Medical image-based detection of COVID-19 using Deep Convolution Neural Networks

The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect CO...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia systems Vol. 29; no. 3; pp. 1729 - 1738
Main Authors: Gaur, Loveleen, Bhatia, Ujwal, Jhanjhi, N. Z., Muhammad, Ghulam, Masud, Mehedi
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects:
ISSN:0942-4962, 1432-1882
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect COVID-19 from chest X-rays while distinguishing those from normal and impacted by Viral Pneumonia via Deep Convolution Neural Networks (CNN). In this study, three pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3) are evaluated through transfer learning. The rationale for selecting these specific models is their balance of accuracy and efficiency with fewer parameters suitable for mobile applications. The dataset used for the study is publicly available and compiled from different sources. This study uses deep learning techniques and performance metrics (accuracy, recall, specificity, precision, and F1 scores). The results show that the proposed approach produced a high-quality model, with an overall accuracy of 92.93%, COVID-19, a sensitivity of 94.79%. The work indicates a definite possibility to implement computer vision design to enable effective detection and screening measures.
AbstractList The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect COVID-19 from chest X-rays while distinguishing those from normal and impacted by Viral Pneumonia via Deep Convolution Neural Networks (CNN). In this study, three pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3) are evaluated through transfer learning. The rationale for selecting these specific models is their balance of accuracy and efficiency with fewer parameters suitable for mobile applications. The dataset used for the study is publicly available and compiled from different sources. This study uses deep learning techniques and performance metrics (accuracy, recall, specificity, precision, and F1 scores). The results show that the proposed approach produced a high-quality model, with an overall accuracy of 92.93%, COVID-19, a sensitivity of 94.79%. The work indicates a definite possibility to implement computer vision design to enable effective detection and screening measures.
The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect COVID-19 from chest X-rays while distinguishing those from normal and impacted by Viral Pneumonia via Deep Convolution Neural Networks (CNN). In this study, three pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3) are evaluated through transfer learning. The rationale for selecting these specific models is their balance of accuracy and efficiency with fewer parameters suitable for mobile applications. The dataset used for the study is publicly available and compiled from different sources. This study uses deep learning techniques and performance metrics (accuracy, recall, specificity, precision, and F1 scores). The results show that the proposed approach produced a high-quality model, with an overall accuracy of 92.93%, COVID-19, a sensitivity of 94.79%. The work indicates a definite possibility to implement computer vision design to enable effective detection and screening measures.The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect COVID-19 from chest X-rays while distinguishing those from normal and impacted by Viral Pneumonia via Deep Convolution Neural Networks (CNN). In this study, three pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3) are evaluated through transfer learning. The rationale for selecting these specific models is their balance of accuracy and efficiency with fewer parameters suitable for mobile applications. The dataset used for the study is publicly available and compiled from different sources. This study uses deep learning techniques and performance metrics (accuracy, recall, specificity, precision, and F1 scores). The results show that the proposed approach produced a high-quality model, with an overall accuracy of 92.93%, COVID-19, a sensitivity of 94.79%. The work indicates a definite possibility to implement computer vision design to enable effective detection and screening measures.
Author Muhammad, Ghulam
Bhatia, Ujwal
Jhanjhi, N. Z.
Masud, Mehedi
Gaur, Loveleen
Author_xml – sequence: 1
  givenname: Loveleen
  surname: Gaur
  fullname: Gaur, Loveleen
  organization: Amity International Business School, Amity University
– sequence: 2
  givenname: Ujwal
  surname: Bhatia
  fullname: Bhatia, Ujwal
  organization: Amity International Business School, Amity University
– sequence: 3
  givenname: N. Z.
  surname: Jhanjhi
  fullname: Jhanjhi, N. Z.
  organization: School of Computer Science and Engineering SCE, Taylor’s University
– sequence: 4
  givenname: Ghulam
  orcidid: 0000-0002-9781-3969
  surname: Muhammad
  fullname: Muhammad, Ghulam
  email: ghulam@ksu.edu.sa
  organization: Research Chair of Pervasive and Mobile Computing, King Saud University, Computer Engineering Department, College of Computer and Information Sciences, King Saud University
– sequence: 5
  givenname: Mehedi
  surname: Masud
  fullname: Masud, Mehedi
  organization: Department of Computer Science, College of Computers and Information Technology, Taif University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33935377$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAUtFAR3S78AQ4oEhcuBtvPTuILEtpSqFRaDsDVcpyXxSVrL3ZS1H-Pt9vy0UMly9aTZ0bzZo7IQYgBCXnO2WvOWPMmM6aAUSY4LaOWtH5EFlyCoLxtxQFZMC0FlboWh-Qo50vGeFMDe0IOATQoaJoF-fwJe-_sWPmNXSPtbMa-6nFCN_kYqjhUq4tvp8eU62rOPqyrY8RttYrhKo7zDeQc51T45zj9iulHfkoeD3bM-Oz2XZKvJ--_rD7Ss4sPp6t3Z9TJRk5UQT10oFB0bWc7FAKHfoDWcscAlZBd07ZO9Q1DyywX5VIanINOd7Xk3MGSvN3rbudug73DMBUbZpvKIunaROvN_z_BfzfreGXaEpUAKAKvbgVS_DljnszGZ4fjaAPGORuhBC_ZQTlL8vIe9DLOKZT1DAhVSy2Ybgrqxb-O_li5C7sA2j3ApZhzwsE4P9ldiMWgHw1nZter2fdqSq_mplezcyDuUe_UHyTBnpQLOKwx_bX9AOs3keu0aA
CitedBy_id crossref_primary_10_1142_S0219519425400391
crossref_primary_10_3390_diagnostics12123060
crossref_primary_10_3390_math12101573
crossref_primary_10_1007_s00354_024_00255_4
crossref_primary_10_1109_ACCESS_2025_3599358
crossref_primary_10_4103_bbrj_bbrj_32_25
crossref_primary_10_1155_2021_2491116
crossref_primary_10_1007_s11227_024_06740_3
crossref_primary_10_1016_j_asoc_2024_111806
crossref_primary_10_3390_healthcare11010139
crossref_primary_10_1007_s11042_024_18939_w
crossref_primary_10_1007_s12530_024_09598_1
crossref_primary_10_1007_s12559_025_10446_w
crossref_primary_10_1007_s42979_024_03507_8
crossref_primary_10_3390_su15021695
crossref_primary_10_51483_IJPAMR_2_2_2022_1_9
crossref_primary_10_1007_s10586_024_04908_3
crossref_primary_10_3390_math11061489
crossref_primary_10_1016_j_rineng_2025_105154
crossref_primary_10_3389_fgene_2022_980338
crossref_primary_10_1080_03091902_2025_2542273
crossref_primary_10_1007_s10257_023_00636_0
crossref_primary_10_3389_fnins_2024_1361055
crossref_primary_10_3390_life13030691
crossref_primary_10_1007_s40747_024_01729_0
crossref_primary_10_3390_biomedicines11123171
crossref_primary_10_1016_j_compbiomed_2024_109577
crossref_primary_10_3390_math12050633
crossref_primary_10_1155_2022_7028717
crossref_primary_10_3390_bioengineering10111314
crossref_primary_10_1007_s00521_022_07258_6
crossref_primary_10_1016_j_health_2024_100340
crossref_primary_10_1007_s00354_024_00254_5
crossref_primary_10_1155_2022_7731618
crossref_primary_10_1007_s11042_024_20097_y
crossref_primary_10_1016_j_knosys_2025_114204
crossref_primary_10_3390_diagnostics13152583
crossref_primary_10_1007_s00354_023_00232_3
crossref_primary_10_1155_2021_9437538
crossref_primary_10_1109_ACCESS_2024_3388169
crossref_primary_10_1016_j_eswa_2025_127592
crossref_primary_10_3390_electronics12020403
crossref_primary_10_3390_make6010033
crossref_primary_10_3390_s21238045
crossref_primary_10_1016_j_imavis_2024_104988
crossref_primary_10_1016_j_hlpt_2025_101040
crossref_primary_10_1007_s00530_022_01013_6
crossref_primary_10_1007_s00530_021_00857_8
crossref_primary_10_1016_j_compbiomed_2024_109507
crossref_primary_10_1016_j_asoc_2024_112500
crossref_primary_10_1007_s40747_025_01847_3
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1007_s11036_024_02313_z
crossref_primary_10_3390_app14062556
crossref_primary_10_1109_ACCESS_2024_3438551
crossref_primary_10_1007_s00530_022_00977_9
crossref_primary_10_3390_app12115608
crossref_primary_10_1007_s11042_023_17458_4
crossref_primary_10_1109_ACCESS_2024_3418202
Cites_doi 10.1038/s41598-019-56847-4
10.1016/S0140-6736(20)30183-5
10.1109/TNSE.2020.3026637
10.1001/jama.2020.1585
10.1007/s00530-020-00677-2
10.5588/ijtld.18.0004
10.1109/JIOT.2021.3051080
10.3390/app9194130
10.1056/NEJMOa2001316
10.1109/ACCESS.2020.3010287
10.1007/s13246-020-00888-x
10.1148/radiol.11091710
10.1016/j.inffus.2021.02.013
10.3390/app10020559
10.1007/s11517-019-01965-4
10.1007/978-3-319-24574-4_28
10.1109/MNET.011.2000458
10.14569/IJACSA.2020.0110644
10.1109/CVPR.2017.369
10.1109/ACCESS.2019.2895688
10.2807/1560-7917.ES.2020.25.3.2000045
10.3389/fmed.2020.00427
10.1016/j.cell.2018.02.010
10.3390/app8101715
10.1109/IDAP.2018.8620723
10.1109/JSYST.2015.2470644
10.1007/s11036-020-01724-y
10.1007/s10278-016-9914-9
10.1007/s00530-017-0561-x
10.1109/JIOT.2020.3013710
10.1148/radiol.2017162326
10.1016/j.compmedimag.2007.02.002
10.3390/diagnostics10030165
10.3390/computers8010008
10.1016/j.patcog.2020.107700
10.1109/TMM.2015.2463226
10.1109/JSAC.2020.3020654
10.1007/s11036-018-1113-0
10.1016/j.imu.2020.100391
10.2214/AJR.20.23034
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1007/s00530-021-00794-6
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Computer Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
EndPage 1738
ExternalDocumentID PMC8079233
33935377
10_1007_s00530_021_00794_6
Genre Journal Article
GroupedDBID --Z
-4Z
-59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-536fb35e2b8babe22efdf38a1c03e524b788c5d70ea0a12a0a593cc3b9b6411c3
IEDL.DBID M7S
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645153400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0942-4962
IngestDate Tue Nov 04 01:59:46 EST 2025
Sun Aug 24 03:56:29 EDT 2025
Sun Nov 30 04:08:24 EST 2025
Mon Jul 21 06:00:53 EDT 2025
Sat Nov 29 03:45:57 EST 2025
Tue Nov 18 21:27:16 EST 2025
Fri Feb 21 02:43:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords COVID-19
Deep learning
Computer vision
Chest X-rays
Transfer learning
Deep CNN
Language English
License The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-536fb35e2b8babe22efdf38a1c03e524b788c5d70ea0a12a0a593cc3b9b6411c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9781-3969
OpenAccessLink http://dx.doi.org/10.1007/s00530-021-00794-6
PMID 33935377
PQID 3256492097
PQPubID 2043725
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8079233
proquest_miscellaneous_2521496396
proquest_journals_3256492097
pubmed_primary_33935377
crossref_citationtrail_10_1007_s00530_021_00794_6
crossref_primary_10_1007_s00530_021_00794_6
springer_journals_10_1007_s00530_021_00794_6
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationTitleAlternate Multimed Syst
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ShorfuzzamanMHossainMSAAlhamidMFTowards the sustainable development of smart cities through mass video surveillance: a response to the COVID-19 pandemicSustain. Urban Areas2021642021102582
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE CVPR. (2017)
LimMAbdullahAJhanjhiNHiddenSMLink prediction in criminal networks using the deep reinforcement learning techniqueComputers20198810.3390/computers8010008
WangDHuBHuCZhuFLiuXZhangJClinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, ChinaJAMA2020323111061106910.1001/jama.2020.1585
HossainMSMuhammadGGuizaniNExplainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemicsIEEE Netw.202034412613210.1109/MNET.011.2000458
AbdulsalamYHossainMSCOVID-19 networking demand: an auction-based mechanism for automated selection of edge computing servicesIEEE Trans. Netw. Sci. Eng.202010.1109/TNSE.2020.3026637
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826 (2020)
CormanVMLandtOKaiserMMolenkampRMeijerAChuDKDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREurosurveillance2020253200004510.2807/1560-7917.ES.2020.25.3.2000045
AlhusseinMCognitive IoT-cloud integration for smart healthcare: case study for epileptic seizure detection and monitoringMob. Netw. Appl.2018231624163510.1007/s11036-018-1113-0
KermanyDSGoldbaumMCaiWValentimCCSLiangHBaxterSLMcKeownAYangGWuXYanFIdentifying medical diagnoses and treatable diseases by image-based deep learningCell20181721122113110.1016/j.cell.2018.02.010
LiQGuanXWuPWangXZhouLTongYEarly transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumoniaN. Engl. J. Med.202010.1056/NEJMOa2001316
Ul Hassan, M.: Vgg16–convolutional network for classification and detection. Neurohive. (2018) Dostopno na: https://neurohive.io/en/popular-networks/vgg16/. Accessed date 10 Apr 2019
RajkomarALingamSTaylorAGBlumMMonganJHigh-throughput classification of radiographs using deep convolutional neural networksJ. Digit. Imaging2017309510110.1007/s10278-016-9914-9
YangTWangY-CShenC-FChengC-MPoint-of-Care RNA-Based Diagnostic Device for COVID-192020BaselMultidisciplinary Digital Publishing Institute10.3390/diagnostics10030165
DasDSantoshKCPalUTruncated inception net: COVID-19 outbreak screening using chest X-raysPhys. Eng. Sci. Med.202043391592510.1007/s13246-020-00888-x
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional 545 neural networks, In: Chaudhuri, K., Salakhutdinov, R. (Eds.) Proceedings of the 36th international conference on machine learning, Vol. 97 of proceedings of machine learning research, PMLR, Long Beach, California, USA, pp. 6105–6114. (2019). URL http://proceedings.mlr.press/v97/tan19a.html
HossainMSMuhammadGAlamriASmart healthcare monitoring: a voice pathology detection paradigm for smart citiesMultimed. Syst.201925556557510.1007/s00530-017-0561-x
LiWChaiYKhanFA comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare systemMob. Netw. Appl.2021111910.1007/s11036-020-01724-y
Gershgorn, D.: The data that transformed AI research—and possibly the world. (2017). https://qz.com/1034972/the-data-that-changed-thedirection-of-ai-research-and-possibly-the-world
GómezPSemmlerMSchützenbergerABohrCDöllingerMLow-light image enhancement of high-speed endoscopic videos using a convolutional neural networkMed. Biol. Eng. Comput.2019571451146310.1007/s11517-019-01965-4
DoiKComputer-aided diagnosis in medical imaging: historical review, current status and future potentialComput. Med. Imaging Graph.20073119821110.1016/j.compmedimag.2007.02.002
Data Set Link https://github.com/agchung/Figure1-COVID-chestxray-dataset/tree/master/images. Accessed date 1 June 2020
MuhammadGHossainMSCOVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound imagesInf. Fusion202172808810.1016/j.inffus.2021.02.013
VermaPSahASrivastavaRDeep learning-based multi-modal approach using RGB and skeleton sequences for human activity recognitionMultimed. Syst.20202667168510.1007/s00530-020-00677-2
Yujin, O. et al.: Deep learning COVID-19 features on CXR using limited training data sets arXiv:.05758v2 [eess.IV]. (2004)
RajaramanSDeep learning for abnormality detection in chest X-Ray imagesAppl. Sci.20188171510.3390/app8101715
HossainMSAminSUMuhammadGAl SulaimanMApplying deep learning for epilepsy seizure detection and brain mapping visualizationACM Trans. Multimed. Comput. Commun. Appl. (ACM TOMM)20191517
RahmanAAdversarial examples—security threats to COVID-19 deep learning systems in medical IoT devicesIEEE Internet Things J.202110.1109/JIOT.2020.3013710
van GinnekenBSchaefer-ProkopCMProkopMComputer-aided diagnosis: how to move from the laboratory to the clinicRadiology2011261371973210.1148/radiol.11091710
HossainMSCloud-supported cyber-physical localization framework for patients monitoringIEEE Syst. J.201711111812710.1109/JSYST.2015.2470644
KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksAdv. Neural Inf. Process. Syst.20122510971105
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K. et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. (2018)
Ronneberger, O., Fischer, P., Brox, T-N.: Convolutional networks for biomedical image segmentation, in paper presented at: International conference on medical image computing and computer-assisted intervention. (2015)
HoTKKGwakJMultiple feature integration for classification of thoracic disease in chest radiographyAppl. Sci.20199413010.3390/app9194130
Sharma, D., Gaur, L., Okunbor, D.: Image compression and feature extraction using neural network. Allied academies international conference. academy of management information and decision sciences. Proceedings, 11:1:33 Jordan Whitney Enterprises, Inc. (2007)
LimMAbdullahAJhanjhiNZData fusion-link prediction for evolutionary network with deep reinforcement learningInt. J. Adv. Comput. Sci. Appl. (IJACSA)202010.14569/IJACSA.2020.0110644
YooSHGengHChiuTLYuSKChoDCHeoJLeeHDeep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imagingFront. Med.202010.3389/fmed.2020.00427
BharatiSPodderPMondalMRHHybrid deep learning for detecting lung diseases from X-ray imagesInf. Med. Unlocked202010.1016/j.imu.2020.100391
MuhammadGHossainMSKumarNEEG-based pathology detection for home health monitoringIEEE J. Sel. Areas Commun.202139260361010.1109/JSAC.2020.3020654
SalehiSAbediABalakrishnanSGholamrezanezhadACoronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patientsAm. J. Roentgenol.20202151710.2214/AJR.20.23034
MinWBaoBXuCCross-platform multi-modal topic modeling for personalized inter-platform recommendationIEEE Trans. Multimed.201517101787180110.1109/TMM.2015.2463226
WangLLinZQWongACOVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography imagesSci. Rep.2020101112
ShorfuzzamanMHossainMSMetaCOVID: a siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patientsPattern Recogn.202111310770010.1016/j.patcog.2020.107700
RahmanMAHossainMSAn internet of medical things-enabled edge computing framework for tackling COVID-19IEEE Internet Things J.202110.1109/JIOT.2021.3051080
ChungMBernheimAMeiXZhangNHuangMZengXCT imaging features of 2019 novel coronavirus (2019-nCoV)Radiology202025200230
WangWXuYGaoRLuRHanKWuGDetection of SARS-CoV-2 in different types of clinical specimensJAMA20203231818431844
Joaquin, A. S.: Using deep learning to detect pneumonia caused by NCOV-19 from X-Ray images. (2020). https://towardsdatascience.com/using-deep-learning-to-detect-ncov-19-from-x-ray-images-1a89701d1acd
LakhaniPSundaramBDeep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networksRadiology201728457458210.1148/radiol.2017162326
HuangCWangYLiXRenLZhaoJHuYClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet202039549750610.1016/S0140-6736(20)30183-5
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R. M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, HI, USA, 21–26; pp. 3462–3471. (2017)
AminSUAlsulaimanMMuhammadGBencherifMAHossainMSMultilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classificationIEEE Access20197189401895010.1109/ACCESS.2019.2895688
PhilipsenRHHMSánchezCIMelendezJLewWJvan GinnekenBAutomated chest X-ray reading for tuberculosis in the Philippines to improve case detection: a cohort studyInt. J. Tuberc. Lung Dis.201923780581010.5588/ijtld.18.0004
Cengil, E., Çinar, A.: A deep learning based approach to lung cancer identification. International conference on artificial intelligence and data processing (IDAP), Malatya, Turkey, pp. 1–5. (2018). doi: https://doi.org/10.1109/IDAP.2018.8620723
Cohen, J. P. et al.: Predicting COVID-19 pneumonia severity on chest X-ray with deep learning. arXiv:.11856v1 [eess.IV]. (2005)
ChouhanVSinghSKKhampariaAGuptaDTiwariPMoreiraCA novel transfer learning based approach for pneumonia detection in chest X-ray imagesAppl. Sci.20201055910.3390/app10020559
Chowdhury, M. E. H. et al.: (2020) Can AI help in screening Viral and COVID-19 pneumonia?. https://arxiv.org/abs/2003.13145. Accessed date 23 May 2020
794_CR40
MS Hossain (794_CR24) 2019; 15
V Chouhan (794_CR32) 2020; 10
794_CR41
SU Amin (794_CR17) 2019; 7
SH Yoo (794_CR44) 2020
794_CR46
794_CR47
K Doi (794_CR21) 2007; 31
794_CR45
TKK Ho (794_CR36) 2019; 9
D Das (794_CR49) 2020; 43
W Li (794_CR18) 2021; 1
MS Hossain (794_CR28) 2019; 25
Q Li (794_CR5) 2020
Y Abdulsalam (794_CR56) 2020
A Krizhevsky (794_CR23) 2012; 25
794_CR38
RHHM Philipsen (794_CR42) 2019; 23
T Yang (794_CR54) 2020
794_CR35
A Rahman (794_CR11) 2021
794_CR33
794_CR34
W Wang (794_CR53) 2020; 323
C Huang (794_CR6) 2020; 395
M Lim (794_CR27) 2019; 8
L Wang (794_CR55) 2020; 10
S Salehi (794_CR10) 2020; 215
DS Kermany (794_CR39) 2018; 172
794_CR1
M Shorfuzzaman (794_CR4) 2021; 64
MS Hossain (794_CR29) 2017; 11
M Chung (794_CR8) 2020; 25
794_CR25
P Lakhani (794_CR37) 2017; 284
S Bharati (794_CR43) 2020
MA Rahman (794_CR12) 2021
W Min (794_CR19) 2015; 17
MS Hossain (794_CR20) 2020; 34
G Muhammad (794_CR9) 2021; 72
P Gómez (794_CR30) 2019; 57
VM Corman (794_CR7) 2020; 25
794_CR15
M Shorfuzzaman (794_CR2) 2021; 113
M Alhussein (794_CR16) 2018; 23
794_CR51
D Wang (794_CR3) 2020; 323
B van Ginneken (794_CR22) 2011; 261
A Rajkomar (794_CR31) 2017; 30
S Rajaraman (794_CR52) 2018; 8
794_CR50
P Verma (794_CR14) 2020; 26
G Muhammad (794_CR13) 2021; 39
794_CR48
M Lim (794_CR26) 2020
References_xml – reference: Joaquin, A. S.: Using deep learning to detect pneumonia caused by NCOV-19 from X-Ray images. (2020). https://towardsdatascience.com/using-deep-learning-to-detect-ncov-19-from-x-ray-images-1a89701d1acd
– reference: Ul Hassan, M.: Vgg16–convolutional network for classification and detection. Neurohive. (2018) Dostopno na: https://neurohive.io/en/popular-networks/vgg16/. Accessed date 10 Apr 2019
– reference: Ronneberger, O., Fischer, P., Brox, T-N.: Convolutional networks for biomedical image segmentation, in paper presented at: International conference on medical image computing and computer-assisted intervention. (2015)
– reference: MinWBaoBXuCCross-platform multi-modal topic modeling for personalized inter-platform recommendationIEEE Trans. Multimed.201517101787180110.1109/TMM.2015.2463226
– reference: Cohen, J. P. et al.: Predicting COVID-19 pneumonia severity on chest X-ray with deep learning. arXiv:.11856v1 [eess.IV]. (2005)
– reference: LimMAbdullahAJhanjhiNZData fusion-link prediction for evolutionary network with deep reinforcement learningInt. J. Adv. Comput. Sci. Appl. (IJACSA)202010.14569/IJACSA.2020.0110644
– reference: BharatiSPodderPMondalMRHHybrid deep learning for detecting lung diseases from X-ray imagesInf. Med. Unlocked202010.1016/j.imu.2020.100391
– reference: Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R. M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, HI, USA, 21–26; pp. 3462–3471. (2017)
– reference: AminSUAlsulaimanMMuhammadGBencherifMAHossainMSMultilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classificationIEEE Access20197189401895010.1109/ACCESS.2019.2895688
– reference: Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE CVPR. (2017)
– reference: HossainMSAminSUMuhammadGAl SulaimanMApplying deep learning for epilepsy seizure detection and brain mapping visualizationACM Trans. Multimed. Comput. Commun. Appl. (ACM TOMM)20191517
– reference: LiQGuanXWuPWangXZhouLTongYEarly transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumoniaN. Engl. J. Med.202010.1056/NEJMOa2001316
– reference: PhilipsenRHHMSánchezCIMelendezJLewWJvan GinnekenBAutomated chest X-ray reading for tuberculosis in the Philippines to improve case detection: a cohort studyInt. J. Tuberc. Lung Dis.201923780581010.5588/ijtld.18.0004
– reference: RajaramanSDeep learning for abnormality detection in chest X-Ray imagesAppl. Sci.20188171510.3390/app8101715
– reference: ShorfuzzamanMHossainMSMetaCOVID: a siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patientsPattern Recogn.202111310770010.1016/j.patcog.2020.107700
– reference: LakhaniPSundaramBDeep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networksRadiology201728457458210.1148/radiol.2017162326
– reference: LiWChaiYKhanFA comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare systemMob. Netw. Appl.2021111910.1007/s11036-020-01724-y
– reference: ShorfuzzamanMHossainMSAAlhamidMFTowards the sustainable development of smart cities through mass video surveillance: a response to the COVID-19 pandemicSustain. Urban Areas2021642021102582
– reference: HossainMSMuhammadGAlamriASmart healthcare monitoring: a voice pathology detection paradigm for smart citiesMultimed. Syst.201925556557510.1007/s00530-017-0561-x
– reference: MuhammadGHossainMSCOVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound imagesInf. Fusion202172808810.1016/j.inffus.2021.02.013
– reference: YooSHGengHChiuTLYuSKChoDCHeoJLeeHDeep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imagingFront. Med.202010.3389/fmed.2020.00427
– reference: HuangCWangYLiXRenLZhaoJHuYClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet202039549750610.1016/S0140-6736(20)30183-5
– reference: WangDHuBHuCZhuFLiuXZhangJClinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, ChinaJAMA2020323111061106910.1001/jama.2020.1585
– reference: ChungMBernheimAMeiXZhangNHuangMZengXCT imaging features of 2019 novel coronavirus (2019-nCoV)Radiology202025200230
– reference: HoTKKGwakJMultiple feature integration for classification of thoracic disease in chest radiographyAppl. Sci.20199413010.3390/app9194130
– reference: Yujin, O. et al.: Deep learning COVID-19 features on CXR using limited training data sets arXiv:.05758v2 [eess.IV]. (2004)
– reference: WangWXuYGaoRLuRHanKWuGDetection of SARS-CoV-2 in different types of clinical specimensJAMA20203231818431844
– reference: Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional 545 neural networks, In: Chaudhuri, K., Salakhutdinov, R. (Eds.) Proceedings of the 36th international conference on machine learning, Vol. 97 of proceedings of machine learning research, PMLR, Long Beach, California, USA, pp. 6105–6114. (2019). URL http://proceedings.mlr.press/v97/tan19a.html
– reference: AlhusseinMCognitive IoT-cloud integration for smart healthcare: case study for epileptic seizure detection and monitoringMob. Netw. Appl.2018231624163510.1007/s11036-018-1113-0
– reference: RahmanAAdversarial examples—security threats to COVID-19 deep learning systems in medical IoT devicesIEEE Internet Things J.202110.1109/JIOT.2020.3013710
– reference: MuhammadGHossainMSKumarNEEG-based pathology detection for home health monitoringIEEE J. Sel. Areas Commun.202139260361010.1109/JSAC.2020.3020654
– reference: WangLLinZQWongACOVID-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography imagesSci. Rep.2020101112
– reference: YangTWangY-CShenC-FChengC-MPoint-of-Care RNA-Based Diagnostic Device for COVID-192020BaselMultidisciplinary Digital Publishing Institute10.3390/diagnostics10030165
– reference: VermaPSahASrivastavaRDeep learning-based multi-modal approach using RGB and skeleton sequences for human activity recognitionMultimed. Syst.20202667168510.1007/s00530-020-00677-2
– reference: LimMAbdullahAJhanjhiNHiddenSMLink prediction in criminal networks using the deep reinforcement learning techniqueComputers20198810.3390/computers8010008
– reference: ChouhanVSinghSKKhampariaAGuptaDTiwariPMoreiraCA novel transfer learning based approach for pneumonia detection in chest X-ray imagesAppl. Sci.20201055910.3390/app10020559
– reference: Gershgorn, D.: The data that transformed AI research—and possibly the world. (2017). https://qz.com/1034972/the-data-that-changed-thedirection-of-ai-research-and-possibly-the-world/
– reference: KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksAdv. Neural Inf. Process. Syst.20122510971105
– reference: KermanyDSGoldbaumMCaiWValentimCCSLiangHBaxterSLMcKeownAYangGWuXYanFIdentifying medical diagnoses and treatable diseases by image-based deep learningCell20181721122113110.1016/j.cell.2018.02.010
– reference: Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K. et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. (2018)
– reference: Sharma, D., Gaur, L., Okunbor, D.: Image compression and feature extraction using neural network. Allied academies international conference. academy of management information and decision sciences. Proceedings, 11:1:33 Jordan Whitney Enterprises, Inc. (2007)
– reference: RahmanMAHossainMSAn internet of medical things-enabled edge computing framework for tackling COVID-19IEEE Internet Things J.202110.1109/JIOT.2021.3051080
– reference: Chowdhury, M. E. H. et al.: (2020) Can AI help in screening Viral and COVID-19 pneumonia?. https://arxiv.org/abs/2003.13145. Accessed date 23 May 2020
– reference: SalehiSAbediABalakrishnanSGholamrezanezhadACoronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patientsAm. J. Roentgenol.20202151710.2214/AJR.20.23034
– reference: AbdulsalamYHossainMSCOVID-19 networking demand: an auction-based mechanism for automated selection of edge computing servicesIEEE Trans. Netw. Sci. Eng.202010.1109/TNSE.2020.3026637
– reference: Data Set Link https://github.com/agchung/Figure1-COVID-chestxray-dataset/tree/master/images. Accessed date 1 June 2020
– reference: RajkomarALingamSTaylorAGBlumMMonganJHigh-throughput classification of radiographs using deep convolutional neural networksJ. Digit. Imaging2017309510110.1007/s10278-016-9914-9
– reference: GómezPSemmlerMSchützenbergerABohrCDöllingerMLow-light image enhancement of high-speed endoscopic videos using a convolutional neural networkMed. Biol. Eng. Comput.2019571451146310.1007/s11517-019-01965-4
– reference: HossainMSCloud-supported cyber-physical localization framework for patients monitoringIEEE Syst. J.201711111812710.1109/JSYST.2015.2470644
– reference: DasDSantoshKCPalUTruncated inception net: COVID-19 outbreak screening using chest X-raysPhys. Eng. Sci. Med.202043391592510.1007/s13246-020-00888-x
– reference: Cengil, E., Çinar, A.: A deep learning based approach to lung cancer identification. International conference on artificial intelligence and data processing (IDAP), Malatya, Turkey, pp. 1–5. (2018). doi: https://doi.org/10.1109/IDAP.2018.8620723
– reference: HossainMSMuhammadGGuizaniNExplainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemicsIEEE Netw.202034412613210.1109/MNET.011.2000458
– reference: DoiKComputer-aided diagnosis in medical imaging: historical review, current status and future potentialComput. Med. Imaging Graph.20073119821110.1016/j.compmedimag.2007.02.002
– reference: van GinnekenBSchaefer-ProkopCMProkopMComputer-aided diagnosis: how to move from the laboratory to the clinicRadiology2011261371973210.1148/radiol.11091710
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826 (2020)
– reference: CormanVMLandtOKaiserMMolenkampRMeijerAChuDKDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREurosurveillance2020253200004510.2807/1560-7917.ES.2020.25.3.2000045
– volume: 15
  start-page: 17
  year: 2019
  ident: 794_CR24
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (ACM TOMM)
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 794_CR55
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 25
  start-page: 200230
  year: 2020
  ident: 794_CR8
  publication-title: Radiology
– volume: 395
  start-page: 497
  year: 2020
  ident: 794_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– year: 2020
  ident: 794_CR56
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.3026637
– volume: 323
  start-page: 1843
  issue: 18
  year: 2020
  ident: 794_CR53
  publication-title: JAMA
– volume: 323
  start-page: 1061
  issue: 11
  year: 2020
  ident: 794_CR3
  publication-title: JAMA
  doi: 10.1001/jama.2020.1585
– volume: 26
  start-page: 671
  year: 2020
  ident: 794_CR14
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-020-00677-2
– ident: 794_CR25
– ident: 794_CR41
– ident: 794_CR48
– volume: 23
  start-page: 805
  issue: 7
  year: 2019
  ident: 794_CR42
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.18.0004
– ident: 794_CR50
– year: 2021
  ident: 794_CR12
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3051080
– volume: 9
  start-page: 4130
  year: 2019
  ident: 794_CR36
  publication-title: Appl. Sci.
  doi: 10.3390/app9194130
– year: 2020
  ident: 794_CR5
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMOa2001316
– ident: 794_CR45
  doi: 10.1109/ACCESS.2020.3010287
– volume: 43
  start-page: 915
  issue: 3
  year: 2020
  ident: 794_CR49
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00888-x
– volume: 261
  start-page: 719
  issue: 3
  year: 2011
  ident: 794_CR22
  publication-title: Radiology
  doi: 10.1148/radiol.11091710
– volume: 72
  start-page: 80
  year: 2021
  ident: 794_CR9
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.013
– volume: 10
  start-page: 559
  year: 2020
  ident: 794_CR32
  publication-title: Appl. Sci.
  doi: 10.3390/app10020559
– volume: 57
  start-page: 1451
  year: 2019
  ident: 794_CR30
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-01965-4
– ident: 794_CR35
  doi: 10.1007/978-3-319-24574-4_28
– ident: 794_CR38
– ident: 794_CR51
– volume: 34
  start-page: 126
  issue: 4
  year: 2020
  ident: 794_CR20
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000458
– year: 2020
  ident: 794_CR26
  publication-title: Int. J. Adv. Comput. Sci. Appl. (IJACSA)
  doi: 10.14569/IJACSA.2020.0110644
– ident: 794_CR40
  doi: 10.1109/CVPR.2017.369
– volume: 7
  start-page: 18940
  year: 2019
  ident: 794_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895688
– ident: 794_CR33
– ident: 794_CR46
– volume: 25
  start-page: 2000045
  issue: 3
  year: 2020
  ident: 794_CR7
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.3.2000045
– year: 2020
  ident: 794_CR44
  publication-title: Front. Med.
  doi: 10.3389/fmed.2020.00427
– volume: 172
  start-page: 1122
  year: 2018
  ident: 794_CR39
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 8
  start-page: 1715
  year: 2018
  ident: 794_CR52
  publication-title: Appl. Sci.
  doi: 10.3390/app8101715
– ident: 794_CR1
  doi: 10.1109/IDAP.2018.8620723
– volume: 11
  start-page: 118
  issue: 1
  year: 2017
  ident: 794_CR29
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2015.2470644
– volume: 1
  start-page: 1
  year: 2021
  ident: 794_CR18
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-020-01724-y
– volume: 30
  start-page: 95
  year: 2017
  ident: 794_CR31
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-016-9914-9
– ident: 794_CR34
  doi: 10.1109/CVPR.2017.369
– volume: 25
  start-page: 565
  issue: 5
  year: 2019
  ident: 794_CR28
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-017-0561-x
– year: 2021
  ident: 794_CR11
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3013710
– volume: 284
  start-page: 574
  year: 2017
  ident: 794_CR37
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– volume: 31
  start-page: 198
  year: 2007
  ident: 794_CR21
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.02.002
– volume-title: Point-of-Care RNA-Based Diagnostic Device for COVID-19
  year: 2020
  ident: 794_CR54
  doi: 10.3390/diagnostics10030165
– volume: 8
  start-page: 8
  year: 2019
  ident: 794_CR27
  publication-title: Computers
  doi: 10.3390/computers8010008
– volume: 25
  start-page: 1097
  year: 2012
  ident: 794_CR23
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 794_CR47
– volume: 64
  start-page: 102582
  issue: 2021
  year: 2021
  ident: 794_CR4
  publication-title: Sustain. Urban Areas
– volume: 113
  start-page: 107700
  year: 2021
  ident: 794_CR2
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107700
– volume: 17
  start-page: 1787
  issue: 10
  year: 2015
  ident: 794_CR19
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2015.2463226
– volume: 39
  start-page: 603
  issue: 2
  year: 2021
  ident: 794_CR13
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3020654
– volume: 23
  start-page: 1624
  year: 2018
  ident: 794_CR16
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-018-1113-0
– ident: 794_CR15
– year: 2020
  ident: 794_CR43
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2020.100391
– volume: 215
  start-page: 1
  year: 2020
  ident: 794_CR10
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.20.23034
SSID ssj0017630
Score 2.6375196
Snippet The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1729
SubjectTerms Accuracy
Algorithms
Applications programs
Artificial neural networks
Business analytics
Classification
Comparative analysis
Computer Communication Networks
Computer Graphics
Computer Science
Computer vision
Convolution
COVID-19
Cryptology
Data Storage Representation
Datasets
Decision making
Deep learning
Health care facilities
Lung diseases
Machine learning
Medical diagnosis
Medical imaging
Medical research
Mobile computing
Multimedia
Multimedia Information Systems
Neural networks
Operating Systems
Performance measurement
Pneumonia
Role of Deep Learning Models & Analytics in Industrial Multimedia Environment
Special Issue Paper
X-rays
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcATbHnph6XvLQ67UW2sp8SOJj9VSBJcFQYu4RXZil5Ugi8jC9zN2nKAtpVK5RIoyduLxjGcm8wL4Uhsl0UoWtPKNwoQWiirjy-MJZZyU2hldhGYT-WxWnJ-r45gU1vbR7r1LMpzUQ7Kbp5eE-pACvFWCZuvwAsVd4Rs2nJyeDb4D5JjwZ0UJRoXKWEyV-fscq-LokY75OFTyD39pEEP74-ctYBM2otpJvnd08hrWbPMGxn1LBxI5_C0cR8cNmV_hQUO9jKtJbZchYKshC0emR2eHezRVxEfM_yZ71l6T6aK5iyRMfLUPHD_rwsvbd_Br_8fP6QGNTRdoJXKxpJJnznBpmSmMNpYx62rHC53iZlrJhEGbuZJ1nlid6JThRSpeVdwok4k0rfh7GDWLxn4EwjTaI4bbxKEVWjhZoDJWI5RjtdNWpRNIe9yXVaxI7htjXJZDLeWAshJRVgaUldkEvg5jrrt6HP-E3u63tIy82ZYctTyhWKLyCXweHiNXeVeJbuziti0ZajVIO1zhFB86Chhex302M89xdL5CGwOAr9i9-qSZX4TK3UXiyzXyCXzrKeThs55exaf_A9-CVww1sS6ebRtGy5tbuwMvq7vlvL3ZDbxyD6q8DKQ
  priority: 102
  providerName: Springer Nature
Title Medical image-based detection of COVID-19 using Deep Convolution Neural Networks
URI https://link.springer.com/article/10.1007/s00530-021-00794-6
https://www.ncbi.nlm.nih.gov/pubmed/33935377
https://www.proquest.com/docview/3256492097
https://www.proquest.com/docview/2521496396
https://pubmed.ncbi.nlm.nih.gov/PMC8079233
Volume 29
WOSCitedRecordID wos000645153400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXWl5loayMxA0sEj-S-ITothUIaVm1UK24RHZiw0qQLN1tfz9jx0m1VPTCxZIVO4k1M54Zz_gbgFe1URK9ZEErXyhMaKGoMh4eTyjjpNTO6CIUm8in02I-V7N44LaKaZX9nhg26rqt_Bn5W466WSiWqPzd8jf1VaN8dDWW0NiCHY-SkIbUvbMhioCyE85YlGBUqIzFSzPh6pznvoT6BAXsKkGzTcV0w9q8mTT5V-Q0KKST3f9dyh7cj6Yoed_xzgO4Y5uHsNuXeSBR6h_BLAZzyOIXbj7U672a1HYdkrga0joy-Xz-8Yimivgs-u_kyNolmbTNVWRr4hFAcP60SzlfPYavJ8dfJh9oLMRAK5GLNZU8c4ZLy0xhtLGMWVc7XugUCWwlEwb96ErWeWJ1olOGjVS8qrhRJhNpWvEnsN20jX0KhGn0UQy3iUPPtHCyQAOtxlGO1U5blY4g7alQVhGl3BfL-FkO-MqBciVSrgyUK7MRvB7mLDuMjltHH_RUKaO8rsprkozg5fAYJc2HT3Rj28tVydDSQS7iCl-x3_HC8DnubzjzHGfnG1wyDPAo3ptPmsWPgOZdJB7CkY_gTc9P17_171U8u30Vz-EeQ2usy2k7gO31xaV9AXerq_VidTGGrXxejGHn8Hg6O8Xep5yOg-RgO5PfsD09O_8DYcocQA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXypuFAkaCE1gktvPwASG0S9XVlqWHgnozdmLDSpAszbaIP8VvZOw8qqWitx64RIr8iJ18M57JvACelUYmqCULWvhCYUILSaXx6fGENC5JtDM6D8Umsvk8PzyU-xvwu4-F8W6VPU8MjLqsC_-P_BXHs1lIFsnszfIH9VWjvHW1L6HRwmJmf_1Ela15PZ3g933O2M67g_Eu7aoK0EJkYkUTnjrDE8tMbrSxjFlXOp7rGFdrEyYMKoVFUmaR1ZGOGV4SyYuCG2lSEccFx3kvwWXB88zT1Syjg9UCaTX805GCUSFT1gXphFA9j_aIeocIvJWCpusH4Rnp9qyT5l-W2nAA7mz9b6_uBlzvRG3ytqWNm7Bhq1uw1ZexIB1Xuw37nbGKLL4jc6X-XC9JaVfBSa0itSPjD5-mExpL4qMEvpCJtUsyrquTjmyJz3CC4-etS31zBz5eyL7uwmZVV_Y-EKZRBzPcRg4179wlOQqgJfZyrHTayngEcf_VVdFlYffFQL6pIX90QIpCpKiAFJWO4MUwZtnmIDm393aPAtXxo0adQmAET4dm5CTePKQrWx83iqEkh6jlEqe412JveBz3Edw8w9HZGiqHDj5L-XpLtfgaspXnkU9RyUfwssfv6bL-vYsH5-_iCVzdPXi_p_am89lDuMZQ8mz997Zhc3V0bB_BleJktWiOHgcKJfD5onH9B8efdQ0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BmBAvjPFZGMxIewNriT-S-BG1VExMpRLbtDfLTmyoBGm1Zvv7OTsfowyQEC-RIp-d2L6L73J3vwM4qKySaCULWoZCYcIIRZUN8HhCWS-l8dYUsdhEPpsV5-dq_lMWf4x2712SbU5DQGmqm8NV5Q-HxLfAOwkN4QV4qwTNbsMdEQLpg73--WzwI6D0xL8sSjAqVMa6tJnfj7F5NN3QN2-GTf7iO41H0nTn_yfzAO536ih51_LPLtxy9UPY6Us9kE7yH8G8c-iQxXf8ANFw9lWkck0M5KrJ0pPxp7OjCU0VCZH0X8jEuRUZL-urjrVJQAHB_rM27Hz9GE6n70_GH2hXjIGWIhcNlTzzlkvHbGGNdYw5X3lemBQ32UkmLNrSpazyxJnEpAwvUvGy5FbZTKRpyZ_AVr2s3TMgzKCdYrlLPFqnhZcFKmkVUnlWeeNUOoK03wdddkjloWDGNz1gLMcl07hkOi6ZzkbwZuizanE6_kq912-v7mR2rTlqf0KxROUjeD00o7QFF4qp3fJyrRlqO8hHXOEQT1tuGB7HQ5Yzz7F3vsEnA0FA8t5sqRdfI6J3kQQYRz6Ctz23XL_Wn2fx_N_I9-HufDLVx0ezjy_gHkNlrQ1524Ot5uLSvYTt8qpZrC9eRRH6AaboGGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+image-based+detection+of+COVID-19+using+Deep+Convolution+Neural+Networks&rft.jtitle=Multimedia+systems&rft.au=Gaur%2C+Loveleen&rft.au=Bhatia%2C+Ujwal&rft.au=Jhanjhi%2C+N+Z&rft.au=Muhammad%2C+Ghulam&rft.date=2023-06-01&rft.issn=0942-4962&rft.volume=29&rft.issue=3&rft.spage=1729&rft_id=info:doi/10.1007%2Fs00530-021-00794-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon