Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer

Background There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the us...

Full description

Saved in:
Bibliographic Details
Published in:British journal of cancer Vol. 125; no. 4; pp. 534 - 546
Main Authors: Sjoberg, Hanna T., Philippou, Yiannis, Magnussen, Anette L., Tullis, Iain D. C., Bridges, Esther, Chatrian, Andrea, Lefebvre, Joel, Tam, Ka Ho, Murphy, Emma A., Rittscher, Jens, Preise, Dina, Agemy, Lilach, Yechezkel, Tamar, Smart, Sean C., Kinchesh, Paul, Gilchrist, Stuart, Allen, Danny P., Scheiblin, David A., Lockett, Stephen J., Wink, David A., Lamb, Alastair D., Mills, Ian G., Harris, Adrian, Muschel, Ruth J., Vojnovic, Boris, Scherz, Avigdor, Hamdy, Freddie C., Bryant, Richard J.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 17.08.2021
Nature Publishing Group
Subjects:
ISSN:0007-0920, 1532-1827, 1532-1827
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient ‘vascular normalisation’. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. Methods We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. Results FRT induced ‘vascular normalisation’ changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. Conclusion Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.
AbstractList There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP.BACKGROUNDThere is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP.We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP.METHODSWe investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP.FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival.RESULTSFRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival.Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.CONCLUSIONCombining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.
There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.
Background There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient ‘vascular normalisation’. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. Methods We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. Results FRT induced ‘vascular normalisation’ changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. Conclusion Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.
BackgroundThere is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient ‘vascular normalisation’. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP.MethodsWe investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP.ResultsFRT induced ‘vascular normalisation’ changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival.ConclusionCombining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.
Author Rittscher, Jens
Lockett, Stephen J.
Chatrian, Andrea
Scheiblin, David A.
Murphy, Emma A.
Gilchrist, Stuart
Agemy, Lilach
Mills, Ian G.
Lamb, Alastair D.
Sjoberg, Hanna T.
Lefebvre, Joel
Philippou, Yiannis
Magnussen, Anette L.
Tullis, Iain D. C.
Vojnovic, Boris
Kinchesh, Paul
Hamdy, Freddie C.
Wink, David A.
Scherz, Avigdor
Harris, Adrian
Bryant, Richard J.
Yechezkel, Tamar
Muschel, Ruth J.
Bridges, Esther
Allen, Danny P.
Smart, Sean C.
Tam, Ka Ho
Preise, Dina
Author_xml – sequence: 1
  givenname: Hanna T.
  surname: Sjoberg
  fullname: Sjoberg, Hanna T.
  organization: Nuffield Department of Surgical Sciences, University of Oxford
– sequence: 2
  givenname: Yiannis
  surname: Philippou
  fullname: Philippou, Yiannis
  organization: Department of Oncology, University of Oxford
– sequence: 3
  givenname: Anette L.
  surname: Magnussen
  fullname: Magnussen, Anette L.
  organization: Nuffield Department of Surgical Sciences, University of Oxford
– sequence: 4
  givenname: Iain D. C.
  surname: Tullis
  fullname: Tullis, Iain D. C.
  organization: Department of Oncology, University of Oxford
– sequence: 5
  givenname: Esther
  surname: Bridges
  fullname: Bridges, Esther
  organization: Department of Oncology, University of Oxford
– sequence: 6
  givenname: Andrea
  surname: Chatrian
  fullname: Chatrian, Andrea
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford
– sequence: 7
  givenname: Joel
  surname: Lefebvre
  fullname: Lefebvre, Joel
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford
– sequence: 8
  givenname: Ka Ho
  surname: Tam
  fullname: Tam, Ka Ho
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford
– sequence: 9
  givenname: Emma A.
  surname: Murphy
  fullname: Murphy, Emma A.
  organization: Nuffield Department of Surgical Sciences, University of Oxford, Department of Oncology, University of Oxford
– sequence: 10
  givenname: Jens
  surname: Rittscher
  fullname: Rittscher, Jens
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, NDM Research Building, University of Oxford
– sequence: 11
  givenname: Dina
  surname: Preise
  fullname: Preise, Dina
  organization: Department of Core Facilities, The Weizmann Institute of Science
– sequence: 12
  givenname: Lilach
  surname: Agemy
  fullname: Agemy, Lilach
  organization: Department of Plant and Environmental Sciences, The Weizmann Institute of Science
– sequence: 13
  givenname: Tamar
  surname: Yechezkel
  fullname: Yechezkel, Tamar
  organization: Department of Plant and Environmental Sciences, The Weizmann Institute of Science
– sequence: 14
  givenname: Sean C.
  surname: Smart
  fullname: Smart, Sean C.
  organization: Department of Oncology, University of Oxford
– sequence: 15
  givenname: Paul
  surname: Kinchesh
  fullname: Kinchesh, Paul
  organization: Department of Oncology, University of Oxford
– sequence: 16
  givenname: Stuart
  surname: Gilchrist
  fullname: Gilchrist, Stuart
  organization: Department of Oncology, University of Oxford
– sequence: 17
  givenname: Danny P.
  surname: Allen
  fullname: Allen, Danny P.
  organization: Department of Oncology, University of Oxford
– sequence: 18
  givenname: David A.
  orcidid: 0000-0002-5505-2540
  surname: Scheiblin
  fullname: Scheiblin, David A.
  organization: Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health
– sequence: 19
  givenname: Stephen J.
  surname: Lockett
  fullname: Lockett, Stephen J.
  organization: Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health
– sequence: 20
  givenname: David A.
  surname: Wink
  fullname: Wink, David A.
  organization: Cancer and Inflammation Program, Centre for Cancer Research, National Cancer Institute, National Institutes of Health
– sequence: 21
  givenname: Alastair D.
  orcidid: 0000-0002-2968-7155
  surname: Lamb
  fullname: Lamb, Alastair D.
  organization: Nuffield Department of Surgical Sciences, University of Oxford
– sequence: 22
  givenname: Ian G.
  orcidid: 0000-0001-5347-5083
  surname: Mills
  fullname: Mills, Ian G.
  organization: Nuffield Department of Surgical Sciences, University of Oxford
– sequence: 23
  givenname: Adrian
  orcidid: 0000-0003-1376-8409
  surname: Harris
  fullname: Harris, Adrian
  organization: Department of Oncology, University of Oxford
– sequence: 24
  givenname: Ruth J.
  surname: Muschel
  fullname: Muschel, Ruth J.
  organization: Department of Oncology, University of Oxford
– sequence: 25
  givenname: Boris
  surname: Vojnovic
  fullname: Vojnovic, Boris
  organization: Department of Oncology, University of Oxford
– sequence: 26
  givenname: Avigdor
  surname: Scherz
  fullname: Scherz, Avigdor
  organization: Department of Plant and Environmental Sciences, The Weizmann Institute of Science
– sequence: 27
  givenname: Freddie C.
  surname: Hamdy
  fullname: Hamdy, Freddie C.
  organization: Nuffield Department of Surgical Sciences, University of Oxford
– sequence: 28
  givenname: Richard J.
  orcidid: 0000-0002-8330-9251
  surname: Bryant
  fullname: Bryant, Richard J.
  email: richard.bryant@nds.ox.ac.uk
  organization: Nuffield Department of Surgical Sciences, University of Oxford, Department of Oncology, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34155340$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabGvlb_gAtD4sYNyvfwNiam8Stp4qauCcPAG5oZeAJT89b-cXmd1o8uuiIXzjn3cO85AycxRQfAS4LfEszUu8IJJxJhShAmXGAkn4ANEYwiomh3AjYY4w7hLcWn4KyU61ZuseqegVPGiRCM4w34dbXMackw5GyGYGpIEdo09yG6Af4MdYQ3pthlMhlVk3eutuv9mGoaDtHMwcI6umz2B-jiaKJ1BZpYQ11FnffO1gJDhPvskJ1CDNZMrUilmuqgPVLyc_DUm6m4F3fnOfj-6ePVxRd0-e3z14sPl8jyjlcksLGUcOMH1XeCWyapkj0WzAsulR2U5cRj6rxkCnslpepMz4ynrB9Ypyg7B-9X3f3Sz26wLtZsJr3PYTb5oJMJ-v-XGEa9SzdaMdltlWwCb-4EcvqxuFL1HIp102SiS0vRVPC2EMrpsdfrB9DrNpHYvtdQkkguOoob6tW_jv5Yud9PA6gVYNvISnZe21Bvt9QMhkkTrI9R0GsUdIuCvo2CPpqlD6j36o-S2EoqDRx3Lv-1_QjrN3fJyV4
CitedBy_id crossref_primary_10_3390_ijms241310624
crossref_primary_10_3390_molecules27217480
crossref_primary_10_1002_cmdc_202300374
crossref_primary_10_1097_MOU_0000000000000987
crossref_primary_10_1002_bco2_70065
crossref_primary_10_1111_php_14048
crossref_primary_10_1002_rai2_12100
crossref_primary_10_3390_molecules27031093
crossref_primary_10_3390_pharmaceutics15020330
Cites_doi 10.1016/j.mri.2015.03.011
10.1155/2013/685308
10.1016/j.juro.2007.07.036
10.1038/nature12477
10.3390/cancers12010121
10.1016/S0360-3016(98)00358-7
10.1016/j.juro.2006.03.093
10.1016/j.eururo.2013.05.048
10.1016/j.eururo.2007.03.056
10.1016/j.suronc.2009.02.002
10.1158/1078-0432.CCR-16-2745
10.1039/c0pp00315h
10.1158/1078-0432.CCR-17-3474
10.1016/j.radonc.2018.12.022
10.1038/nature12213
10.1016/S1470-2045(16)30661-1
10.1053/srao.2003.50005
10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2
10.1016/S0360-3016(02)02742-6
10.18632/oncotarget.16969
10.1371/journal.pone.0164920
10.1667/RR2773.1
10.1177/37.3.2918221
10.1158/1078-0432.CCR-08-1471
10.1038/s41416-020-0956-x
10.1111/j.1464-410X.2005.05394.x
10.1080/2162402X.2019.1581528
10.1038/s41585-020-0310-3
10.1016/j.eururo.2013.11.002
10.18632/oncotarget.12814
10.1016/S0360-3016(98)00320-4
10.1016/S0360-3016(00)01470-X
10.1111/j.1464-410X.2009.09054.x
10.1111/bju.12816
10.1016/j.cell.2011.02.013
10.3389/fcvm.2018.00078
10.3389/fonc.2013.00211
10.1002/ijc.11002
10.1016/S0090-4295(02)01574-1
10.1016/j.urology.2007.02.054
10.1111/j.1464-410X.2008.07753.x
10.1007/s00262-008-0527-0
10.1371/journal.pone.0010282
10.1002/cncr.22544
10.1016/j.eururo.2016.08.044
10.1016/j.neuroimage.2006.01.015
10.1038/nrc3958
10.1111/j.1464-410X.2008.08208.x
10.1016/j.ejca.2005.11.030
10.1101/cshperspect.a006486
10.1111/bju.12265
10.1038/s41416-021-01330-z
10.1016/j.eururo.2012.02.031
10.1016/j.juro.2007.03.105
10.1038/ncpuro1274
10.1007/s00345-015-1505-8
10.1088/0031-9155/53/9/010
10.1093/jrr/rrs011
10.1016/j.ijrobp.2016.01.064
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TO
7U9
7X7
7XB
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41416-021-01450-6
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-1827
EndPage 546
ExternalDocumentID PMC8367986
34155340
10_1038_s41416_021_01450_6
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024.
– fundername: The Urology Foundation.
– fundername: Cancer Research UK (CRUK)
  grantid: C5255/A12678; C5255/A12678; C39297/A22748
  funderid: https://doi.org/10.13039/501100000289
– fundername: Cancer Research UK
  grantid: 22748
– fundername: Cancer Research UK
  grantid: 25812
– fundername: NCI NIH HHS
  grantid: 75N91019D00024
– fundername: ;
– fundername: ;
  grantid: C5255/A12678; C5255/A12678; C39297/A22748
GroupedDBID ---
0R~
23N
36B
39C
4.4
406
53G
5GY
5RE
6J9
70F
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAWTL
AAYZH
AAZLF
ABAKF
ABLJU
ABOCM
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AN0
AOIJS
ASPBG
AVWKF
AXYYD
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAP
EBLON
EBS
EE.
EIOEI
EMB
ESX
EX3
F5P
FDQFY
FEDTE
FERAY
FIGPU
FRJ
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IH2
IWAJR
JSO
JZLTJ
KQ8
M1P
M7P
NAPCQ
NQJWS
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
UKHRP
W2D
WH7
WOW
~02
AAFWJ
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
-Q-
.55
.GJ
8WZ
A6W
ABAWZ
ABDBF
ACUHS
AI.
B0M
CAG
CGR
COF
CUY
CVF
EAD
EAS
EBC
EBD
ECM
EIF
EJD
EMK
EMOBN
EPL
FIZPM
J5H
M41
NPM
SV3
TUS
UDS
VH1
X7M
Y6R
ZGI
~8M
3V.
7TO
7U9
7XB
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
LK8
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-50ac214afd8b754c36286b053f5468cd8c41f02ef6380f86687ab3af23bd37823
IEDL.DBID M7P
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664003100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-0920
1532-1827
IngestDate Tue Nov 04 02:00:47 EST 2025
Sun Nov 09 14:26:54 EST 2025
Mon Oct 06 18:30:14 EDT 2025
Mon Jul 21 06:00:23 EDT 2025
Sat Nov 29 06:35:28 EST 2025
Tue Nov 18 21:57:01 EST 2025
Fri Feb 21 02:39:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-50ac214afd8b754c36286b053f5468cd8c41f02ef6380f86687ab3af23bd37823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-5505-2540
0000-0002-2968-7155
0000-0002-8330-9251
0000-0001-5347-5083
0000-0003-1376-8409
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8367986
PMID 34155340
PQID 2561645720
PQPubID 41855
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8367986
proquest_miscellaneous_2544162422
proquest_journals_2561645720
pubmed_primary_34155340
crossref_citationtrail_10_1038_s41416_021_01450_6
crossref_primary_10_1038_s41416_021_01450_6
springer_journals_10_1038_s41416_021_01450_6
PublicationCentury 2000
PublicationDate 2021-08-17
PublicationDateYYYYMMDD 2021-08-17
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle British journal of cancer
PublicationTitleAbbrev Br J Cancer
PublicationTitleAlternate Br J Cancer
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References WilsonWRLiAECowanDSMSiimBGEnhancement of tumor radiation response by the antivascular agent 5,6- dimethylxanthenone-4-acetic acidInt. J. Radiat. Oncol. Biol. Phys.1998429059081:CAS:528:DyaK1MXlvV2n10.1016/S0360-3016(98)00358-7
Valerio, M., Cerantola, Y., Eggener, S. E., Lepor, H., Polascik, T. J., Villers, A. et al. New and established technology in focal ablation of the prostate: a systematic review. Eur. Urol.71, 17–34 (2017).
ParkHJGriffinRJHuiSLevittSHSongCWRadiation-induced vascular damage in tumors: Implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS)Radiat. Res.20121773113271:CAS:528:DC%2BC38XjslKjsro%3D10.1667/RR2773.1
LoebSSmithNDRoehlKACatalonaWJIntermediate-term potency, continence, and survival outcomes of radical prostatectomy for clinically high-risk or locally advanced prostate cancerUrology2007691170117510.1016/j.urology.2007.02.054
Oon, C. E., Bridges, E., Sheldon, H., Sainson, R. C. A., Jubb, A., Turley, H. et al. Role of delta-like 4 in Jagged1-induced tumour angiogenesis and tumour growth. Oncotarget8, 40115–40131 (2017).
Lebdai, S., Gigoux, M., Alvim, R., Somma, A., Nagar, K., Azzouzi, A. R. et al. Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer. Oncoimmunology8, e1581528 (2019).
BarkerHEPagetJTEKhanAAHarringtonKJThe tumour microenvironment after radiotherapy: mechanisms of resistance and recurrenceNat. Rev. Cancer2015154094251:CAS:528:DC%2BC2MXhtFaiu7bK10.1038/nrc3958
Skalli, O., Pelte, M. F., Peclet, M. C., Gabbiani, G., Gugliotta, P., Bussolati, G. et al. Smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J. Histochem. Cytochem. 37, 315–321 (1989).
Madar-Balakirski, N., Tempel-Brami, C., Kalchenko, V., Brenner, O., Varon, D., Scherz, A. et al. Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP) with tookad. PLoS ONE5, e10282 (2010).
Koudinova, N. V., Pinthus, J. H., Brandis, A., Brenner, O., Bendel, P., Ramon, J. et al. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int. J. Cancer104, 782–789 (2003).
Van Poppel, H., Vekemans, K. Da Pozzo, L., Bono, A., Kliment, J., Montironi, R. et al. Radical prostatectomy for locally advanced prostate cancer: Results of a feasibility study (EORTC 30001). Eur. J. Cancer42, 1062–1067 (2006).
Kim, K., Zhang, H. La Rosa, S., Jebiwott, S., Desai, P., Kimm, S. Y. et al. Bombesin antagonist based radiotherapy of prostate cancer combined with WST-11 vascular targeted photodynamic therapy. Clin. Cancer Res. 23, 3343–3351 (2017).
Moore, C. M., Azzouzi, A. R., Barret, E., Villers, A., Muir, G. H., Barber, N. J. et al. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int.116, 888–896 (2015).
ParkMTOhETSongMJLeeHParkHJRadio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organsJ. Radiat. Res.2012535705801:CAS:528:DC%2BC38XhsFCmt77K10.1093/jrr/rrs011
Chen, F. H., Chiang, C. S., Wang, C. C., Tsai, C. S., Jung, S. M., Lee, C. C. et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin. Cancer Res.15, 1721–1729 (2009).
Trachtenberg, J., Weersink, R. A., Davidson, S. R., Haider, M. A., Bogaards, A., Gertner, M. R. et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int.102, 556–562 (2008).
HsuCYWildhagenMFVan PoppelHBangmaCHPrognostic factors for and outcome of locally advanced prostate cancer after radical prostatectomyBJU Int.20101051536154010.1111/j.1464-410X.2009.09054.x
Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature499, 214–218 (2013).
Kim, K., Watson, P. A., Lebdai, S., Jebiwott, S., Somma, A. J., La Rosa, S. et al. Androgen deprivation therapy potentiates the efficacy of vascular targeted photodynamic therapy of prostate cancer xenografts. Clin. Cancer Res.24, 2408–16 (2018).
Azzouzi, A. R., Barret, E., Bennet, J., Moore, C., Taneja, S., Muir, G. et al. TOOKAD® Soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J. Urol.33, 945–953 (2015).
WardJFSlezakJMBluteMLBergstralhEJZinckeHRadical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-Year outcomeBJU Int.20059575175610.1111/j.1464-410X.2005.05394.x
SiemannDWRojianiAMEnhancement of radiation therapy by the novel vascular targeting agent ZD6126Int. J. Radiat. Oncol. Biol. Phys.2002531641711:CAS:528:DC%2BD38Xjtl2hurw%3D10.1016/S0360-3016(02)02742-6
Kleibeuker, E. A., Fokas, E., Allen, P. D., Kersemans, V., Griffioen, A. W., Beech, J. et al. Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget7, 76613–76627 (2016).
Clément-Colmou, K., Potiron, V., Pietri, M., Guillonneau, M., Jouglar, E., Chiavassa, S. et al. Influence of radiotherapy fractionation schedule on the tumor vascular microenvironment in prostate and lung cancer models. Cancers12, 121 (2020).
PreiseDScherzASalomonYAntitumor immunity promoted by vascular occluding therapy: lessons from vascular-targeted photodynamic therapy (VTP)Photochem. Photobiol. Sci.2011106816881:CAS:528:DC%2BC3MXltleitr4%3D10.1039/c0pp00315h
YamazakiTMukouyamaYSTissue specific origin, development, and pathological perspectives of pericytesFront. Cardiovasc. Med.201857810.3389/fcvm.2018.00078
Kersemans, V., Gilchrist, S., Allen, P. D., Beech, J. S., Kinchesh, P., Vojnovic, B. et al. A resistive heating system for homeothermic maintenance in small animals. Magn. Reson. Imaging33, 847–851 (2015).
LiLRojianiASiemannDWTargeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapyInt. J. Radiat. Oncol. Biol. Phys.1998428999031:CAS:528:DyaK1MXlvV2g10.1016/S0360-3016(98)00320-4
Azzouzi, A. R., Vincendeau, S., Barret, E., Cicco, A., Kleinclauss, F., van der Poel, H.G. et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol.18, 181–191 (2017).
CarverBSBiancoFJScardinoPTEasthamJALong-term outcome following radical prostatectomy in men with clinical stage T3 prostate cancerJ. Urol.200617656456810.1016/j.juro.2006.03.093
GoelSWongAHKJainRKVascular normalization as a therapeutic strategy for malignant and nonmalignant diseaseCold Spring Harb. Perspect. Med.20122a00648610.1101/cshperspect.a006486
Bastian, P. J., Boorjian, S. A., Bossi, A., Briganti, A., Heidenreich, A., Freedland, S. J. et al. High-risk prostate cancer: from definition to contemporary management. Eur. Urol.61, 1096–1106 (2012).
Preise, D., Oren, R., Glinert, I., Kalchenko, V., Jung, S., Scherz, A. et al. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol. Immunother.58, 71–84 (2009).
Philippou, Y., Sjoberg, H. T., Murphy, E., Alyacoubi, S., Jones, K. I., Gordon-Weeks, A. N. et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br. J. Cancer123, 1089–1100 (2020).
Xylinas, E., Drouin, S. J., Comperat, E., Vaessen, C., Renard-Penna, R., Misrai, V. et al. Oncological control after radical prostatectomy in men with clinical T3 prostate cancer: a single-centre experience. BJU Int.103, 1173–1178 (2009).
GrossfeldGDLiYLubeckDPCarrollPRPatterns of failure after primary local therapy for prostate cancer and rationale for secondary therapyUrology200260576210.1016/S0090-4295(02)01574-1
Song, C., Hong, B. J., Bok, S., Lee, C. J., Kim, Y. E., Jeon, S. R. et al. Real-time tumor oxygenation changes after single high-dose radiation therapy in orthotopic and subcutaneous lung cancer in mice: clinical implication for stereotactic ablative radiation therapy schedule optimization. Int. J. Radiat. Oncol. Biol. Phys.95, 1022–1031 (2016).
SiemannDWShiWTargeting the tumor blood vessel network to enhance the efficacy of radiation therapySeminars Radiat. Oncol.200313536110.1053/srao.2003.50005
PhilippouYSjobergHLambADCamilleriPBryantRJHarnessing the potential of multimodal radiotherapy in prostate cancerNat. Rev. Urol.20201732133810.1038/s41585-020-0310-3
HanahanDWeinbergRAHallmarks of cancer: the next generationCell20111446466741:CAS:528:DC%2BC3MXjsFeqtrk%3D10.1016/j.cell.2011.02.013
MooreCMPendseDEmbertonMPhotodynamic therapy for prostate cancer—a review of current status and future promiseNat. Clin. Pract. Urol.2009618301:CAS:528:DC%2BD1MXjtF2qtw%3D%3D10.1038/ncpuro1274
AzziSHebdaJKGavardJVascular permeability and drug delivery in cancersFront. Oncol.2013321110.3389/fonc.2013.00211
MurataRSiemannDWOvergaardJHorsmanMRImproved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acidRadiat. Res.20011565035091:CAS:528:DC%2BD3MXosV2lurs%3D10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2
Trachtenberg, J., Bogaards, A., Weersink, R. A., Haider, M. A., Evans, A., McCluskey, S. A. et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J. Urol.178, 1974–1979 (2007).
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S.
DW Siemann (1450_CR55) 2002; 53
S Loeb (1450_CR10) 2007; 69
MC Schabel (1450_CR32) 2008; 53
HU Ahmed (1450_CR38) 2009; 18
1450_CR43
1450_CR42
1450_CR41
1450_CR40
1450_CR46
1450_CR45
1450_CR44
1450_CR49
L Li (1450_CR54) 1998; 42
1450_CR50
1450_CR51
1450_CR14
CM Moore (1450_CR39) 2009; 6
MT Park (1450_CR47) 2012; 53
1450_CR13
T Yamazaki (1450_CR34) 2018; 5
1450_CR12
1450_CR11
1450_CR18
1450_CR17
Y Philippou (1450_CR35) 2020; 17
1450_CR15
1450_CR59
1450_CR19
D Preise (1450_CR16) 2011; 10
HJ Park (1450_CR48) 2012; 177
WR Wilson (1450_CR56) 1998; 42
1450_CR21
DW Siemann (1450_CR57) 2003; 13
1450_CR20
1450_CR25
1450_CR22
1450_CR29
1450_CR28
CY Hsu (1450_CR7) 2010; 105
1450_CR27
1450_CR26
JF Ward (1450_CR9) 2005; 95
BS Carver (1450_CR5) 2006; 176
S Goel (1450_CR24) 2012; 2
HE Barker (1450_CR23) 2015; 15
R Murata (1450_CR58) 2001; 156
1450_CR31
1450_CR30
1450_CR36
1450_CR33
S Azzi (1450_CR52) 2013; 3
D Hanahan (1450_CR53) 2011; 144
1450_CR8
1450_CR37
1450_CR6
GD Grossfeld (1450_CR2) 2002; 60
1450_CR4
1450_CR3
1450_CR1
References_xml – reference: AzziSHebdaJKGavardJVascular permeability and drug delivery in cancersFront. Oncol.2013321110.3389/fonc.2013.00211
– reference: Clément-Colmou, K., Potiron, V., Pietri, M., Guillonneau, M., Jouglar, E., Chiavassa, S. et al. Influence of radiotherapy fractionation schedule on the tumor vascular microenvironment in prostate and lung cancer models. Cancers12, 121 (2020).
– reference: Freedland, S. J., Partin, A. W., Humphreys, E. B., Mangold, L. A. & Walsh, P. C. Radical prostatectomy for clinical stage T3a disease. Cancer109, 1273–1278 (2007).
– reference: Kim, K., Zhang, H. La Rosa, S., Jebiwott, S., Desai, P., Kimm, S. Y. et al. Bombesin antagonist based radiotherapy of prostate cancer combined with WST-11 vascular targeted photodynamic therapy. Clin. Cancer Res. 23, 3343–3351 (2017).
– reference: Valerio, M., Cerantola, Y., Eggener, S. E., Lepor, H., Polascik, T. J., Villers, A. et al. New and established technology in focal ablation of the prostate: a systematic review. Eur. Urol.71, 17–34 (2017).
– reference: Chen, F. H., Chiang, C. S., Wang, C. C., Tsai, C. S., Jung, S. M., Lee, C. C. et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin. Cancer Res.15, 1721–1729 (2009).
– reference: Gilchrist, S., Gomes, A. L., Kinchesh, P., Kersemans, V., Allen, P. D. & Smart, S. C. An MRI-compatible high frequency AC resistive heating system for homeothermic maintenance in small animals. PLoS ONE11, e0164920 (2016).
– reference: Van Poppel, H., Vekemans, K. Da Pozzo, L., Bono, A., Kliment, J., Montironi, R. et al. Radical prostatectomy for locally advanced prostate cancer: Results of a feasibility study (EORTC 30001). Eur. J. Cancer42, 1062–1067 (2006).
– reference: GoelSWongAHKJainRKVascular normalization as a therapeutic strategy for malignant and nonmalignant diseaseCold Spring Harb. Perspect. Med.20122a00648610.1101/cshperspect.a006486
– reference: Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature499, 214–218 (2013).
– reference: AhmedHUMooreCEmbertonMMinimally-invasive technologies in uro-oncology: The role of cryotherapy, HIFU and photodynamic therapy in whole gland and focal therapy of localised prostate cancerSurg. Oncol.20091821923210.1016/j.suronc.2009.02.002
– reference: WilsonWRLiAECowanDSMSiimBGEnhancement of tumor radiation response by the antivascular agent 5,6- dimethylxanthenone-4-acetic acidInt. J. Radiat. Oncol. Biol. Phys.1998429059081:CAS:528:DyaK1MXlvV2n10.1016/S0360-3016(98)00358-7
– reference: YamazakiTMukouyamaYSTissue specific origin, development, and pathological perspectives of pericytesFront. Cardiovasc. Med.201857810.3389/fcvm.2018.00078
– reference: SiemannDWRojianiAMEnhancement of radiation therapy by the novel vascular targeting agent ZD6126Int. J. Radiat. Oncol. Biol. Phys.2002531641711:CAS:528:DC%2BD38Xjtl2hurw%3D10.1016/S0360-3016(02)02742-6
– reference: Supiot, S., Rousseau, C., Dore, M., Chèze-Le-Rest, C., Kandel-Aznar, C., Potiron, V. et al. Reoxygenation during radiotherapy in intermediate-risk prostate cancer. Radiother. Oncol.133, 16–19 (2019).
– reference: ParkHJGriffinRJHuiSLevittSHSongCWRadiation-induced vascular damage in tumors: Implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS)Radiat. Res.20121773113271:CAS:528:DC%2BC38XjslKjsro%3D10.1667/RR2773.1
– reference: Azzouzi, A. R., Vincendeau, S., Barret, E., Cicco, A., Kleinclauss, F., van der Poel, H.G. et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol.18, 181–191 (2017).
– reference: Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A. J. R., Behjati, S., Biankin, A.V. et al. Signatures of mutational processes in human cancer. Nature500, 415–241 (2013).
– reference: SiemannDWShiWTargeting the tumor blood vessel network to enhance the efficacy of radiation therapySeminars Radiat. Oncol.200313536110.1053/srao.2003.50005
– reference: Bastian, P. J., Boorjian, S. A., Bossi, A., Briganti, A., Heidenreich, A., Freedland, S. J. et al. High-risk prostate cancer: from definition to contemporary management. Eur. Urol.61, 1096–1106 (2012).
– reference: BarkerHEPagetJTEKhanAAHarringtonKJThe tumour microenvironment after radiotherapy: mechanisms of resistance and recurrenceNat. Rev. Cancer2015154094251:CAS:528:DC%2BC2MXhtFaiu7bK10.1038/nrc3958
– reference: Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage31, 1116–1128 (2006).
– reference: SchabelMCParkerDLUncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequencesPhys. Med. Biol.2008532345237310.1088/0031-9155/53/9/010
– reference: Xylinas, E., Drouin, S. J., Comperat, E., Vaessen, C., Renard-Penna, R., Misrai, V. et al. Oncological control after radical prostatectomy in men with clinical T3 prostate cancer: a single-centre experience. BJU Int.103, 1173–1178 (2009).
– reference: Yossepowitch, O., Eggener, S. E., Bianco, F. J., Carver, B. S., Serio, A., Scardino, P. T. et al. Radical prostatectomy for clinically localized, high risk prostate cancer: critical analysis of risk assessment methods. J. Urol.178, 493–499 (2007).
– reference: Madar-Balakirski, N., Tempel-Brami, C., Kalchenko, V., Brenner, O., Varon, D., Scherz, A. et al. Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP) with tookad. PLoS ONE5, e10282 (2010).
– reference: GrossfeldGDLiYLubeckDPCarrollPRPatterns of failure after primary local therapy for prostate cancer and rationale for secondary therapyUrology200260576210.1016/S0090-4295(02)01574-1
– reference: Landuyt, W., Ahmed, B., Nuyts, S., Theys, J., Op de Beeck, M., Rijnders, A. et al. In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int. J. Radiat. Oncol. Biol. Phys.49, 443–450 (2001).
– reference: Heidenreich, A., Bastian, P. J., Bellmunt, J., Bolla, M., Joniau, S., van der Kwast, T. et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol.65, 467–479 (2014).
– reference: PhilippouYSjobergHLambADCamilleriPBryantRJHarnessing the potential of multimodal radiotherapy in prostate cancerNat. Rev. Urol.20201732133810.1038/s41585-020-0310-3
– reference: Kim, K., Watson, P. A., Lebdai, S., Jebiwott, S., Somma, A. J., La Rosa, S. et al. Androgen deprivation therapy potentiates the efficacy of vascular targeted photodynamic therapy of prostate cancer xenografts. Clin. Cancer Res.24, 2408–16 (2018).
– reference: Moore, C. M., Azzouzi, A. R., Barret, E., Villers, A., Muir, G. H., Barber, N. J. et al. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int.116, 888–896 (2015).
– reference: Azzouzi, A. R., Barret, E., Bennet, J., Moore, C., Taneja, S., Muir, G. et al. TOOKAD® Soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J. Urol.33, 945–953 (2015).
– reference: HanahanDWeinbergRAHallmarks of cancer: the next generationCell20111446466741:CAS:528:DC%2BC3MXjsFeqtrk%3D10.1016/j.cell.2011.02.013
– reference: Azzouzi, A. R., Barret, E., Moore, C. M., Villers, A., Allen, C., Scherz, A. et al. TOOKAD® Soluble vascular-targeted photodynamic (VTP) therapy: Determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int.112, 766–774 (2013).
– reference: Trachtenberg, J., Bogaards, A., Weersink, R. A., Haider, M. A., Evans, A., McCluskey, S. A. et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J. Urol.178, 1974–1979 (2007).
– reference: Lebdai, S., Gigoux, M., Alvim, R., Somma, A., Nagar, K., Azzouzi, A. R. et al. Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer. Oncoimmunology8, e1581528 (2019).
– reference: Magnussen, A. L. & Mills, I. G. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br. J. Cancer (2021). https://doi.org/10.1038/s41416-021-01330-z. Online ahead of print.
– reference: WardJFSlezakJMBluteMLBergstralhEJZinckeHRadical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-Year outcomeBJU Int.20059575175610.1111/j.1464-410X.2005.05394.x
– reference: Zwergel, U., Suttmann, H., Schroeder, T., Siemer, S., Wullich, B., Kamradt, J. et al. Outcome of prostate cancer patients with initial PSA ≥ 20 ng/ml undergoing radical prostatectomy. Eur. Urol.52, 1058–1066 (2007).
– reference: Yoshimura, M., Itasaka, S., Harada, H. & Hiraoka, M. Microenvironment and radiation therapy. Biomed. Res. Int.2013, 685308 (2013).
– reference: Koudinova, N. V., Pinthus, J. H., Brandis, A., Brenner, O., Bendel, P., Ramon, J. et al. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int. J. Cancer104, 782–789 (2003).
– reference: LiLRojianiASiemannDWTargeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapyInt. J. Radiat. Oncol. Biol. Phys.1998428999031:CAS:528:DyaK1MXlvV2g10.1016/S0360-3016(98)00320-4
– reference: Oon, C. E., Bridges, E., Sheldon, H., Sainson, R. C. A., Jubb, A., Turley, H. et al. Role of delta-like 4 in Jagged1-induced tumour angiogenesis and tumour growth. Oncotarget8, 40115–40131 (2017).
– reference: Trachtenberg, J., Weersink, R. A., Davidson, S. R., Haider, M. A., Bogaards, A., Gertner, M. R. et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int.102, 556–562 (2008).
– reference: Kleibeuker, E. A., Fokas, E., Allen, P. D., Kersemans, V., Griffioen, A. W., Beech, J. et al. Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget7, 76613–76627 (2016).
– reference: Kersemans, V., Gilchrist, S., Allen, P. D., Beech, J. S., Kinchesh, P., Vojnovic, B. et al. A resistive heating system for homeothermic maintenance in small animals. Magn. Reson. Imaging33, 847–851 (2015).
– reference: Skalli, O., Pelte, M. F., Peclet, M. C., Gabbiani, G., Gugliotta, P., Bussolati, G. et al. Smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J. Histochem. Cytochem. 37, 315–321 (1989).
– reference: MurataRSiemannDWOvergaardJHorsmanMRImproved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acidRadiat. Res.20011565035091:CAS:528:DC%2BD3MXosV2lurs%3D10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2
– reference: LoebSSmithNDRoehlKACatalonaWJIntermediate-term potency, continence, and survival outcomes of radical prostatectomy for clinically high-risk or locally advanced prostate cancerUrology2007691170117510.1016/j.urology.2007.02.054
– reference: MooreCMPendseDEmbertonMPhotodynamic therapy for prostate cancer—a review of current status and future promiseNat. Clin. Pract. Urol.2009618301:CAS:528:DC%2BD1MXjtF2qtw%3D%3D10.1038/ncpuro1274
– reference: PreiseDScherzASalomonYAntitumor immunity promoted by vascular occluding therapy: lessons from vascular-targeted photodynamic therapy (VTP)Photochem. Photobiol. Sci.2011106816881:CAS:528:DC%2BC3MXltleitr4%3D10.1039/c0pp00315h
– reference: Valerio, M., Ahmed, H. U., Emberton, M., Lawrentschuk, N., Lazzeri, M., Montironi, R. et al. The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur. Urol.66, 732–751 (2013).
– reference: Song, C., Hong, B. J., Bok, S., Lee, C. J., Kim, Y. E., Jeon, S. R. et al. Real-time tumor oxygenation changes after single high-dose radiation therapy in orthotopic and subcutaneous lung cancer in mice: clinical implication for stereotactic ablative radiation therapy schedule optimization. Int. J. Radiat. Oncol. Biol. Phys.95, 1022–1031 (2016).
– reference: ParkMTOhETSongMJLeeHParkHJRadio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organsJ. Radiat. Res.2012535705801:CAS:528:DC%2BC38XhsFCmt77K10.1093/jrr/rrs011
– reference: HsuCYWildhagenMFVan PoppelHBangmaCHPrognostic factors for and outcome of locally advanced prostate cancer after radical prostatectomyBJU Int.20101051536154010.1111/j.1464-410X.2009.09054.x
– reference: Preise, D., Oren, R., Glinert, I., Kalchenko, V., Jung, S., Scherz, A. et al. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol. Immunother.58, 71–84 (2009).
– reference: CarverBSBiancoFJScardinoPTEasthamJALong-term outcome following radical prostatectomy in men with clinical stage T3 prostate cancerJ. Urol.200617656456810.1016/j.juro.2006.03.093
– reference: Philippou, Y., Sjoberg, H. T., Murphy, E., Alyacoubi, S., Jones, K. I., Gordon-Weeks, A. N. et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br. J. Cancer123, 1089–1100 (2020).
– ident: 1450_CR29
  doi: 10.1016/j.mri.2015.03.011
– ident: 1450_CR22
  doi: 10.1155/2013/685308
– ident: 1450_CR20
  doi: 10.1016/j.juro.2007.07.036
– ident: 1450_CR37
  doi: 10.1038/nature12477
– ident: 1450_CR49
  doi: 10.3390/cancers12010121
– volume: 42
  start-page: 905
  year: 1998
  ident: 1450_CR56
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(98)00358-7
– volume: 176
  start-page: 564
  year: 2006
  ident: 1450_CR5
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2006.03.093
– ident: 1450_CR41
  doi: 10.1016/j.eururo.2013.05.048
– ident: 1450_CR12
  doi: 10.1016/j.eururo.2007.03.056
– volume: 18
  start-page: 219
  year: 2009
  ident: 1450_CR38
  publication-title: Surg. Oncol.
  doi: 10.1016/j.suronc.2009.02.002
– ident: 1450_CR44
  doi: 10.1158/1078-0432.CCR-16-2745
– volume: 10
  start-page: 681
  year: 2011
  ident: 1450_CR16
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c0pp00315h
– ident: 1450_CR43
  doi: 10.1158/1078-0432.CCR-17-3474
– ident: 1450_CR50
  doi: 10.1016/j.radonc.2018.12.022
– ident: 1450_CR36
  doi: 10.1038/nature12213
– ident: 1450_CR19
  doi: 10.1016/S1470-2045(16)30661-1
– volume: 13
  start-page: 53
  year: 2003
  ident: 1450_CR57
  publication-title: Seminars Radiat. Oncol.
  doi: 10.1053/srao.2003.50005
– volume: 156
  start-page: 503
  year: 2001
  ident: 1450_CR58
  publication-title: Radiat. Res.
  doi: 10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2
– volume: 53
  start-page: 164
  year: 2002
  ident: 1450_CR55
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(02)02742-6
– ident: 1450_CR27
  doi: 10.18632/oncotarget.16969
– ident: 1450_CR30
  doi: 10.1371/journal.pone.0164920
– volume: 177
  start-page: 311
  year: 2012
  ident: 1450_CR48
  publication-title: Radiat. Res.
  doi: 10.1667/RR2773.1
– ident: 1450_CR33
  doi: 10.1177/37.3.2918221
– ident: 1450_CR46
  doi: 10.1158/1078-0432.CCR-08-1471
– ident: 1450_CR26
  doi: 10.1038/s41416-020-0956-x
– volume: 95
  start-page: 751
  year: 2005
  ident: 1450_CR9
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2005.05394.x
– ident: 1450_CR45
  doi: 10.1080/2162402X.2019.1581528
– volume: 17
  start-page: 321
  year: 2020
  ident: 1450_CR35
  publication-title: Nat. Rev. Urol.
  doi: 10.1038/s41585-020-0310-3
– ident: 1450_CR1
  doi: 10.1016/j.eururo.2013.11.002
– ident: 1450_CR28
  doi: 10.18632/oncotarget.12814
– volume: 42
  start-page: 899
  year: 1998
  ident: 1450_CR54
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(98)00320-4
– ident: 1450_CR59
  doi: 10.1016/S0360-3016(00)01470-X
– volume: 105
  start-page: 1536
  year: 2010
  ident: 1450_CR7
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2009.09054.x
– ident: 1450_CR40
  doi: 10.1111/bju.12816
– volume: 144
  start-page: 646
  year: 2011
  ident: 1450_CR53
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 5
  start-page: 78
  year: 2018
  ident: 1450_CR34
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2018.00078
– volume: 3
  start-page: 211
  year: 2013
  ident: 1450_CR52
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2013.00211
– ident: 1450_CR14
  doi: 10.1002/ijc.11002
– volume: 60
  start-page: 57
  year: 2002
  ident: 1450_CR2
  publication-title: Urology
  doi: 10.1016/S0090-4295(02)01574-1
– volume: 69
  start-page: 1170
  year: 2007
  ident: 1450_CR10
  publication-title: Urology
  doi: 10.1016/j.urology.2007.02.054
– ident: 1450_CR21
  doi: 10.1111/j.1464-410X.2008.07753.x
– ident: 1450_CR15
  doi: 10.1007/s00262-008-0527-0
– ident: 1450_CR13
  doi: 10.1371/journal.pone.0010282
– ident: 1450_CR6
  doi: 10.1002/cncr.22544
– ident: 1450_CR42
  doi: 10.1016/j.eururo.2016.08.044
– ident: 1450_CR31
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 15
  start-page: 409
  year: 2015
  ident: 1450_CR23
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3958
– ident: 1450_CR8
  doi: 10.1111/j.1464-410X.2008.08208.x
– ident: 1450_CR4
  doi: 10.1016/j.ejca.2005.11.030
– volume: 2
  start-page: a006486
  year: 2012
  ident: 1450_CR24
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a006486
– ident: 1450_CR17
  doi: 10.1111/bju.12265
– ident: 1450_CR25
  doi: 10.1038/s41416-021-01330-z
– ident: 1450_CR3
  doi: 10.1016/j.eururo.2012.02.031
– ident: 1450_CR11
  doi: 10.1016/j.juro.2007.03.105
– volume: 6
  start-page: 18
  year: 2009
  ident: 1450_CR39
  publication-title: Nat. Clin. Pract. Urol.
  doi: 10.1038/ncpuro1274
– ident: 1450_CR18
  doi: 10.1007/s00345-015-1505-8
– volume: 53
  start-page: 2345
  year: 2008
  ident: 1450_CR32
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/9/010
– volume: 53
  start-page: 570
  year: 2012
  ident: 1450_CR47
  publication-title: J. Radiat. Res.
  doi: 10.1093/jrr/rrs011
– ident: 1450_CR51
  doi: 10.1016/j.ijrobp.2016.01.064
SSID ssj0009087
Score 2.4304185
Snippet Background There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is...
There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal...
BackgroundThere is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 534
SubjectTerms 631/67/1059/485
692/4028/546
Allografts
Animals
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell Line, Tumor
Clinical trials
Combined Modality Therapy
Dose Fractionation, Radiation
Drug Resistance
Epidemiology
Human Umbilical Vein Endothelial Cells
Humans
Magnetic resonance imaging
Male
Mice
Microenvironments
Molecular Medicine
Neovascularization, Pathologic - therapy
Oncology
Permeability
Photochemotherapy - methods
Photodynamic therapy
Prostate cancer
Prostatic Neoplasms - blood supply
Prostatic Neoplasms - therapy
Radiation therapy
Survival Analysis
Tumor Microenvironment
Tumors
Xenograft Model Antitumor Assays
Title Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer
URI https://link.springer.com/article/10.1038/s41416-021-01450-6
https://www.ncbi.nlm.nih.gov/pubmed/34155340
https://www.proquest.com/docview/2561645720
https://www.proquest.com/docview/2544162422
https://pubmed.ncbi.nlm.nih.gov/PMC8367986
Volume 125
WOSCitedRecordID wos000664003100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1532-1827
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0009087
  issn: 0007-0920
  databaseCode: M7P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1532-1827
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0009087
  issn: 0007-0920
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1532-1827
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0009087
  issn: 0007-0920
  databaseCode: 7RV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1532-1827
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0009087
  issn: 0007-0920
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1532-1827
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0009087
  issn: 0007-0920
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSFeGF9jhVEZiTeI5sRO7T4hNm3ihaqaBupbFDuJWgmSLmkn8cw_zp3ttCoTe-HFUuKP2Lo7--L73R3A-1IaMyaboTDaRJKwNWMCUxme2ljawgruk02oyUTPZuNpuHDrAqyy3xPdRl00lu7IT_FoRs0-VQn_tLyJKGsUWVdDCo09OKAoCcJB96bboLtc-5iZdB03TnhwmuFCn3YyRlUkIoACGdbwF2r3YLqjbd4FTf5lOXUH0uXh_y7lKTwJqij77HnnGTwo6-fw6Gswtr-A39frn9iGLdqWAhgQBRl-AH-ly4LR_S3rYayRx5Pj6-W8WTWFz3LPvG_XL1bWc-KtjuXkE-wHDTgStqgZAVF6B018aJyPE7PUpX0J3y4vrs-_RCFnQ2Slkqso5blNYplXhTYqlVaQ6ysSXlSpHGkKRCDjiidlhXLPKz0aaZUbkVeJMIVAbUUcwX7d1OUxsIrbXOa0AeGAcVzm3OjE4IBK4XtlBxD3BMtsCGhOeTV-ZM6wLnTmiZwhkTNH5Gw0gA-bPksfzuPe1ic9AbMg2l22pd4A3m2qUSjJ0pLXZbOmNqhlkudNMoBXnm02nxOkwgmJvdUOQ20aUMDv3Zp6MXeBv7UgmxlO62PPettp_XsVr-9fxRt4nDgx0FGsTmB_1a7Lt_DQ3q4WXTuEPXX1ncqZcqXGUp_HQzg4u5hMr4ZO4P4AGnItUQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALb8pCASPBCaI6sbP2HhBCQNWq7QqhBfWW2k6ijdQmS3YXtGf-D7-RmTjZ1VLRWw8cEz9iJ9-MJ55vxgAvM2ntgHyGwmobSOLWDIhMZXnsQulSJ7g_bEINh_r4ePB5A353sTBEq-x0YqOo08rRHvkOLs1o2ccq4u8m3wM6NYq8q90RGh4WB9niJ_6yTd_uf8Tv-yqKdj-NPuwF7akCgZNKzoKYGxeF0uSptiqWTlBwJg5N5LHsawqVl2HOoyxHZPJc9_taGStMHgmbClxPBfZ7Ba6iHg-JQqa-fFsl-eXa5-ik7b9BxNsgHS70zlSGaPoERIggRx7-sq0vhOes2_Mkzb88tc0CuHv7f3t1d-BWa2qz91427sJGVt6D60ctmeA-_BrNz7AOK-qaEjQQQhlOyGJhymh_mnU03cDz5fH2ZFzNqnRRmrPCMR-7tmBZOSbZmTJDMc--05Ynw4qSEdGmC0DFi6qJ4WKOmtQP4OulvIKHsFlWZfYIWM6dkYYULHYYhpnhVkcWO1QK7yvXg7ADSOLahO10bshp0hAHhE48qBIEVdKAKun34PWyzcSnK7mw9nYHmKRVXdNkhZYevFgWo9IhT5Ips2pOddCKpsiiqAdbHqbLxwkyUYXE1moNwMsKlNB8vaQsxk1icy3IJ4jDetNBfTWsf8_i8cWzeA439kZHh8nh_vDgCdyMGhHUQai2YXNWz7OncM39mBXT-lkjzAxOLlsE_gDDXYPI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQRWX8iwsFDASnCBax3bWzgEh1LKiKqx6KFJvwXYSbSSabJNd0J75V_w6ZuJkV0tFbz1wTPyInXwznni-GRPyKpPWxugzFFbbQCK3JkYylWWRC6VLnWD-sAk1meizs_hki_zuY2GQVtnrxFZRp5XDPfIhLM1g2UeKs2He0SJODsfvZxcBniCFntb-OA0PkeNs-RN-35p3R4fwrV9zPv54evAp6E4YCJxUch5EzDgeSpOn2qpIOoGBmjBMkUdypDFsXoY541kOKGW5Ho20MlaYnAubClhbBfR7g9xUAsoxSv1gTS-Jmfb5OnErMOasC9hhQg8bGYIZFCA5Ap168Pu2uShesnQvEzb_8tq2i-H4zv_8Gu-S3c4Epx-8zNwjW1l5n-x86UgGD8iv08U51KFFXWPiBkQuhclZKEwp7lvTnr4beB493J5Nq3mVLktzXjjqY9qWNCunKFMNNRgL7Tvt-DO0KCkScPrAVLio2tgu6rBJ_ZB8vZZXsEe2y6rMHhOaM2ekQcULHYZhZpjV3EKHSsF95QYk7MGSuC6RO54n8j1pCQVCJx5gCQAsaQGWjAbkzarNzKcxubL2fg-epFNpTbJGzoC8XBWDMkIPkymzaoF1wLrGiCM-II88ZFePE2i6Cgmt1QaYVxUw0flmSVlM24TnWqCvEIb1tof9elj_nsWTq2fxguwA8pPPR5Pjp-Q2b6VRB6HaJ9vzepE9I7fcj3nR1M9buabk23VLwB8Bkowj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumour+irradiation+combined+with+vascular-targeted+photodynamic+therapy+enhances+antitumour+effects+in+pre-clinical+prostate+cancer&rft.jtitle=British+journal+of+cancer&rft.au=Sjoberg%2C+Hanna+T.&rft.au=Philippou%2C+Yiannis&rft.au=Magnussen%2C+Anette+L.&rft.au=Tullis%2C+Iain+D.+C.&rft.date=2021-08-17&rft.pub=Nature+Publishing+Group+UK&rft.issn=0007-0920&rft.eissn=1532-1827&rft.volume=125&rft.issue=4&rft.spage=534&rft.epage=546&rft_id=info:doi/10.1038%2Fs41416-021-01450-6&rft.externalDocID=10_1038_s41416_021_01450_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon