
  ident: bib57
  article-title: Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation
  publication-title: Immunity
– volume: 2
  start-page: 1104
  year: 2012
  end-page: 1110
  ident: bib35
  article-title: The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate
  publication-title: Cell Rep.
– volume: 5
  start-page: 2122
  year: 2016
  ident: bib75
  article-title: A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. [version 2; peer review: 3 approved, 2 approved with reservations]
  publication-title: F1000Res.
– volume: 6
  year: 2021
  ident: bib63
  article-title: A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response
  publication-title: Sci. Immunol.
– volume: 51
  start-page: 561
  year: 2019
  end-page: 572.e5
  ident: bib60
  article-title: Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell Heterogeneity and Mechanisms of Homing for Neutrophils
  publication-title: Immunity
– volume: 121
  start-page: 2984
  year: 2011
  end-page: 2992
  ident: bib68
  article-title: Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice
  publication-title: J. Clin. Invest.
– volume: 309
  start-page: 1735
  year: 2005
  end-page: 1739
  ident: bib11
  article-title: Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients
  publication-title: Science
– volume: 3
  year: 2018
  ident: bib17
  article-title: Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy
  publication-title: JCI Insight
– volume: 10
  start-page: 1168
  year: 2019
  ident: bib3
  article-title: Lymphatic migration of immune cells
  publication-title: Front. Immunol.
– volume: 218
  year: 2021
  ident: bib25
  article-title: Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity
  publication-title: J. Exp. Med.
– volume: 12
  start-page: 762
  year: 2012
  end-page: 773
  ident: bib8
  article-title: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes
  publication-title: Nat. Rev. Immunol.
– volume: 10
  start-page: 1168
  year: 2019
  ident: 10.1016/j.celrep.2024.114020_bib3
  article-title: Lymphatic migration of immune cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01168
– volume: 12
  start-page: 762
  year: 2012
  ident: 10.1016/j.celrep.2024.114020_bib8
  article-title: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3298
– volume: 44
  start-page: 72
  year: 2023
  ident: 10.1016/j.celrep.2024.114020_bib14
  article-title: Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2022.10.010
– volume: 132
  year: 2022
  ident: 10.1016/j.celrep.2024.114020_bib44
  article-title: Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI155478
– volume: 8
  start-page: 86
  year: 2018
  ident: 10.1016/j.celrep.2024.114020_bib55
  article-title: Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2018.00086
– volume: 38
  start-page: 759
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib32
  article-title: Finding a way out: S1P signaling and immune cell migration
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-081519-083952
– volume: 30
  start-page: 254
  year: 2009
  ident: 10.1016/j.celrep.2024.114020_bib51
  article-title: Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.12.016
– volume: 546
  start-page: 158
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib26
  article-title: Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells
  publication-title: Nature
  doi: 10.1038/nature22352
– volume: 12
  year: 2021
  ident: 10.1016/j.celrep.2024.114020_bib16
  article-title: Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.643291
– volume: 7
  start-page: 52
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib13
  article-title: A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.00052
– volume: 4
  year: 2019
  ident: 10.1016/j.celrep.2024.114020_bib30
  article-title: CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aav1263
– volume: 32
  start-page: 92
  year: 2009
  ident: 10.1016/j.celrep.2024.114020_bib12
  article-title: [A new therapeutic approach for autoimmune diseases by the sphingosine 1-phosphate receptor modulator, fingolimod (FTY720)]
  publication-title: Nihon Rinsho Meneki Gakkai Kaishi
  doi: 10.2177/jsci.32.92
– volume: 201
  start-page: 291
  year: 2005
  ident: 10.1016/j.celrep.2024.114020_bib29
  article-title: Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20041509
– volume: 25
  start-page: 454
  year: 2019
  ident: 10.1016/j.celrep.2024.114020_bib61
  article-title: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0357-y
– volume: 128
  start-page: 580
  year: 2018
  ident: 10.1016/j.celrep.2024.114020_bib65
  article-title: PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI96061
– volume: 38
  year: 2022
  ident: 10.1016/j.celrep.2024.114020_bib18
  article-title: PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110331
– volume: 26
  start-page: 190
  year: 2014
  ident: 10.1016/j.celrep.2024.114020_bib21
  article-title: Tumor vessel normalization by chloroquine independent of autophagy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.06.025
– volume: 2
  year: 2014
  ident: 10.1016/j.celrep.2024.114020_bib71
  article-title: scikit-image: image processing in Python
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– volume: 3
  year: 2018
  ident: 10.1016/j.celrep.2024.114020_bib17
  article-title: Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.124507
– volume: 38
  start-page: 685
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib64
  article-title: The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.09.001
– volume: 46
  year: 2014
  ident: 10.1016/j.celrep.2024.114020_bib47
  article-title: CD36, a scavenger receptor implicated in atherosclerosis
  publication-title: Exp. Mol. Med.
  doi: 10.1038/emm.2014.38
– volume: 162
  start-page: 184
  year: 2015
  ident: 10.1016/j.celrep.2024.114020_bib83
  article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– volume: 432
  start-page: 1032
  year: 2004
  ident: 10.1016/j.celrep.2024.114020_bib69
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
  doi: 10.1038/nature03029
– volume: 9
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib77
  article-title: Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing
  publication-title: Elife
  doi: 10.7554/eLife.53008
– volume: 26
  start-page: 665
  year: 2019
  ident: 10.1016/j.celrep.2024.114020_bib22
  article-title: Autophagy in endothelial cells and tumor angiogenesis
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0287-8
– start-page: 3666
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib81
  article-title: Star-convex polyhedra for 3D object detection and segmentation in microscopy
– volume: 180
  start-page: 7636
  year: 2008
  ident: 10.1016/j.celrep.2024.114020_bib42
  article-title: Anti-inflammatory effects of FTY720 against viral-induced immunopathology: role of drug-induced conversion of T cells to become Foxp3+ regulators
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.180.11.7636
– volume: 20
  start-page: 566
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib1
  article-title: Lymphatic endothelial cells of the lymph node
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0281-x
– volume: 18
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib15
  article-title: Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000704
– volume: 2
  start-page: 1104
  year: 2012
  ident: 10.1016/j.celrep.2024.114020_bib35
  article-title: The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.09.021
– volume: 82
  start-page: 3275
  year: 2022
  ident: 10.1016/j.celrep.2024.114020_bib78
  article-title: Mapping the Immune Landscape in Metastatic Melanoma Reveals Localized Cell-Cell Interactions That Predict Immunotherapy Response
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-22-0363
– volume: 56
  start-page: 107
  year: 2023
  ident: 10.1016/j.celrep.2024.114020_bib62
  article-title: CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.12.002
– volume: 38
  start-page: 2550
  year: 2018
  ident: 10.1016/j.celrep.2024.114020_bib38
  article-title: Endothelial-Specific Cre Mouse Models
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.309669
– volume: 30
  start-page: 69
  year: 2012
  ident: 10.1016/j.celrep.2024.114020_bib9
  article-title: Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-020711-075011
– volume: 14
  start-page: 2087
  year: 2023
  ident: 10.1016/j.celrep.2024.114020_bib66
  article-title: Expansion of circulating stem-like CD8+ T cells by adding CD122-directed IL-2 complexes to radiation and anti-PD1 therapies in mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37825-x
– volume: 6
  year: 2021
  ident: 10.1016/j.celrep.2024.114020_bib63
  article-title: A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abg7836
– volume: 87
  start-page: 636
  year: 2015
  ident: 10.1016/j.celrep.2024.114020_bib84
  article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
  publication-title: Cytometry A.
  doi: 10.1002/cyto.a.22625
– volume: 5
  start-page: 2122
  year: 2016
  ident: 10.1016/j.celrep.2024.114020_bib75
  article-title: A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. [version 2; peer review: 3 approved, 2 approved with reservations]
  publication-title: F1000Res.
– year: 2023
  ident: 10.1016/j.celrep.2024.114020_bib67
  article-title: Tumor Endothelial Cell Autophagy is a Key Vascular-Immune Checkpoint in Melanoma
  publication-title: bioRxiv
– volume: 68
  start-page: 351
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib41
  article-title: Unidentified variables may account for variability in multiplexing results
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/0022155420911050
– volume: 5
  year: 2016
  ident: 10.1016/j.celrep.2024.114020_bib48
  article-title: Distinct mechanisms of B and T lymphocyte accumulation generate tumor-draining lymph node hypertrophy
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2016.1204505
– volume: 218
  year: 2021
  ident: 10.1016/j.celrep.2024.114020_bib25
  article-title: Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201776
– volume: 118
  year: 2021
  ident: 10.1016/j.celrep.2024.114020_bib46
  article-title: Scavenging of soluble and immobilized CCL21 by ACKR4 regulates peripheral dendritic cell emigration
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2025763118
– volume: 65
  start-page: 431
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib76
  article-title: Multiplex staining by sequential immunostaining and antibody removal on routine tissue sections
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/0022155417719419
– volume: 11
  start-page: 1047
  year: 2010
  ident: 10.1016/j.celrep.2024.114020_bib43
  article-title: The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1939
– volume: 17
  start-page: 159
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib49
  article-title: NicheNet: modeling intercellular communication by linking ligands to target genes
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0667-5
– volume: 17
  start-page: 5
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib70
  article-title: CLIJ: GPU-accelerated image processing for everyone
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0650-1
– volume: 5
  start-page: 1266
  year: 1996
  ident: 10.1016/j.celrep.2024.114020_bib80
  article-title: An FFT-based technique for translation, rotation, and scale-invariant image registration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.506761
– volume: 12
  year: 2021
  ident: 10.1016/j.celrep.2024.114020_bib28
  article-title: High endothelial venules: A vascular perspective on tertiary lymphoid structures in cancer
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.736670
– volume: 6
  start-page: 895
  year: 2005
  ident: 10.1016/j.celrep.2024.114020_bib6
  article-title: Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1240
– volume: 187
  start-page: 6176
  year: 2011
  ident: 10.1016/j.celrep.2024.114020_bib53
  article-title: Cutting edge: loss of α4 integrin expression differentially affects the homing of Th1 and Th17 cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1102515
– volume: 11
  start-page: 1114
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib5
  article-title: Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14921-w
– volume: 207
  start-page: 17
  year: 2010
  ident: 10.1016/j.celrep.2024.114020_bib10
  article-title: Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20091619
– volume: 41
  start-page: 65
  year: 2018
  ident: 10.1016/j.celrep.2024.114020_bib33
  article-title: Autophagy and Longevity
  publication-title: Mol. Cell.
– volume: 8
  start-page: 445
  year: 2012
  ident: 10.1016/j.celrep.2024.114020_bib34
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.19496
– year: 2018
  ident: 10.1016/j.celrep.2024.114020_bib40
– volume: 51
  start-page: 561
  year: 2019
  ident: 10.1016/j.celrep.2024.114020_bib60
  article-title: Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell Heterogeneity and Mechanisms of Homing for Neutrophils
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.06.027
– volume: 46
  start-page: 630
  year: 2021
  ident: 10.1016/j.celrep.2024.114020_bib37
  article-title: ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2020.12.013
– volume: 14
  start-page: 1083
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib45
  article-title: SCENIC: single-cell regulatory network inference and clustering
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4463
– volume: 19
  start-page: 579
  year: 2018
  ident: 10.1016/j.celrep.2024.114020_bib24
  article-title: Autophagy as a promoter of longevity: insights from model organisms
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0033-y
– volume: 16
  start-page: 239
  year: 2021
  ident: 10.1016/j.celrep.2024.114020_bib85
  article-title: Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-00414-z
– volume: 55
  start-page: 2521
  year: 2014
  ident: 10.1016/j.celrep.2024.114020_bib36
  article-title: Autophagy regulates sphingolipid levels in the liver [S]
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M051862
– volume: 545
  start-page: 60
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib20
  article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response
  publication-title: Nature
  doi: 10.1038/nature22079
– volume: 180
  start-page: 764
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib59
  article-title: Single-Cell Transcriptome Atlas of Murine Endothelial Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.015
– volume: 82
  start-page: 465
  year: 2007
  ident: 10.1016/j.celrep.2024.114020_bib52
  article-title: Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1106678
– volume: 121
  start-page: 2984
  year: 2011
  ident: 10.1016/j.celrep.2024.114020_bib68
  article-title: Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI58050
– volume: 168
  start-page: 487
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib19
  article-title: Systemic immunity is required for effective cancer immunotherapy
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.022
– volume: 17
  start-page: 442
  year: 2005
  ident: 10.1016/j.celrep.2024.114020_bib31
  article-title: Close encounters of the first and second kind: T-DC and T-B interactions in the lymph node
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2005.09.001
– volume: 9
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib54
  article-title: Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aal4712
– volume: 6
  start-page: 446
  year: 2015
  ident: 10.1016/j.celrep.2024.114020_bib2
  article-title: Modes of antigen presentation by lymph node stromal cells and their immunological implications
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00446
– volume: 18
  start-page: 50
  year: 2022
  ident: 10.1016/j.celrep.2024.114020_bib58
  article-title: The ménage à trois of autophagy, lipid droplets and liver disease
  publication-title: Autophagy
  doi: 10.1080/15548627.2021.1895658
– volume: 133
  year: 2020
  ident: 10.1016/j.celrep.2024.114020_bib7
  article-title: The lymph node at a glance - how spatial organization optimizes the immune response
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.241828
– volume: 18
  start-page: 15
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib39
  article-title: Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-γ response
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3619
– volume: 9
  year: 2019
  ident: 10.1016/j.celrep.2024.114020_bib50
  article-title: Notch signalling in T cell homeostasis and differentiation
  publication-title: Open Biol.
  doi: 10.1098/rsob.190187
– volume: 263
  start-page: 328
  year: 2016
  ident: 10.1016/j.celrep.2024.114020_bib79
  article-title: Flat field correction for high-throughput imaging of fluorescent samples
  publication-title: J. Microsc.
  doi: 10.1111/jmi.12404
– volume: 7
  start-page: 778
  year: 2021
  ident: 10.1016/j.celrep.2024.114020_bib56
  article-title: Autophagy regulates stress responses, metabolism, and anticancer immunity
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2021.05.003
– volume: 2
  year: 2016
  ident: 10.1016/j.celrep.2024.114020_bib73
  article-title: Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2016.e00219
– volume: 309
  start-page: 1735
  year: 2005
  ident: 10.1016/j.celrep.2024.114020_bib11
  article-title: Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients
  publication-title: Science
  doi: 10.1126/science.1113640
– volume: 3
  start-page: 867
  year: 2003
  ident: 10.1016/j.celrep.2024.114020_bib27
  article-title: Homing and cellular traffic in lymph nodes
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1222
– volume: 14
  start-page: 849
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib82
  article-title: Data-analysis strategies for image-based cell profiling
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4397
– volume: 115
  start-page: 80
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib72
  article-title: TrackMate: An open and extensible platform for single-particle tracking
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
– volume: 3
  year: 2022
  ident: 10.1016/j.celrep.2024.114020_bib74
  article-title: Analyses of murine lymph node endothelial cell subsets using single-cell RNA sequencing and spectral flow cytometry
  publication-title: STAR Protoc.
– volume: 13
  start-page: 2760
  year: 2022
  ident: 10.1016/j.celrep.2024.114020_bib23
  article-title: Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30490-6
– volume: 47
  start-page: 466
  year: 2017
  ident: 10.1016/j.celrep.2024.114020_bib57
  article-title: Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.08.005
– volume: 36
  start-page: 778
  year: 2015
  ident: 10.1016/j.celrep.2024.114020_bib4
  article-title: Exit strategies: S1P signaling and T cell migration
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.10.005
SSID ssj0000601194
Score 2.412761
Snippet Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to...
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114020
SubjectTerms Animals
autophagy
Autophagy - drug effects
Autophagy-Related Protein 5 - genetics
Autophagy-Related Protein 5 - metabolism
cancer
Cell Movement
CP: Cancer
CP: Immunology
Endothelial Cells - metabolism
Humans
Immune Checkpoint Inhibitors - pharmacology
Immune Checkpoint Inhibitors - therapeutic use
immunotherapy
Immunotherapy - methods
lymph node
Lymph Nodes - immunology
lymphatic endothelial cells
Lysophospholipids - metabolism
Mice
Mice, Inbred C57BL
Sphingosine - analogs & derivatives
Sphingosine - metabolism
Sphingosine - pharmacology
T cell trafficking
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
Title An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade
URI https://dx.doi.org/10.1016/j.celrep.2024.114020
https://www.ncbi.nlm.nih.gov/pubmed/38554280
https://www.proquest.com/docview/3022575585
https://doaj.org/article/dca7f3404ac04b61a443f7d540320e6d
Volume 43
WOSCitedRecordID wos001240508500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgBRIXxPJZYFdG4hrhjZ3aPS6IFYfVag899GaN4zFbtkpWbYrUf89MnFTlgHrh6MRORn5jz0wyfiPE59KWIWLtCnSgCpOCK1xgFlGkG0AmPmSe2Wt7c-MWi9ntQakvzgnL9MB54r7EGmzSRhmolQnTCzBGJxvJ0dClwmnk3Ze8noNgKu_BzGVmxrNyfUJXjas1MkVlaZghV3GJ7wNb1FP2_2WS_uVy9qbn6oV4PviM8jLLeioeYfNSPM1VJHevxPaykbBlggD4uZNDwpXs7qDjBkGBGzmX_IVeYh9dSz5TQh1QrnYEpmzaiHLIWd_Idc6apUFdK5d8fIRu3mF9_9Aum04Gsn73EPG1mF99n3_7UQzVFIraWNMVFUwTBochQZVcqhyt3WQAE1Ijullg7q0EtopWJQWVDmUFQU9Vcg5p0t-Ik6Zt8J2QZobKWXCB8Dc2RDChnhFIqbpIgYLtidDjtPp6YBrnghcrP6aU_fIZDM9g-AzGRBT7UQ-ZaeNI_6-M2L4v82T3F0h7_KA9_pj2TIQd8faDy5FdCXrU8sjrP43q4WlFMojQYLvdeE1uETnBFIdNxNusN3shNWcFlk69_x_CfxDPWCD-t1Xqj-KkW2_xTDypf3fLzfpcPLYLd94viz9T9RLw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autophagy+program+that+promotes+T+cell+egress+from+the+lymph+node+controls+responses+to+immune+checkpoint+blockade&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Diede+Houbaert&rft.au=Apostolos+Panagiotis+Nikolakopoulos&rft.au=Kathryn+A.+Jacobs&rft.au=Odeta+Me%C3%A7e&rft.date=2024-04-23&rft.pub=Elsevier&rft.eissn=2211-1247&rft.volume=43&rft.issue=4&rft.spage=114020&rft_id=info:doi/10.1016%2Fj.celrep.2024.114020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dca7f3404ac04b61a443f7d540320e6d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon