Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer
Background There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the us...
Saved in:
| Published in: | British journal of cancer Vol. 125; no. 4; pp. 534 - 546 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
17.08.2021
Nature Publishing Group |
| Subjects: | |
| ISSN: | 0007-0920, 1532-1827, 1532-1827 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient ‘vascular normalisation’. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP.
Methods
We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP.
Results
FRT induced ‘vascular normalisation’ changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival.
Conclusion
Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials. |
|---|---|
| AbstractList | There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP.BACKGROUNDThere is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP.We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP.METHODSWe investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP.FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival.RESULTSFRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival.Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.CONCLUSIONCombining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials. There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials. Background There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient ‘vascular normalisation’. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. Methods We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. Results FRT induced ‘vascular normalisation’ changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. Conclusion Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials. BackgroundThere is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient ‘vascular normalisation’. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP.MethodsWe investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP.ResultsFRT induced ‘vascular normalisation’ changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival.ConclusionCombining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials. |
| Author | Rittscher, Jens Lockett, Stephen J. Chatrian, Andrea Scheiblin, David A. Murphy, Emma A. Gilchrist, Stuart Agemy, Lilach Mills, Ian G. Lamb, Alastair D. Sjoberg, Hanna T. Lefebvre, Joel Philippou, Yiannis Magnussen, Anette L. Tullis, Iain D. C. Vojnovic, Boris Kinchesh, Paul Hamdy, Freddie C. Wink, David A. Scherz, Avigdor Harris, Adrian Bryant, Richard J. Yechezkel, Tamar Muschel, Ruth J. Bridges, Esther Allen, Danny P. Smart, Sean C. Tam, Ka Ho Preise, Dina |
| Author_xml | – sequence: 1 givenname: Hanna T. surname: Sjoberg fullname: Sjoberg, Hanna T. organization: Nuffield Department of Surgical Sciences, University of Oxford – sequence: 2 givenname: Yiannis surname: Philippou fullname: Philippou, Yiannis organization: Department of Oncology, University of Oxford – sequence: 3 givenname: Anette L. surname: Magnussen fullname: Magnussen, Anette L. organization: Nuffield Department of Surgical Sciences, University of Oxford – sequence: 4 givenname: Iain D. C. surname: Tullis fullname: Tullis, Iain D. C. organization: Department of Oncology, University of Oxford – sequence: 5 givenname: Esther surname: Bridges fullname: Bridges, Esther organization: Department of Oncology, University of Oxford – sequence: 6 givenname: Andrea surname: Chatrian fullname: Chatrian, Andrea organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford – sequence: 7 givenname: Joel surname: Lefebvre fullname: Lefebvre, Joel organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford – sequence: 8 givenname: Ka Ho surname: Tam fullname: Tam, Ka Ho organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford – sequence: 9 givenname: Emma A. surname: Murphy fullname: Murphy, Emma A. organization: Nuffield Department of Surgical Sciences, University of Oxford, Department of Oncology, University of Oxford – sequence: 10 givenname: Jens surname: Rittscher fullname: Rittscher, Jens organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, NDM Research Building, University of Oxford – sequence: 11 givenname: Dina surname: Preise fullname: Preise, Dina organization: Department of Core Facilities, The Weizmann Institute of Science – sequence: 12 givenname: Lilach surname: Agemy fullname: Agemy, Lilach organization: Department of Plant and Environmental Sciences, The Weizmann Institute of Science – sequence: 13 givenname: Tamar surname: Yechezkel fullname: Yechezkel, Tamar organization: Department of Plant and Environmental Sciences, The Weizmann Institute of Science – sequence: 14 givenname: Sean C. surname: Smart fullname: Smart, Sean C. organization: Department of Oncology, University of Oxford – sequence: 15 givenname: Paul surname: Kinchesh fullname: Kinchesh, Paul organization: Department of Oncology, University of Oxford – sequence: 16 givenname: Stuart surname: Gilchrist fullname: Gilchrist, Stuart organization: Department of Oncology, University of Oxford – sequence: 17 givenname: Danny P. surname: Allen fullname: Allen, Danny P. organization: Department of Oncology, University of Oxford – sequence: 18 givenname: David A. orcidid: 0000-0002-5505-2540 surname: Scheiblin fullname: Scheiblin, David A. organization: Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health – sequence: 19 givenname: Stephen J. surname: Lockett fullname: Lockett, Stephen J. organization: Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health – sequence: 20 givenname: David A. surname: Wink fullname: Wink, David A. organization: Cancer and Inflammation Program, Centre for Cancer Research, National Cancer Institute, National Institutes of Health – sequence: 21 givenname: Alastair D. orcidid: 0000-0002-2968-7155 surname: Lamb fullname: Lamb, Alastair D. organization: Nuffield Department of Surgical Sciences, University of Oxford – sequence: 22 givenname: Ian G. orcidid: 0000-0001-5347-5083 surname: Mills fullname: Mills, Ian G. organization: Nuffield Department of Surgical Sciences, University of Oxford – sequence: 23 givenname: Adrian orcidid: 0000-0003-1376-8409 surname: Harris fullname: Harris, Adrian organization: Department of Oncology, University of Oxford – sequence: 24 givenname: Ruth J. surname: Muschel fullname: Muschel, Ruth J. organization: Department of Oncology, University of Oxford – sequence: 25 givenname: Boris surname: Vojnovic fullname: Vojnovic, Boris organization: Department of Oncology, University of Oxford – sequence: 26 givenname: Avigdor surname: Scherz fullname: Scherz, Avigdor organization: Department of Plant and Environmental Sciences, The Weizmann Institute of Science – sequence: 27 givenname: Freddie C. surname: Hamdy fullname: Hamdy, Freddie C. organization: Nuffield Department of Surgical Sciences, University of Oxford – sequence: 28 givenname: Richard J. orcidid: 0000-0002-8330-9251 surname: Bryant fullname: Bryant, Richard J. email: richard.bryant@nds.ox.ac.uk organization: Nuffield Department of Surgical Sciences, University of Oxford, Department of Oncology, University of Oxford |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34155340$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1vFSEUJabGvlb_gAtD4sYNyvfwNiam8Stp4qauCcPAG5oZeAJT89b-cXmd1o8uuiIXzjn3cO85AycxRQfAS4LfEszUu8IJJxJhShAmXGAkn4ANEYwiomh3AjYY4w7hLcWn4KyU61ZuseqegVPGiRCM4w34dbXMackw5GyGYGpIEdo09yG6Af4MdYQ3pthlMhlVk3eutuv9mGoaDtHMwcI6umz2B-jiaKJ1BZpYQ11FnffO1gJDhPvskJ1CDNZMrUilmuqgPVLyc_DUm6m4F3fnOfj-6ePVxRd0-e3z14sPl8jyjlcksLGUcOMH1XeCWyapkj0WzAsulR2U5cRj6rxkCnslpepMz4ynrB9Ypyg7B-9X3f3Sz26wLtZsJr3PYTb5oJMJ-v-XGEa9SzdaMdltlWwCb-4EcvqxuFL1HIp102SiS0vRVPC2EMrpsdfrB9DrNpHYvtdQkkguOoob6tW_jv5Yud9PA6gVYNvISnZe21Bvt9QMhkkTrI9R0GsUdIuCvo2CPpqlD6j36o-S2EoqDRx3Lv-1_QjrN3fJyV4 |
| CitedBy_id | crossref_primary_10_3390_ijms241310624 crossref_primary_10_3390_molecules27217480 crossref_primary_10_1002_cmdc_202300374 crossref_primary_10_1097_MOU_0000000000000987 crossref_primary_10_1002_bco2_70065 crossref_primary_10_1111_php_14048 crossref_primary_10_1002_rai2_12100 crossref_primary_10_3390_molecules27031093 crossref_primary_10_3390_pharmaceutics15020330 |
| Cites_doi | 10.1016/j.mri.2015.03.011 10.1155/2013/685308 10.1016/j.juro.2007.07.036 10.1038/nature12477 10.3390/cancers12010121 10.1016/S0360-3016(98)00358-7 10.1016/j.juro.2006.03.093 10.1016/j.eururo.2013.05.048 10.1016/j.eururo.2007.03.056 10.1016/j.suronc.2009.02.002 10.1158/1078-0432.CCR-16-2745 10.1039/c0pp00315h 10.1158/1078-0432.CCR-17-3474 10.1016/j.radonc.2018.12.022 10.1038/nature12213 10.1016/S1470-2045(16)30661-1 10.1053/srao.2003.50005 10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2 10.1016/S0360-3016(02)02742-6 10.18632/oncotarget.16969 10.1371/journal.pone.0164920 10.1667/RR2773.1 10.1177/37.3.2918221 10.1158/1078-0432.CCR-08-1471 10.1038/s41416-020-0956-x 10.1111/j.1464-410X.2005.05394.x 10.1080/2162402X.2019.1581528 10.1038/s41585-020-0310-3 10.1016/j.eururo.2013.11.002 10.18632/oncotarget.12814 10.1016/S0360-3016(98)00320-4 10.1016/S0360-3016(00)01470-X 10.1111/j.1464-410X.2009.09054.x 10.1111/bju.12816 10.1016/j.cell.2011.02.013 10.3389/fcvm.2018.00078 10.3389/fonc.2013.00211 10.1002/ijc.11002 10.1016/S0090-4295(02)01574-1 10.1016/j.urology.2007.02.054 10.1111/j.1464-410X.2008.07753.x 10.1007/s00262-008-0527-0 10.1371/journal.pone.0010282 10.1002/cncr.22544 10.1016/j.eururo.2016.08.044 10.1016/j.neuroimage.2006.01.015 10.1038/nrc3958 10.1111/j.1464-410X.2008.08208.x 10.1016/j.ejca.2005.11.030 10.1101/cshperspect.a006486 10.1111/bju.12265 10.1038/s41416-021-01330-z 10.1016/j.eururo.2012.02.031 10.1016/j.juro.2007.03.105 10.1038/ncpuro1274 10.1007/s00345-015-1505-8 10.1088/0031-9155/53/9/010 10.1093/jrr/rrs011 10.1016/j.ijrobp.2016.01.064 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TO 7U9 7X7 7XB 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AN0 AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1038/s41416-021-01450-6 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1532-1827 |
| EndPage | 546 |
| ExternalDocumentID | PMC8367986 34155340 10_1038_s41416_021_01450_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GrantInformation_xml | – fundername: Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024. – fundername: The Urology Foundation. – fundername: Cancer Research UK (CRUK) grantid: C5255/A12678; C5255/A12678; C39297/A22748 funderid: https://doi.org/10.13039/501100000289 – fundername: Cancer Research UK grantid: 22748 – fundername: Cancer Research UK grantid: 25812 – fundername: NCI NIH HHS grantid: 75N91019D00024 – fundername: ; – fundername: ; grantid: C5255/A12678; C5255/A12678; C39297/A22748 |
| GroupedDBID | --- 0R~ 23N 36B 39C 4.4 406 53G 5GY 5RE 6J9 70F 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAWTL AAYZH AAZLF ABAKF ABLJU ABOCM ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACPRK ACRQY ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMYLF AN0 AOIJS ASPBG AVWKF AXYYD AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKKNO BNQBC BPHCQ BVXVI C6C CCPQU CS3 DIK DNIVK DPUIP DU5 E3Z EAP EBLON EBS EE. EIOEI EMB ESX EX3 F5P FDQFY FEDTE FERAY FIGPU FRJ FSGXE FYUFA GX1 HCIFZ HMCUK HVGLF HYE HZ~ IH2 IWAJR JSO JZLTJ KQ8 M1P M7P NAPCQ NQJWS O9- OK1 P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SWTZT TAOOD TBHMF TDRGL TR2 UKHRP W2D WH7 WOW ~02 AAFWJ AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB -Q- .55 .GJ 8WZ A6W ABAWZ ABDBF ACUHS AI. B0M CAG CGR COF CUY CVF EAD EAS EBC EBD ECM EIF EJD EMK EMOBN EPL FIZPM J5H M41 NPM SV3 TUS UDS VH1 X7M Y6R ZGI ~8M 3V. 7TO 7U9 7XB 8FE 8FH 8FK AZQEC DWQXO GNUQQ H94 K9. LK8 PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-50ac214afd8b754c36286b053f5468cd8c41f02ef6380f86687ab3af23bd37823 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664003100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0007-0920 1532-1827 |
| IngestDate | Tue Nov 04 02:00:47 EST 2025 Sun Nov 09 14:26:54 EST 2025 Mon Oct 06 18:30:14 EDT 2025 Mon Jul 21 06:00:23 EDT 2025 Sat Nov 29 06:35:28 EST 2025 Tue Nov 18 21:57:01 EST 2025 Fri Feb 21 02:39:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-50ac214afd8b754c36286b053f5468cd8c41f02ef6380f86687ab3af23bd37823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0002-5505-2540 0000-0002-2968-7155 0000-0002-8330-9251 0000-0001-5347-5083 0000-0003-1376-8409 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8367986 |
| PMID | 34155340 |
| PQID | 2561645720 |
| PQPubID | 41855 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8367986 proquest_miscellaneous_2544162422 proquest_journals_2561645720 pubmed_primary_34155340 crossref_citationtrail_10_1038_s41416_021_01450_6 crossref_primary_10_1038_s41416_021_01450_6 springer_journals_10_1038_s41416_021_01450_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-17 |
| PublicationDateYYYYMMDD | 2021-08-17 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | British journal of cancer |
| PublicationTitleAbbrev | Br J Cancer |
| PublicationTitleAlternate | Br J Cancer |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | WilsonWRLiAECowanDSMSiimBGEnhancement of tumor radiation response by the antivascular agent 5,6- dimethylxanthenone-4-acetic acidInt. J. Radiat. Oncol. Biol. Phys.1998429059081:CAS:528:DyaK1MXlvV2n10.1016/S0360-3016(98)00358-7 Valerio, M., Cerantola, Y., Eggener, S. E., Lepor, H., Polascik, T. J., Villers, A. et al. New and established technology in focal ablation of the prostate: a systematic review. Eur. Urol.71, 17–34 (2017). ParkHJGriffinRJHuiSLevittSHSongCWRadiation-induced vascular damage in tumors: Implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS)Radiat. Res.20121773113271:CAS:528:DC%2BC38XjslKjsro%3D10.1667/RR2773.1 LoebSSmithNDRoehlKACatalonaWJIntermediate-term potency, continence, and survival outcomes of radical prostatectomy for clinically high-risk or locally advanced prostate cancerUrology2007691170117510.1016/j.urology.2007.02.054 Oon, C. E., Bridges, E., Sheldon, H., Sainson, R. C. A., Jubb, A., Turley, H. et al. Role of delta-like 4 in Jagged1-induced tumour angiogenesis and tumour growth. Oncotarget8, 40115–40131 (2017). Lebdai, S., Gigoux, M., Alvim, R., Somma, A., Nagar, K., Azzouzi, A. R. et al. Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer. Oncoimmunology8, e1581528 (2019). BarkerHEPagetJTEKhanAAHarringtonKJThe tumour microenvironment after radiotherapy: mechanisms of resistance and recurrenceNat. Rev. Cancer2015154094251:CAS:528:DC%2BC2MXhtFaiu7bK10.1038/nrc3958 Skalli, O., Pelte, M. F., Peclet, M. C., Gabbiani, G., Gugliotta, P., Bussolati, G. et al. Smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J. Histochem. Cytochem. 37, 315–321 (1989). Madar-Balakirski, N., Tempel-Brami, C., Kalchenko, V., Brenner, O., Varon, D., Scherz, A. et al. Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP) with tookad. PLoS ONE5, e10282 (2010). Koudinova, N. V., Pinthus, J. H., Brandis, A., Brenner, O., Bendel, P., Ramon, J. et al. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int. J. Cancer104, 782–789 (2003). Van Poppel, H., Vekemans, K. Da Pozzo, L., Bono, A., Kliment, J., Montironi, R. et al. Radical prostatectomy for locally advanced prostate cancer: Results of a feasibility study (EORTC 30001). Eur. J. Cancer42, 1062–1067 (2006). Kim, K., Zhang, H. La Rosa, S., Jebiwott, S., Desai, P., Kimm, S. Y. et al. Bombesin antagonist based radiotherapy of prostate cancer combined with WST-11 vascular targeted photodynamic therapy. Clin. Cancer Res. 23, 3343–3351 (2017). Moore, C. M., Azzouzi, A. R., Barret, E., Villers, A., Muir, G. H., Barber, N. J. et al. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int.116, 888–896 (2015). ParkMTOhETSongMJLeeHParkHJRadio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organsJ. Radiat. Res.2012535705801:CAS:528:DC%2BC38XhsFCmt77K10.1093/jrr/rrs011 Chen, F. H., Chiang, C. S., Wang, C. C., Tsai, C. S., Jung, S. M., Lee, C. C. et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin. Cancer Res.15, 1721–1729 (2009). Trachtenberg, J., Weersink, R. A., Davidson, S. R., Haider, M. A., Bogaards, A., Gertner, M. R. et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int.102, 556–562 (2008). HsuCYWildhagenMFVan PoppelHBangmaCHPrognostic factors for and outcome of locally advanced prostate cancer after radical prostatectomyBJU Int.20101051536154010.1111/j.1464-410X.2009.09054.x Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature499, 214–218 (2013). Kim, K., Watson, P. A., Lebdai, S., Jebiwott, S., Somma, A. J., La Rosa, S. et al. Androgen deprivation therapy potentiates the efficacy of vascular targeted photodynamic therapy of prostate cancer xenografts. Clin. Cancer Res.24, 2408–16 (2018). Azzouzi, A. R., Barret, E., Bennet, J., Moore, C., Taneja, S., Muir, G. et al. TOOKAD® Soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J. Urol.33, 945–953 (2015). WardJFSlezakJMBluteMLBergstralhEJZinckeHRadical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-Year outcomeBJU Int.20059575175610.1111/j.1464-410X.2005.05394.x SiemannDWRojianiAMEnhancement of radiation therapy by the novel vascular targeting agent ZD6126Int. J. Radiat. Oncol. Biol. Phys.2002531641711:CAS:528:DC%2BD38Xjtl2hurw%3D10.1016/S0360-3016(02)02742-6 Kleibeuker, E. A., Fokas, E., Allen, P. D., Kersemans, V., Griffioen, A. W., Beech, J. et al. Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget7, 76613–76627 (2016). Clément-Colmou, K., Potiron, V., Pietri, M., Guillonneau, M., Jouglar, E., Chiavassa, S. et al. Influence of radiotherapy fractionation schedule on the tumor vascular microenvironment in prostate and lung cancer models. Cancers12, 121 (2020). PreiseDScherzASalomonYAntitumor immunity promoted by vascular occluding therapy: lessons from vascular-targeted photodynamic therapy (VTP)Photochem. Photobiol. Sci.2011106816881:CAS:528:DC%2BC3MXltleitr4%3D10.1039/c0pp00315h YamazakiTMukouyamaYSTissue specific origin, development, and pathological perspectives of pericytesFront. Cardiovasc. Med.201857810.3389/fcvm.2018.00078 Kersemans, V., Gilchrist, S., Allen, P. D., Beech, J. S., Kinchesh, P., Vojnovic, B. et al. A resistive heating system for homeothermic maintenance in small animals. Magn. Reson. Imaging33, 847–851 (2015). LiLRojianiASiemannDWTargeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapyInt. J. Radiat. Oncol. Biol. Phys.1998428999031:CAS:528:DyaK1MXlvV2g10.1016/S0360-3016(98)00320-4 Azzouzi, A. R., Vincendeau, S., Barret, E., Cicco, A., Kleinclauss, F., van der Poel, H.G. et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol.18, 181–191 (2017). CarverBSBiancoFJScardinoPTEasthamJALong-term outcome following radical prostatectomy in men with clinical stage T3 prostate cancerJ. Urol.200617656456810.1016/j.juro.2006.03.093 GoelSWongAHKJainRKVascular normalization as a therapeutic strategy for malignant and nonmalignant diseaseCold Spring Harb. Perspect. Med.20122a00648610.1101/cshperspect.a006486 Bastian, P. J., Boorjian, S. A., Bossi, A., Briganti, A., Heidenreich, A., Freedland, S. J. et al. High-risk prostate cancer: from definition to contemporary management. Eur. Urol.61, 1096–1106 (2012). Preise, D., Oren, R., Glinert, I., Kalchenko, V., Jung, S., Scherz, A. et al. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol. Immunother.58, 71–84 (2009). Philippou, Y., Sjoberg, H. T., Murphy, E., Alyacoubi, S., Jones, K. I., Gordon-Weeks, A. N. et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br. J. Cancer123, 1089–1100 (2020). Xylinas, E., Drouin, S. J., Comperat, E., Vaessen, C., Renard-Penna, R., Misrai, V. et al. Oncological control after radical prostatectomy in men with clinical T3 prostate cancer: a single-centre experience. BJU Int.103, 1173–1178 (2009). GrossfeldGDLiYLubeckDPCarrollPRPatterns of failure after primary local therapy for prostate cancer and rationale for secondary therapyUrology200260576210.1016/S0090-4295(02)01574-1 Song, C., Hong, B. J., Bok, S., Lee, C. J., Kim, Y. E., Jeon, S. R. et al. Real-time tumor oxygenation changes after single high-dose radiation therapy in orthotopic and subcutaneous lung cancer in mice: clinical implication for stereotactic ablative radiation therapy schedule optimization. Int. J. Radiat. Oncol. Biol. Phys.95, 1022–1031 (2016). SiemannDWShiWTargeting the tumor blood vessel network to enhance the efficacy of radiation therapySeminars Radiat. Oncol.200313536110.1053/srao.2003.50005 PhilippouYSjobergHLambADCamilleriPBryantRJHarnessing the potential of multimodal radiotherapy in prostate cancerNat. Rev. Urol.20201732133810.1038/s41585-020-0310-3 HanahanDWeinbergRAHallmarks of cancer: the next generationCell20111446466741:CAS:528:DC%2BC3MXjsFeqtrk%3D10.1016/j.cell.2011.02.013 MooreCMPendseDEmbertonMPhotodynamic therapy for prostate cancer—a review of current status and future promiseNat. Clin. Pract. Urol.2009618301:CAS:528:DC%2BD1MXjtF2qtw%3D%3D10.1038/ncpuro1274 AzziSHebdaJKGavardJVascular permeability and drug delivery in cancersFront. Oncol.2013321110.3389/fonc.2013.00211 MurataRSiemannDWOvergaardJHorsmanMRImproved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acidRadiat. Res.20011565035091:CAS:528:DC%2BD3MXosV2lurs%3D10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2 Trachtenberg, J., Bogaards, A., Weersink, R. A., Haider, M. A., Evans, A., McCluskey, S. A. et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J. Urol.178, 1974–1979 (2007). Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. DW Siemann (1450_CR55) 2002; 53 S Loeb (1450_CR10) 2007; 69 MC Schabel (1450_CR32) 2008; 53 HU Ahmed (1450_CR38) 2009; 18 1450_CR43 1450_CR42 1450_CR41 1450_CR40 1450_CR46 1450_CR45 1450_CR44 1450_CR49 L Li (1450_CR54) 1998; 42 1450_CR50 1450_CR51 1450_CR14 CM Moore (1450_CR39) 2009; 6 MT Park (1450_CR47) 2012; 53 1450_CR13 T Yamazaki (1450_CR34) 2018; 5 1450_CR12 1450_CR11 1450_CR18 1450_CR17 Y Philippou (1450_CR35) 2020; 17 1450_CR15 1450_CR59 1450_CR19 D Preise (1450_CR16) 2011; 10 HJ Park (1450_CR48) 2012; 177 WR Wilson (1450_CR56) 1998; 42 1450_CR21 DW Siemann (1450_CR57) 2003; 13 1450_CR20 1450_CR25 1450_CR22 1450_CR29 1450_CR28 CY Hsu (1450_CR7) 2010; 105 1450_CR27 1450_CR26 JF Ward (1450_CR9) 2005; 95 BS Carver (1450_CR5) 2006; 176 S Goel (1450_CR24) 2012; 2 HE Barker (1450_CR23) 2015; 15 R Murata (1450_CR58) 2001; 156 1450_CR31 1450_CR30 1450_CR36 1450_CR33 S Azzi (1450_CR52) 2013; 3 D Hanahan (1450_CR53) 2011; 144 1450_CR8 1450_CR37 1450_CR6 GD Grossfeld (1450_CR2) 2002; 60 1450_CR4 1450_CR3 1450_CR1 |
| References_xml | – reference: AzziSHebdaJKGavardJVascular permeability and drug delivery in cancersFront. Oncol.2013321110.3389/fonc.2013.00211 – reference: Clément-Colmou, K., Potiron, V., Pietri, M., Guillonneau, M., Jouglar, E., Chiavassa, S. et al. Influence of radiotherapy fractionation schedule on the tumor vascular microenvironment in prostate and lung cancer models. Cancers12, 121 (2020). – reference: Freedland, S. J., Partin, A. W., Humphreys, E. B., Mangold, L. A. & Walsh, P. C. Radical prostatectomy for clinical stage T3a disease. Cancer109, 1273–1278 (2007). – reference: Kim, K., Zhang, H. La Rosa, S., Jebiwott, S., Desai, P., Kimm, S. Y. et al. Bombesin antagonist based radiotherapy of prostate cancer combined with WST-11 vascular targeted photodynamic therapy. Clin. Cancer Res. 23, 3343–3351 (2017). – reference: Valerio, M., Cerantola, Y., Eggener, S. E., Lepor, H., Polascik, T. J., Villers, A. et al. New and established technology in focal ablation of the prostate: a systematic review. Eur. Urol.71, 17–34 (2017). – reference: Chen, F. H., Chiang, C. S., Wang, C. C., Tsai, C. S., Jung, S. M., Lee, C. C. et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin. Cancer Res.15, 1721–1729 (2009). – reference: Gilchrist, S., Gomes, A. L., Kinchesh, P., Kersemans, V., Allen, P. D. & Smart, S. C. An MRI-compatible high frequency AC resistive heating system for homeothermic maintenance in small animals. PLoS ONE11, e0164920 (2016). – reference: Van Poppel, H., Vekemans, K. Da Pozzo, L., Bono, A., Kliment, J., Montironi, R. et al. Radical prostatectomy for locally advanced prostate cancer: Results of a feasibility study (EORTC 30001). Eur. J. Cancer42, 1062–1067 (2006). – reference: GoelSWongAHKJainRKVascular normalization as a therapeutic strategy for malignant and nonmalignant diseaseCold Spring Harb. Perspect. Med.20122a00648610.1101/cshperspect.a006486 – reference: Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature499, 214–218 (2013). – reference: AhmedHUMooreCEmbertonMMinimally-invasive technologies in uro-oncology: The role of cryotherapy, HIFU and photodynamic therapy in whole gland and focal therapy of localised prostate cancerSurg. Oncol.20091821923210.1016/j.suronc.2009.02.002 – reference: WilsonWRLiAECowanDSMSiimBGEnhancement of tumor radiation response by the antivascular agent 5,6- dimethylxanthenone-4-acetic acidInt. J. Radiat. Oncol. Biol. Phys.1998429059081:CAS:528:DyaK1MXlvV2n10.1016/S0360-3016(98)00358-7 – reference: YamazakiTMukouyamaYSTissue specific origin, development, and pathological perspectives of pericytesFront. Cardiovasc. Med.201857810.3389/fcvm.2018.00078 – reference: SiemannDWRojianiAMEnhancement of radiation therapy by the novel vascular targeting agent ZD6126Int. J. Radiat. Oncol. Biol. Phys.2002531641711:CAS:528:DC%2BD38Xjtl2hurw%3D10.1016/S0360-3016(02)02742-6 – reference: Supiot, S., Rousseau, C., Dore, M., Chèze-Le-Rest, C., Kandel-Aznar, C., Potiron, V. et al. Reoxygenation during radiotherapy in intermediate-risk prostate cancer. Radiother. Oncol.133, 16–19 (2019). – reference: ParkHJGriffinRJHuiSLevittSHSongCWRadiation-induced vascular damage in tumors: Implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS)Radiat. Res.20121773113271:CAS:528:DC%2BC38XjslKjsro%3D10.1667/RR2773.1 – reference: Azzouzi, A. R., Vincendeau, S., Barret, E., Cicco, A., Kleinclauss, F., van der Poel, H.G. et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol.18, 181–191 (2017). – reference: Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A. J. R., Behjati, S., Biankin, A.V. et al. Signatures of mutational processes in human cancer. Nature500, 415–241 (2013). – reference: SiemannDWShiWTargeting the tumor blood vessel network to enhance the efficacy of radiation therapySeminars Radiat. Oncol.200313536110.1053/srao.2003.50005 – reference: Bastian, P. J., Boorjian, S. A., Bossi, A., Briganti, A., Heidenreich, A., Freedland, S. J. et al. High-risk prostate cancer: from definition to contemporary management. Eur. Urol.61, 1096–1106 (2012). – reference: BarkerHEPagetJTEKhanAAHarringtonKJThe tumour microenvironment after radiotherapy: mechanisms of resistance and recurrenceNat. Rev. Cancer2015154094251:CAS:528:DC%2BC2MXhtFaiu7bK10.1038/nrc3958 – reference: Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage31, 1116–1128 (2006). – reference: SchabelMCParkerDLUncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequencesPhys. Med. Biol.2008532345237310.1088/0031-9155/53/9/010 – reference: Xylinas, E., Drouin, S. J., Comperat, E., Vaessen, C., Renard-Penna, R., Misrai, V. et al. Oncological control after radical prostatectomy in men with clinical T3 prostate cancer: a single-centre experience. BJU Int.103, 1173–1178 (2009). – reference: Yossepowitch, O., Eggener, S. E., Bianco, F. J., Carver, B. S., Serio, A., Scardino, P. T. et al. Radical prostatectomy for clinically localized, high risk prostate cancer: critical analysis of risk assessment methods. J. Urol.178, 493–499 (2007). – reference: Madar-Balakirski, N., Tempel-Brami, C., Kalchenko, V., Brenner, O., Varon, D., Scherz, A. et al. Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP) with tookad. PLoS ONE5, e10282 (2010). – reference: GrossfeldGDLiYLubeckDPCarrollPRPatterns of failure after primary local therapy for prostate cancer and rationale for secondary therapyUrology200260576210.1016/S0090-4295(02)01574-1 – reference: Landuyt, W., Ahmed, B., Nuyts, S., Theys, J., Op de Beeck, M., Rijnders, A. et al. In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int. J. Radiat. Oncol. Biol. Phys.49, 443–450 (2001). – reference: Heidenreich, A., Bastian, P. J., Bellmunt, J., Bolla, M., Joniau, S., van der Kwast, T. et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol.65, 467–479 (2014). – reference: PhilippouYSjobergHLambADCamilleriPBryantRJHarnessing the potential of multimodal radiotherapy in prostate cancerNat. Rev. Urol.20201732133810.1038/s41585-020-0310-3 – reference: Kim, K., Watson, P. A., Lebdai, S., Jebiwott, S., Somma, A. J., La Rosa, S. et al. Androgen deprivation therapy potentiates the efficacy of vascular targeted photodynamic therapy of prostate cancer xenografts. Clin. Cancer Res.24, 2408–16 (2018). – reference: Moore, C. M., Azzouzi, A. R., Barret, E., Villers, A., Muir, G. H., Barber, N. J. et al. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int.116, 888–896 (2015). – reference: Azzouzi, A. R., Barret, E., Bennet, J., Moore, C., Taneja, S., Muir, G. et al. TOOKAD® Soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J. Urol.33, 945–953 (2015). – reference: HanahanDWeinbergRAHallmarks of cancer: the next generationCell20111446466741:CAS:528:DC%2BC3MXjsFeqtrk%3D10.1016/j.cell.2011.02.013 – reference: Azzouzi, A. R., Barret, E., Moore, C. M., Villers, A., Allen, C., Scherz, A. et al. TOOKAD® Soluble vascular-targeted photodynamic (VTP) therapy: Determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int.112, 766–774 (2013). – reference: Trachtenberg, J., Bogaards, A., Weersink, R. A., Haider, M. A., Evans, A., McCluskey, S. A. et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J. Urol.178, 1974–1979 (2007). – reference: Lebdai, S., Gigoux, M., Alvim, R., Somma, A., Nagar, K., Azzouzi, A. R. et al. Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer. Oncoimmunology8, e1581528 (2019). – reference: Magnussen, A. L. & Mills, I. G. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br. J. Cancer (2021). https://doi.org/10.1038/s41416-021-01330-z. Online ahead of print. – reference: WardJFSlezakJMBluteMLBergstralhEJZinckeHRadical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-Year outcomeBJU Int.20059575175610.1111/j.1464-410X.2005.05394.x – reference: Zwergel, U., Suttmann, H., Schroeder, T., Siemer, S., Wullich, B., Kamradt, J. et al. Outcome of prostate cancer patients with initial PSA ≥ 20 ng/ml undergoing radical prostatectomy. Eur. Urol.52, 1058–1066 (2007). – reference: Yoshimura, M., Itasaka, S., Harada, H. & Hiraoka, M. Microenvironment and radiation therapy. Biomed. Res. Int.2013, 685308 (2013). – reference: Koudinova, N. V., Pinthus, J. H., Brandis, A., Brenner, O., Bendel, P., Ramon, J. et al. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int. J. Cancer104, 782–789 (2003). – reference: LiLRojianiASiemannDWTargeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapyInt. J. Radiat. Oncol. Biol. Phys.1998428999031:CAS:528:DyaK1MXlvV2g10.1016/S0360-3016(98)00320-4 – reference: Oon, C. E., Bridges, E., Sheldon, H., Sainson, R. C. A., Jubb, A., Turley, H. et al. Role of delta-like 4 in Jagged1-induced tumour angiogenesis and tumour growth. Oncotarget8, 40115–40131 (2017). – reference: Trachtenberg, J., Weersink, R. A., Davidson, S. R., Haider, M. A., Bogaards, A., Gertner, M. R. et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int.102, 556–562 (2008). – reference: Kleibeuker, E. A., Fokas, E., Allen, P. D., Kersemans, V., Griffioen, A. W., Beech, J. et al. Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget7, 76613–76627 (2016). – reference: Kersemans, V., Gilchrist, S., Allen, P. D., Beech, J. S., Kinchesh, P., Vojnovic, B. et al. A resistive heating system for homeothermic maintenance in small animals. Magn. Reson. Imaging33, 847–851 (2015). – reference: Skalli, O., Pelte, M. F., Peclet, M. C., Gabbiani, G., Gugliotta, P., Bussolati, G. et al. Smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J. Histochem. Cytochem. 37, 315–321 (1989). – reference: MurataRSiemannDWOvergaardJHorsmanMRImproved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acidRadiat. Res.20011565035091:CAS:528:DC%2BD3MXosV2lurs%3D10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2 – reference: LoebSSmithNDRoehlKACatalonaWJIntermediate-term potency, continence, and survival outcomes of radical prostatectomy for clinically high-risk or locally advanced prostate cancerUrology2007691170117510.1016/j.urology.2007.02.054 – reference: MooreCMPendseDEmbertonMPhotodynamic therapy for prostate cancer—a review of current status and future promiseNat. Clin. Pract. Urol.2009618301:CAS:528:DC%2BD1MXjtF2qtw%3D%3D10.1038/ncpuro1274 – reference: PreiseDScherzASalomonYAntitumor immunity promoted by vascular occluding therapy: lessons from vascular-targeted photodynamic therapy (VTP)Photochem. Photobiol. Sci.2011106816881:CAS:528:DC%2BC3MXltleitr4%3D10.1039/c0pp00315h – reference: Valerio, M., Ahmed, H. U., Emberton, M., Lawrentschuk, N., Lazzeri, M., Montironi, R. et al. The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur. Urol.66, 732–751 (2013). – reference: Song, C., Hong, B. J., Bok, S., Lee, C. J., Kim, Y. E., Jeon, S. R. et al. Real-time tumor oxygenation changes after single high-dose radiation therapy in orthotopic and subcutaneous lung cancer in mice: clinical implication for stereotactic ablative radiation therapy schedule optimization. Int. J. Radiat. Oncol. Biol. Phys.95, 1022–1031 (2016). – reference: ParkMTOhETSongMJLeeHParkHJRadio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organsJ. Radiat. Res.2012535705801:CAS:528:DC%2BC38XhsFCmt77K10.1093/jrr/rrs011 – reference: HsuCYWildhagenMFVan PoppelHBangmaCHPrognostic factors for and outcome of locally advanced prostate cancer after radical prostatectomyBJU Int.20101051536154010.1111/j.1464-410X.2009.09054.x – reference: Preise, D., Oren, R., Glinert, I., Kalchenko, V., Jung, S., Scherz, A. et al. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol. Immunother.58, 71–84 (2009). – reference: CarverBSBiancoFJScardinoPTEasthamJALong-term outcome following radical prostatectomy in men with clinical stage T3 prostate cancerJ. Urol.200617656456810.1016/j.juro.2006.03.093 – reference: Philippou, Y., Sjoberg, H. T., Murphy, E., Alyacoubi, S., Jones, K. I., Gordon-Weeks, A. N. et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br. J. Cancer123, 1089–1100 (2020). – ident: 1450_CR29 doi: 10.1016/j.mri.2015.03.011 – ident: 1450_CR22 doi: 10.1155/2013/685308 – ident: 1450_CR20 doi: 10.1016/j.juro.2007.07.036 – ident: 1450_CR37 doi: 10.1038/nature12477 – ident: 1450_CR49 doi: 10.3390/cancers12010121 – volume: 42 start-page: 905 year: 1998 ident: 1450_CR56 publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/S0360-3016(98)00358-7 – volume: 176 start-page: 564 year: 2006 ident: 1450_CR5 publication-title: J. Urol. doi: 10.1016/j.juro.2006.03.093 – ident: 1450_CR41 doi: 10.1016/j.eururo.2013.05.048 – ident: 1450_CR12 doi: 10.1016/j.eururo.2007.03.056 – volume: 18 start-page: 219 year: 2009 ident: 1450_CR38 publication-title: Surg. Oncol. doi: 10.1016/j.suronc.2009.02.002 – ident: 1450_CR44 doi: 10.1158/1078-0432.CCR-16-2745 – volume: 10 start-page: 681 year: 2011 ident: 1450_CR16 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c0pp00315h – ident: 1450_CR43 doi: 10.1158/1078-0432.CCR-17-3474 – ident: 1450_CR50 doi: 10.1016/j.radonc.2018.12.022 – ident: 1450_CR36 doi: 10.1038/nature12213 – ident: 1450_CR19 doi: 10.1016/S1470-2045(16)30661-1 – volume: 13 start-page: 53 year: 2003 ident: 1450_CR57 publication-title: Seminars Radiat. Oncol. doi: 10.1053/srao.2003.50005 – volume: 156 start-page: 503 year: 2001 ident: 1450_CR58 publication-title: Radiat. Res. doi: 10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2 – volume: 53 start-page: 164 year: 2002 ident: 1450_CR55 publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/S0360-3016(02)02742-6 – ident: 1450_CR27 doi: 10.18632/oncotarget.16969 – ident: 1450_CR30 doi: 10.1371/journal.pone.0164920 – volume: 177 start-page: 311 year: 2012 ident: 1450_CR48 publication-title: Radiat. Res. doi: 10.1667/RR2773.1 – ident: 1450_CR33 doi: 10.1177/37.3.2918221 – ident: 1450_CR46 doi: 10.1158/1078-0432.CCR-08-1471 – ident: 1450_CR26 doi: 10.1038/s41416-020-0956-x – volume: 95 start-page: 751 year: 2005 ident: 1450_CR9 publication-title: BJU Int. doi: 10.1111/j.1464-410X.2005.05394.x – ident: 1450_CR45 doi: 10.1080/2162402X.2019.1581528 – volume: 17 start-page: 321 year: 2020 ident: 1450_CR35 publication-title: Nat. Rev. Urol. doi: 10.1038/s41585-020-0310-3 – ident: 1450_CR1 doi: 10.1016/j.eururo.2013.11.002 – ident: 1450_CR28 doi: 10.18632/oncotarget.12814 – volume: 42 start-page: 899 year: 1998 ident: 1450_CR54 publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/S0360-3016(98)00320-4 – ident: 1450_CR59 doi: 10.1016/S0360-3016(00)01470-X – volume: 105 start-page: 1536 year: 2010 ident: 1450_CR7 publication-title: BJU Int. doi: 10.1111/j.1464-410X.2009.09054.x – ident: 1450_CR40 doi: 10.1111/bju.12816 – volume: 144 start-page: 646 year: 2011 ident: 1450_CR53 publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 5 start-page: 78 year: 2018 ident: 1450_CR34 publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2018.00078 – volume: 3 start-page: 211 year: 2013 ident: 1450_CR52 publication-title: Front. Oncol. doi: 10.3389/fonc.2013.00211 – ident: 1450_CR14 doi: 10.1002/ijc.11002 – volume: 60 start-page: 57 year: 2002 ident: 1450_CR2 publication-title: Urology doi: 10.1016/S0090-4295(02)01574-1 – volume: 69 start-page: 1170 year: 2007 ident: 1450_CR10 publication-title: Urology doi: 10.1016/j.urology.2007.02.054 – ident: 1450_CR21 doi: 10.1111/j.1464-410X.2008.07753.x – ident: 1450_CR15 doi: 10.1007/s00262-008-0527-0 – ident: 1450_CR13 doi: 10.1371/journal.pone.0010282 – ident: 1450_CR6 doi: 10.1002/cncr.22544 – ident: 1450_CR42 doi: 10.1016/j.eururo.2016.08.044 – ident: 1450_CR31 doi: 10.1016/j.neuroimage.2006.01.015 – volume: 15 start-page: 409 year: 2015 ident: 1450_CR23 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3958 – ident: 1450_CR8 doi: 10.1111/j.1464-410X.2008.08208.x – ident: 1450_CR4 doi: 10.1016/j.ejca.2005.11.030 – volume: 2 start-page: a006486 year: 2012 ident: 1450_CR24 publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a006486 – ident: 1450_CR17 doi: 10.1111/bju.12265 – ident: 1450_CR25 doi: 10.1038/s41416-021-01330-z – ident: 1450_CR3 doi: 10.1016/j.eururo.2012.02.031 – ident: 1450_CR11 doi: 10.1016/j.juro.2007.03.105 – volume: 6 start-page: 18 year: 2009 ident: 1450_CR39 publication-title: Nat. Clin. Pract. Urol. doi: 10.1038/ncpuro1274 – ident: 1450_CR18 doi: 10.1007/s00345-015-1505-8 – volume: 53 start-page: 2345 year: 2008 ident: 1450_CR32 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/9/010 – volume: 53 start-page: 570 year: 2012 ident: 1450_CR47 publication-title: J. Radiat. Res. doi: 10.1093/jrr/rrs011 – ident: 1450_CR51 doi: 10.1016/j.ijrobp.2016.01.064 |
| SSID | ssj0009087 |
| Score | 2.4304185 |
| Snippet | Background
There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is... There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal... BackgroundThere is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 534 |
| SubjectTerms | 631/67/1059/485 692/4028/546 Allografts Animals Biomedical and Life Sciences Biomedicine Cancer Research Cell Line, Tumor Clinical trials Combined Modality Therapy Dose Fractionation, Radiation Drug Resistance Epidemiology Human Umbilical Vein Endothelial Cells Humans Magnetic resonance imaging Male Mice Microenvironments Molecular Medicine Neovascularization, Pathologic - therapy Oncology Permeability Photochemotherapy - methods Photodynamic therapy Prostate cancer Prostatic Neoplasms - blood supply Prostatic Neoplasms - therapy Radiation therapy Survival Analysis Tumor Microenvironment Tumors Xenograft Model Antitumor Assays |
| Title | Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer |
| URI | https://link.springer.com/article/10.1038/s41416-021-01450-6 https://www.ncbi.nlm.nih.gov/pubmed/34155340 https://www.proquest.com/docview/2561645720 https://www.proquest.com/docview/2544162422 https://pubmed.ncbi.nlm.nih.gov/PMC8367986 |
| Volume | 125 |
| WOSCitedRecordID | wos000664003100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1532-1827 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0009087 issn: 0007-0920 databaseCode: M7P dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1532-1827 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0009087 issn: 0007-0920 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1532-1827 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0009087 issn: 0007-0920 databaseCode: 7RV dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1532-1827 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0009087 issn: 0007-0920 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1532-1827 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0009087 issn: 0007-0920 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSFeGF9jhVEZiTeI5sRO7T4hNm3ihaqaBupbFDuJWgmSLmkn8cw_zp3ttCoTe-HFUuKP2Lo7--L73R3A-1IaMyaboTDaRJKwNWMCUxme2ljawgruk02oyUTPZuNpuHDrAqyy3xPdRl00lu7IT_FoRs0-VQn_tLyJKGsUWVdDCo09OKAoCcJB96bboLtc-5iZdB03TnhwmuFCn3YyRlUkIoACGdbwF2r3YLqjbd4FTf5lOXUH0uXh_y7lKTwJqij77HnnGTwo6-fw6Gswtr-A39frn9iGLdqWAhgQBRl-AH-ly4LR_S3rYayRx5Pj6-W8WTWFz3LPvG_XL1bWc-KtjuXkE-wHDTgStqgZAVF6B018aJyPE7PUpX0J3y4vrs-_RCFnQ2Slkqso5blNYplXhTYqlVaQ6ysSXlSpHGkKRCDjiidlhXLPKz0aaZUbkVeJMIVAbUUcwX7d1OUxsIrbXOa0AeGAcVzm3OjE4IBK4XtlBxD3BMtsCGhOeTV-ZM6wLnTmiZwhkTNH5Gw0gA-bPksfzuPe1ic9AbMg2l22pd4A3m2qUSjJ0pLXZbOmNqhlkudNMoBXnm02nxOkwgmJvdUOQ20aUMDv3Zp6MXeBv7UgmxlO62PPettp_XsVr-9fxRt4nDgx0FGsTmB_1a7Lt_DQ3q4WXTuEPXX1ncqZcqXGUp_HQzg4u5hMr4ZO4P4AGnItUQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALb8pCASPBCaI6sbP2HhBCQNWq7QqhBfWW2k6ijdQmS3YXtGf-D7-RmTjZ1VLRWw8cEz9iJ9-MJ55vxgAvM2ntgHyGwmobSOLWDIhMZXnsQulSJ7g_bEINh_r4ePB5A353sTBEq-x0YqOo08rRHvkOLs1o2ccq4u8m3wM6NYq8q90RGh4WB9niJ_6yTd_uf8Tv-yqKdj-NPuwF7akCgZNKzoKYGxeF0uSptiqWTlBwJg5N5LHsawqVl2HOoyxHZPJc9_taGStMHgmbClxPBfZ7Ba6iHg-JQqa-fFsl-eXa5-ik7b9BxNsgHS70zlSGaPoERIggRx7-sq0vhOes2_Mkzb88tc0CuHv7f3t1d-BWa2qz91427sJGVt6D60ctmeA-_BrNz7AOK-qaEjQQQhlOyGJhymh_mnU03cDz5fH2ZFzNqnRRmrPCMR-7tmBZOSbZmTJDMc--05Ynw4qSEdGmC0DFi6qJ4WKOmtQP4OulvIKHsFlWZfYIWM6dkYYULHYYhpnhVkcWO1QK7yvXg7ADSOLahO10bshp0hAHhE48qBIEVdKAKun34PWyzcSnK7mw9nYHmKRVXdNkhZYevFgWo9IhT5Ips2pOddCKpsiiqAdbHqbLxwkyUYXE1moNwMsKlNB8vaQsxk1icy3IJ4jDetNBfTWsf8_i8cWzeA439kZHh8nh_vDgCdyMGhHUQai2YXNWz7OncM39mBXT-lkjzAxOLlsE_gDDXYPI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQRWX8iwsFDASnCBax3bWzgEh1LKiKqx6KFJvwXYSbSSabJNd0J75V_w6ZuJkV0tFbz1wTPyInXwznni-GRPyKpPWxugzFFbbQCK3JkYylWWRC6VLnWD-sAk1meizs_hki_zuY2GQVtnrxFZRp5XDPfIhLM1g2UeKs2He0SJODsfvZxcBniCFntb-OA0PkeNs-RN-35p3R4fwrV9zPv54evAp6E4YCJxUch5EzDgeSpOn2qpIOoGBmjBMkUdypDFsXoY541kOKGW5Ho20MlaYnAubClhbBfR7g9xUAsoxSv1gTS-Jmfb5OnErMOasC9hhQg8bGYIZFCA5Ap168Pu2uShesnQvEzb_8tq2i-H4zv_8Gu-S3c4Epx-8zNwjW1l5n-x86UgGD8iv08U51KFFXWPiBkQuhclZKEwp7lvTnr4beB493J5Nq3mVLktzXjjqY9qWNCunKFMNNRgL7Tvt-DO0KCkScPrAVLio2tgu6rBJ_ZB8vZZXsEe2y6rMHhOaM2ekQcULHYZhZpjV3EKHSsF95QYk7MGSuC6RO54n8j1pCQVCJx5gCQAsaQGWjAbkzarNzKcxubL2fg-epFNpTbJGzoC8XBWDMkIPkymzaoF1wLrGiCM-II88ZFePE2i6Cgmt1QaYVxUw0flmSVlM24TnWqCvEIb1tof9elj_nsWTq2fxguwA8pPPR5Pjp-Q2b6VRB6HaJ9vzepE9I7fcj3nR1M9buabk23VLwB8Bkowj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumour+irradiation+combined+with+vascular-targeted+photodynamic+therapy+enhances+antitumour+effects+in+pre-clinical+prostate+cancer&rft.jtitle=British+journal+of+cancer&rft.au=Sjoberg%2C+Hanna+T.&rft.au=Philippou%2C+Yiannis&rft.au=Magnussen%2C+Anette+L.&rft.au=Tullis%2C+Iain+D.+C.&rft.date=2021-08-17&rft.pub=Nature+Publishing+Group+UK&rft.issn=0007-0920&rft.eissn=1532-1827&rft.volume=125&rft.issue=4&rft.spage=534&rft.epage=546&rft_id=info:doi/10.1038%2Fs41416-021-01450-6&rft.externalDocID=10_1038_s41416_021_01450_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon |