Prolonged heat stress in Brassica napus during flowering negatively impacts yield and alters glucosinolate and sugars metabolism

Oilseed rape ( Brassica napus ), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly under...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in plant science Ročník 16; s. 1507338
Hlavní autoři: Kourani, Mariam, Anastasiadi, Maria, Hammond, John P., Mohareb, Fady
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media SA 09.05.2025
Frontiers
Frontiers Media S.A
Témata:
ISSN:1664-462X, 1664-462X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Oilseed rape ( Brassica napus ), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly understood. In this study, we investigated the transcriptomic and metabolomic responses to heat stress in B. napus plants exposed to a gradual increase in temperature reaching 30°C in the day and 24°C at night for a period of 6 days. High-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS) was used to quantify the content of carbohydrates and glucosinolates, respectively. Results showed that heat stress reduced yield and altered oil composition. Heat stress also increased the content of carbohydrate (glucose, fructose, and sucrose) and aliphatic glucosinolates (gluconapin and progoitrin) in the leaves but decreased the content of the indolic glucosinolate (glucobrassicin). RNA-Seq analysis of flower buds showed a total of 1,892, 3,253, and 4,553 differentially expressed genes at 0, 1, and 2 days after treatment (DAT) and 4,165 and 1,713 at 1 and 7 days of recovery (DOR), respectively. Heat treatment resulted in downregulation of genes involved in respiratory metabolism, namely, glycolysis, pentose phosphate pathway, citrate cycle, and oxidative phosphorylation especially after 48 h of heat stress. Other downregulated genes mapped to sugar transporters, nitrogen transport and storage, cell wall modification, and methylation. In contrast, upregulated genes mapped to small heat shock proteins (sHSP20) and other heat shock factors that play important roles in thermotolerance. Furthermore, two genes were chosen from the pathways involved in the heat stress response to further examine their expression using real-time RT-qPCR. The global transcriptome profiling, integrated with the metabolic analysis in the study, shed the light on key genes and metabolic pathways impacted and responded to abiotic stresses exhibited as a result of exposure to heat waves during flowering. DEGs and metabolites identified through this study could serve as important biomarkers for breeding programs to select cultivars with stronger resistance to heat. In particular, these biomarkers can form targets for various crop breeding and improvement techniques such as marker-assisted selection.
AbstractList Oilseed rape ( Brassica napus ), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly understood. In this study, we investigated the transcriptomic and metabolomic responses to heat stress in B. napus plants exposed to a gradual increase in temperature reaching 30°C in the day and 24°C at night for a period of 6 days. High-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS) was used to quantify the content of carbohydrates and glucosinolates, respectively. Results showed that heat stress reduced yield and altered oil composition. Heat stress also increased the content of carbohydrate (glucose, fructose, and sucrose) and aliphatic glucosinolates (gluconapin and progoitrin) in the leaves but decreased the content of the indolic glucosinolate (glucobrassicin). RNA-Seq analysis of flower buds showed a total of 1,892, 3,253, and 4,553 differentially expressed genes at 0, 1, and 2 days after treatment (DAT) and 4,165 and 1,713 at 1 and 7 days of recovery (DOR), respectively. Heat treatment resulted in downregulation of genes involved in respiratory metabolism, namely, glycolysis, pentose phosphate pathway, citrate cycle, and oxidative phosphorylation especially after 48 h of heat stress. Other downregulated genes mapped to sugar transporters, nitrogen transport and storage, cell wall modification, and methylation. In contrast, upregulated genes mapped to small heat shock proteins (sHSP20) and other heat shock factors that play important roles in thermotolerance. Furthermore, two genes were chosen from the pathways involved in the heat stress response to further examine their expression using real-time RT-qPCR. The global transcriptome profiling, integrated with the metabolic analysis in the study, shed the light on key genes and metabolic pathways impacted and responded to abiotic stresses exhibited as a result of exposure to heat waves during flowering. DEGs and metabolites identified through this study could serve as important biomarkers for breeding programs to select cultivars with stronger resistance to heat. In particular, these biomarkers can form targets for various crop breeding and improvement techniques such as marker-assisted selection.
Oilseed rape ( ), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly understood. In this study, we investigated the transcriptomic and metabolomic responses to heat stress in plants exposed to a gradual increase in temperature reaching 30°C in the day and 24°C at night for a period of 6 days. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) was used to quantify the content of carbohydrates and glucosinolates, respectively. Results showed that heat stress reduced yield and altered oil composition. Heat stress also increased the content of carbohydrate (glucose, fructose, and sucrose) and aliphatic glucosinolates (gluconapin and progoitrin) in the leaves but decreased the content of the indolic glucosinolate (glucobrassicin). RNA-Seq analysis of flower buds showed a total of 1,892, 3,253, and 4,553 differentially expressed genes at 0, 1, and 2 days after treatment (DAT) and 4,165 and 1,713 at 1 and 7 days of recovery (DOR), respectively. Heat treatment resulted in downregulation of genes involved in respiratory metabolism, namely, glycolysis, pentose phosphate pathway, citrate cycle, and oxidative phosphorylation especially after 48 h of heat stress. Other downregulated genes mapped to sugar transporters, nitrogen transport and storage, cell wall modification, and methylation. In contrast, upregulated genes mapped to small heat shock proteins (sHSP20) and other heat shock factors that play important roles in thermotolerance. Furthermore, two genes were chosen from the pathways involved in the heat stress response to further examine their expression using real-time RT-qPCR. The global transcriptome profiling, integrated with the metabolic analysis in the study, shed the light on key genes and metabolic pathways impacted and responded to abiotic stresses exhibited as a result of exposure to heat waves during flowering. DEGs and metabolites identified through this study could serve as important biomarkers for breeding programs to select cultivars with stronger resistance to heat. In particular, these biomarkers can form targets for various crop breeding and improvement techniques such as marker-assisted selection.
Oilseed rape (Brassica napus), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly understood. In this study, we investigated the transcriptomic and metabolomic responses to heat stress in B. napus plants exposed to a gradual increase in temperature reaching 30°C in the day and 24°C at night for a period of 6 days. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) was used to quantify the content of carbohydrates and glucosinolates, respectively. Results showed that heat stress reduced yield and altered oil composition. Heat stress also increased the content of carbohydrate (glucose, fructose, and sucrose) and aliphatic glucosinolates (gluconapin and progoitrin) in the leaves but decreased the content of the indolic glucosinolate (glucobrassicin). RNA-Seq analysis of flower buds showed a total of 1,892, 3,253, and 4,553 differentially expressed genes at 0, 1, and 2 days after treatment (DAT) and 4,165 and 1,713 at 1 and 7 days of recovery (DOR), respectively. Heat treatment resulted in downregulation of genes involved in respiratory metabolism, namely, glycolysis, pentose phosphate pathway, citrate cycle, and oxidative phosphorylation especially after 48 h of heat stress. Other downregulated genes mapped to sugar transporters, nitrogen transport and storage, cell wall modification, and methylation. In contrast, upregulated genes mapped to small heat shock proteins (sHSP20) and other heat shock factors that play important roles in thermotolerance. Furthermore, two genes were chosen from the pathways involved in the heat stress response to further examine their expression using real-time RT-qPCR. The global transcriptome profiling, integrated with the metabolic analysis in the study, shed the light on key genes and metabolic pathways impacted and responded to abiotic stresses exhibited as a result of exposure to heat waves during flowering. DEGs and metabolites identified through this study could serve as important biomarkers for breeding programs to select cultivars with stronger resistance to heat. In particular, these biomarkers can form targets for various crop breeding and improvement techniques such as marker-assisted selection.Oilseed rape (Brassica napus), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly understood. In this study, we investigated the transcriptomic and metabolomic responses to heat stress in B. napus plants exposed to a gradual increase in temperature reaching 30°C in the day and 24°C at night for a period of 6 days. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) was used to quantify the content of carbohydrates and glucosinolates, respectively. Results showed that heat stress reduced yield and altered oil composition. Heat stress also increased the content of carbohydrate (glucose, fructose, and sucrose) and aliphatic glucosinolates (gluconapin and progoitrin) in the leaves but decreased the content of the indolic glucosinolate (glucobrassicin). RNA-Seq analysis of flower buds showed a total of 1,892, 3,253, and 4,553 differentially expressed genes at 0, 1, and 2 days after treatment (DAT) and 4,165 and 1,713 at 1 and 7 days of recovery (DOR), respectively. Heat treatment resulted in downregulation of genes involved in respiratory metabolism, namely, glycolysis, pentose phosphate pathway, citrate cycle, and oxidative phosphorylation especially after 48 h of heat stress. Other downregulated genes mapped to sugar transporters, nitrogen transport and storage, cell wall modification, and methylation. In contrast, upregulated genes mapped to small heat shock proteins (sHSP20) and other heat shock factors that play important roles in thermotolerance. Furthermore, two genes were chosen from the pathways involved in the heat stress response to further examine their expression using real-time RT-qPCR. The global transcriptome profiling, integrated with the metabolic analysis in the study, shed the light on key genes and metabolic pathways impacted and responded to abiotic stresses exhibited as a result of exposure to heat waves during flowering. DEGs and metabolites identified through this study could serve as important biomarkers for breeding programs to select cultivars with stronger resistance to heat. In particular, these biomarkers can form targets for various crop breeding and improvement techniques such as marker-assisted selection.
Author Mohareb, Fady
Anastasiadi, Maria
Kourani, Mariam
Hammond, John P.
Author_xml – sequence: 1
  givenname: Mariam
  surname: Kourani
  fullname: Kourani, Mariam
– sequence: 2
  givenname: Maria
  surname: Anastasiadi
  fullname: Anastasiadi, Maria
– sequence: 3
  givenname: John P.
  surname: Hammond
  fullname: Hammond, John P.
– sequence: 4
  givenname: Fady
  surname: Mohareb
  fullname: Mohareb, Fady
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40416089$$D View this record in MEDLINE/PubMed
https://utc.hal.science/hal-05334010$$DView record in HAL
BookMark eNp1kl1rFTEQhhep2Fr7A7yRBW_sxTnmazeby1qsLRzQCwXvwmyS3eaQTY5JtnLu_OnmfFS0YCBkmHnmHci8L6sTH7ypqtcYLSntxPth49KSINIscYN4ST2rznDbsgVryfeTv-LT6iKlNSqnQUgI_qI6ZYjhFnXirPr1JQYX_Gh0fW8g1ylHk1Jtff0hQkpWQe1hM6daz9H6sR5c-Gn2kTcjZPtg3La20wZUTvXWGqdr8OW6bGKqRzerkKwPDrLZF9I8QilMJkMfnE3Tq-r5AC6Zi-N7Xn27-fj1-nax-vzp7vpqtVCMs7xgg9A9BaIbTXotOHA0CKLaRilsMAdQtGO66waBRI8HPjChUNsRQnjfcabpeXV30NUB1nIT7QRxKwNYuU-EOEqI2Spn5NBSKoRQLWIt61om9EBF1xjc9B0QgYrW5UHrHtw_UrdXK7nLoYZShjB6wIV9d2A3MfyYTcpyskkZ58CbMCdJCeK8oJQX9O0TdB3m6MuvFIpTLjrOm0K9OVJzPxn9Z_7jTgvAD4CKIaVoBqlsLqsKPkewTmIkdwaSOwPJnYHk0UClEz_pfBT_f89vwyrI6A
CitedBy_id crossref_primary_10_3390_agronomy15071511
crossref_primary_10_3390_plants14121825
Cites_doi 10.1007/s00299-023-03003-y
10.1186/s13059-014-0550-8
10.1038/s41598-023-28661-6
10.1016/j.envexpbot.2007.05.011
10.4141/P05-130
10.3390/plants9040457
10.1002/ece3.2017.7.issue-4
10.1038/s41477-019-0577-7
10.2174/0929866521666141124102755
10.1016/j.envexpbot.2011.03.016
10.1111/pce.13488
10.1111/pce.12649
10.2135/cropsci2018.05.0292
10.1016/j.foodchem.2005.03.011
10.1016/j.foodchem.2014.09.116
10.1071/CP17259
10.3390/plants11131696
10.1021/acs.jafc.9b06533
10.1038/s41438-021-00532-z
10.1093/icesjms/fsaa093
10.1071/FP13082
10.1371/journal.pone.0246615
10.1186/1471-2229-11-35
10.1186/s12870-020-2292-y
10.1093/pcp/pcz052
10.3389/fpls.2013.00272
10.3390/plants5020024
10.1007/s12042-015-9152-1
10.1111/jac.2019.205.issue-1
10.1007/s11120-013-9873-7
10.1016/S0031-9422(02)00549-6
10.1093/jxb/ery004
10.3390/plants12030639
10.1023/A:1006380021658
10.1111/ppl.12903
10.3390/plants10071305
10.1016/j.phytochem.2006.02.024
10.1016/j.plaphy.2009.12.010
10.1016/j.jplph.2010.11.004
10.1186/s12870-019-2086-2
10.1016/j.foodchem.2004.12.013
10.1016/j.foodchem.2012.01.021
10.1104/pp.16.00860
10.1371/journal.pone.0101914
10.1111/ppl.13210
10.1105/tpc.16.00916
10.4141/P99-152
10.1104/pp.123.3.949
10.3390/ijms140611607
10.3389/fpls.2022.1077920
10.1093/jxb/erz426
10.1186/s12870-016-0791-7
10.1104/pp.106.087783
10.1002/ece3.3952
10.1093/jxb/erp316
10.1002/9781119432401.ch5
10.1093/jxb/erz476
10.1093/pcp/pcx090
10.21203/rs.3.rs-234062/v1
10.1017/CBO9781139177245.006
10.1016/j.postharvbio.2020.111157
10.1016/j.plaphy.2019.06.026
10.32854/agrop.v16i3.2567
10.1016/j.aoas.2016.02.001
10.1146/annurev.ento.54.110807.090623
10.1016/B978-0-323-90613-5.00003-0
10.1104/pp.110.157008
10.1021/jf020309x
10.1093/nar/28.1.27
10.1007/s12011-014-0120-7
10.1007/s10535-012-0072-8
10.1016/j.jplph.2023.154162
10.3389/fpls.2019.01653
10.1016/j.pbi.2013.02.007
10.3390/app12125811
10.1101/gad.228802
10.1016/j.plaphy.2021.02.013
10.3389/fpls.2023.1157678
10.1111/j.1365-3040.2011.02341.x
10.3389/fpls.2016.00215
10.1111/pce.12850
10.3389/fpls.2022.832147
10.1111/pce.14018
10.1111/pce.14050
10.3389/fpls.2014.00516
10.3390/plants9111421
10.3389/fchem.2018.00026
10.1186/s12870-020-02369-5
10.1016/j.plaphy.2013.06.017
10.1093/jxb/erw180
10.3390/ijms23063367
10.1111/tpj.13669
10.1186/s12870-021-03189-x
ContentType Journal Article
Copyright Copyright © 2025 Kourani, Anastasiadi, Hammond and Mohareb.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Copyright © 2025 Kourani, Anastasiadi, Hammond and Mohareb.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
NPM
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
DOA
DOI 10.3389/fpls.2025.1507338
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium
Biological Sciences
Agriculture Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Computer Science
Environmental Sciences
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_f633999c604648649df3985e15b8a290
oai:HAL:hal-05334010v1
40416089
10_3389_fpls_2025_1507338
Genre Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
M48
NPM
RIG
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
ID FETCH-LOGICAL-c474t-4f9db3a2d5d2bd97a70f92c65cc1e17aac384d88f909b1f7f49c0682227b874d3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001493000800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-462X
IngestDate Fri Oct 03 12:45:24 EDT 2025
Fri Nov 21 06:31:46 EST 2025
Fri Sep 05 16:00:06 EDT 2025
Tue Nov 25 15:41:11 EST 2025
Thu May 29 04:59:37 EDT 2025
Sat Nov 29 07:55:32 EST 2025
Tue Nov 18 22:27:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords heat stress
LC-MS
RNA-seq
glucosinolates
oilseed rape
Brassica napus
HPLC
simple sugars
Language English
License Copyright © 2025 Kourani, Anastasiadi, Hammond and Mohareb.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-4f9db3a2d5d2bd97a70f92c65cc1e17aac384d88f909b1f7f49c0682227b874d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7880-2519
OpenAccessLink https://doaj.org/article/f633999c604648649df3985e15b8a290
PMID 40416089
PQID 3273798775
PQPubID 7426805
ParticipantIDs doaj_primary_oai_doaj_org_article_f633999c604648649df3985e15b8a290
hal_primary_oai_HAL_hal_05334010v1
proquest_miscellaneous_3207701037
proquest_journals_3273798775
pubmed_primary_40416089
crossref_citationtrail_10_3389_fpls_2025_1507338
crossref_primary_10_3389_fpls_2025_1507338
PublicationCentury 2000
PublicationDate 2025-05-09
PublicationDateYYYYMMDD 2025-05-09
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2025
Publisher Frontiers Media SA
Frontiers
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers
– name: Frontiers Media S.A
References Jagadish (B37) 2021; 44
Harsh (B25) 2016; 61
Rhee (B72) 2020; 9
Zhang (B97) 2017; 29
Zafar (B94) 2022; 12
Brown (B12) 2003; 62
Estravis-Barcala (B19) 2021; 16
Mathan (B56) 2020; 171
Seth (B76) 2021; 8
Gong (B24) 2012; 56
Capaldi (B14) 2015; 8
Narayanan (B62) 2016; 39
Goel (B23) 2023; 42
Marias (B54) 2017; 7
George (B20) 2018; 8
Pacheco-Sangerman (B66) 2023; 16
Huang (B30) 2019; 60
Ren (B71) 2022; 11
B2
Müller (B60) 2000; 123
B4
Jhingan (B39) 2023; 13
Koscielny (B44) 2018; 69
Mishra (B59) 2002; 16
Jin (B40) 2011; 11
Zandalinas (B96) 2016; 16
Touw (B82) 2020; 10
Rask (B69) 2000; 42
Huang (B31) 2013; 16
Sun (B79) 2020; 20
Aksouh-Harradj (B1) 2006; 86
Martínez-Ballesta (B55) 2013; 14
Li (B49) 2022; 23
Kaushal (B43) 2013; 40
Ikram (B34) 2022; 13
Hinojosa (B28) 2019; 205
Kourani (B45) 2022; 13
(B83) 2025
B57
Julius (B41) 2017; 58
Orlemans (B64) 2006; 95
Suwa (B80) 2010; 48
Wang (B87) 2020; 20
Angadi (B3) 2000; 80
Bell (B6) 2015; 172
Hedhly (B27) 2011; 74
Lemoine (B48) 2013; 24
Zhou (B99) 2018; 69
Lohani (B51) 2020; 71
Zheng (B98) 2011; 34
Hasanuzzaman (B26) 2014; 161
Hopkins (B29) 2009; 54
Way (B89) 2014; 119
Ljubej (B50) 2021; 10
Wang (B88) 2019; 67
Narayanan (B63) 2020; 9
Song (B77) 2020; 6
Long (B52) 2016; 7
Zoong Lwe (B100) 2021; 21
Glaubitz (B22) 2017; 40
Mishra (B58) 2019
Ismaili (B36) 2015; 22
Sun (B78) 2017; 92
Wahid (B86) 2007; 61
Chowdhary (B15) 2023
Kanehisa (B42) 2000; 28
Kumar (B46) 2023
Pasini (B67) 2012; 133
Ayaz (B5) 2006; 96
Van Dongen (B85) 2011; 168
Osorio (B65) 2014; 5
Dikšaitytė (B17) 2019; 142
Love (B53) 2014; 15
Yuenyong (B93) 2019; 19
Bi (B8) 2019; 167
Rao (B68) 2021; 161
Bohinc (B10) 2012; 10
Rasmusson (B70) 2020; 77
Esposito (B18) 2016; 5
Lamaoui (B47) 2018; 6
Bheemanahalli (B7) 2019; 59
Scafaro (B74) 2021; 44
B90
Valente Pereira (B84) 2002; 50
Hummel (B33) 2010; 154
Giorno (B21) 2009; 61
Seneviratne (B75) 2012
Yu (B92) 2014; 9
Bones (B11) 2006; 67
Tang (B81) 2023; 12
Rong (B73) 2021
Zafar (B95) 2020; 71
Burke (B13) 2007; 143
Dellero (B16) 2024; 292
Xalxo (B91) 2020
Namazkar (B61) 2016; 67
Impa (B35) 2019; 42
Jasper (B38) 2020; 163
Bi (B9) 2013; 70
Huang (B32) 2016; 172
References_xml – volume: 42
  start-page: 843
  year: 2023
  ident: B23
  article-title: Thermosensitivity of pollen: a molecular perspective
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-023-03003-y
– volume: 15
  year: 2014
  ident: B53
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 13
  start-page: 2344
  year: 2023
  ident: B39
  article-title: Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28661-6
– volume: 61
  start-page: 199
  year: 2007
  ident: B86
  article-title: Heat tolerance in plants: An overview
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2007.05.011
– volume: 86
  start-page: 967
  year: 2006
  ident: B1
  article-title: Canola response to high and moderately high temperature stresses during seed maturation
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/P05-130
– volume: 9
  start-page: 457
  year: 2020
  ident: B63
  article-title: Comparative lipidomic analysis reveals heat stress responses of two soybean genotypes differing in temperature sensitivity
  publication-title: Plants
  doi: 10.3390/plants9040457
– volume: 7
  start-page: 1297
  year: 2017
  ident: B54
  article-title: Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.2017.7.issue-4
– volume: 6
  start-page: 34
  year: 2020
  ident: B77
  article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0577-7
– volume: 22
  start-page: 285
  year: 2015
  ident: B36
  article-title: A comparative proteomic analysis of responses to high-temperature stress in hypocotyl of canola (Brassica napus L.)
  publication-title: Protein Pept. Lett.
  doi: 10.2174/0929866521666141124102755
– volume: 74
  start-page: 9
  year: 2011
  ident: B27
  article-title: Sensitivity of flowering plant gametophytes to temperature fluctuations
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2011.03.016
– volume: 42
  start-page: 1233
  year: 2019
  ident: B35
  article-title: Carbon balance and source-sink metabolic changes in winter wheat exposed to high night-time temperature
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13488
– volume: 39
  start-page: 787
  year: 2016
  ident: B62
  article-title: Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12649
– volume: 59
  start-page: 684
  year: 2019
  ident: B7
  article-title: Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2018.05.0292
– ident: B2
– volume: 96
  start-page: 572
  year: 2006
  ident: B5
  article-title: Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.)
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2005.03.011
– volume: 172
  start-page: 852
  year: 2015
  ident: B6
  article-title: Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.09.116
– volume: 69
  start-page: 284
  year: 2018
  ident: B44
  article-title: Phenotypic and metabolic variation among spring Brassica napus genotypes during heat stress
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP17259
– volume: 11
  year: 2022
  ident: B71
  article-title: Leaf Carbohydrate Metabolism Variation Caused by Late Planting in Rapeseed (Brassica napus L.) at Reproductive Stage
  publication-title: Plants
  doi: 10.3390/plants11131696
– volume: 10
  start-page: 357
  year: 2012
  ident: B10
  article-title: Environmental factors affecting the glucosinolate content in Brassicaceae
  publication-title: J. Food Agric. Environ.
– volume: 67
  start-page: 12528
  year: 2019
  ident: B88
  article-title: Natural Variation of Glucosinolates and Their Breakdown Products in Broccoli (Brassica oleracea var. italica) Seeds
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b06533
– volume: 8
  year: 2021
  ident: B76
  article-title: Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze)
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00532-z
– volume: 77
  start-page: 2056
  year: 2020
  ident: B70
  article-title: Effects of temperature and hypoxia on respiration, photorespiration, and photosynthesis of seagrass leaves from contrasting temperature regimes. J. Norkko (Ed.), ICES
  publication-title: J. Marine Sci.
  doi: 10.1093/icesjms/fsaa093
– volume: 40
  start-page: 1334
  year: 2013
  ident: B43
  article-title: Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP13082
– volume: 16
  year: 2021
  ident: B19
  article-title: Deciphering the transcriptomic regulation of heat stress responses in Nothofagus pumilio
  publication-title: PloS One
  doi: 10.1371/journal.pone.0246615
– volume: 11
  year: 2011
  ident: B40
  article-title: The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-11-35
– volume: 20
  year: 2020
  ident: B87
  article-title: Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-2292-y
– volume: 60
  start-page: 1457
  year: 2019
  ident: B30
  article-title: Heat stress suppresses Brassica napus seed oil accumulation by inhibition of photosynthesis and BnWRI1 pathway
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcz052
– volume: 24
  year: 2013
  ident: B48
  article-title: Source-to-sink transport of sugar and regulation by environmental factors
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00272
– volume: 5
  year: 2016
  ident: B18
  article-title: Nitrogen assimilation, abiotic stress and glucose 6-phosphate dehydrogenase: The full circle of reductants
  publication-title: Plants (Basel Switzerland)
  doi: 10.3390/plants5020024
– volume: 8
  start-page: 60
  year: 2015
  ident: B14
  article-title: Sulfur Metabolism and Stress Defense Responses in Plants
  publication-title: Tropical Plant Biology.
  doi: 10.1007/s12042-015-9152-1
– volume: 205
  start-page: 33
  year: 2019
  ident: B28
  article-title: Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.)
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.2019.205.issue-1
– volume: 119
  start-page: 89
  year: 2014
  ident: B89
  article-title: Thermal acclimation of photosynthesis: On the importance of adjusting our definitions and accounting for thermal acclimation of respiration
  publication-title: Photosynthesis Res.
  doi: 10.1007/s11120-013-9873-7
– volume: 62
  start-page: 471
  year: 2003
  ident: B12
  article-title: Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(02)00549-6
– volume: 69
  start-page: 1721
  year: 2018
  ident: B99
  article-title: Effect of high night temperature on storage lipids and transcriptome changes in developing seeds of oilseed rape
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery004
– volume: 12
  year: 2023
  ident: B81
  article-title: Genome-wide association study of glucosinolate metabolites (mGWAS) in Brassica napus L
  publication-title: Plants
  doi: 10.3390/plants12030639
– volume: 42
  start-page: 93
  year: 2000
  ident: B69
  article-title: Myrosinase: gene family evolution and herbivore defense in Brassicaceae
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1006380021658
– volume: 167
  start-page: 502
  year: 2019
  ident: B8
  article-title: Overexpression of transketolase gene promotes chilling tolerance by increasing the activities of photosynthetic enzymes, alleviating oxidative damage and stabilizing cell structure in Cucumis sativus L
  publication-title: Physiologia Plantarum
  doi: 10.1111/ppl.12903
– volume: 10
  year: 2021
  ident: B50
  article-title: Chilling and freezing temperature stress differently influence glucosinolates content in Brassica oleracea var. acephala
  publication-title: Plants (Basel)
  doi: 10.3390/plants10071305
– volume: 67
  start-page: 1053
  year: 2006
  ident: B11
  article-title: The enzymic and chemically induced decomposition of glucosinolates
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2006.02.024
– volume: 48
  start-page: 124
  year: 2010
  ident: B80
  article-title: High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2009.12.010
– volume: 168
  start-page: 1434
  year: 2011
  ident: B85
  article-title: Regulation of respiration in plants: A role for alternative metabolic pathways
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2010.11.004
– ident: B4
– volume: 19
  start-page: 472
  year: 2019
  ident: B93
  article-title: Isocitrate lyase plays important roles in plant salt tolerance
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2086-2
– volume: 95
  start-page: 19
  year: 2006
  ident: B64
  article-title: Thermal degradation of glucosinolates in red cabbage
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2004.12.013
– volume: 133
  start-page: 1025
  year: 2012
  ident: B67
  article-title: Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD-MS: Evaluation of Eruca sativa Mill. And Diplotaxis tenuifolia L. genetic resources
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.01.021
– volume: 172
  start-page: 1182
  year: 2016
  ident: B32
  article-title: The heat stress factor HSFA6b connects ABA signalling and ABA-mediated heat responses
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00860
– volume: 9
  year: 2014
  ident: B92
  article-title: Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling
  publication-title: PloS One
  doi: 10.1371/journal.pone.0101914
– volume: 171
  start-page: 620
  year: 2020
  ident: B56
  article-title: Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice
  publication-title: Physiologia Plantarum
  doi: 10.1111/ppl.13210
– ident: B57
– volume: 29
  start-page: 1007
  year: 2017
  ident: B97
  article-title: Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00916
– volume: 80
  start-page: 693
  year: 2000
  ident: B3
  article-title: Response of three Brassica species to high temperature stress during reproductive growth
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/P99-152
– volume: 123
  start-page: 949
  year: 2000
  ident: B60
  article-title: A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress
  publication-title: Plant Physiol.
  doi: 10.1104/pp.123.3.949
– volume: 14
  start-page: 11607
  year: 2013
  ident: B55
  article-title: The physiological importance of glucosinolates on plant response to abiotic stress in Brassica
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140611607
– start-page: 113
  volume-title: Energy Environ. Sustainability
  year: 2019
  ident: B58
  article-title: Function of plant heat shock transcription factors in abiotic stress
– volume: 13
  year: 2022
  ident: B34
  article-title: Comprehensive transcriptome analysis reveals heat-responsive genes in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis) using RNA sequencing
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1077920
– volume: 71
  start-page: 555
  year: 2020
  ident: B51
  article-title: High temperature susceptibility of sexual reproduction in crop plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz426
– volume: 16
  start-page: 1
  year: 2016
  ident: B96
  article-title: Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-016-0791-7
– volume: 143
  start-page: 108121
  year: 2007
  ident: B13
  article-title: Evaluation of source leaf responses to water-deficit stresses in cotton using a novel stress bioassay
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.087783
– volume: 8
  start-page: 4508
  year: 2018
  ident: B20
  article-title: High midday temperature stress has stronger effects on biomass than on photosynthesis: A mesocosm experiment on four tropical seagrass species
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.3952
– volume: 61
  start-page: 453
  year: 2009
  ident: B21
  article-title: Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp316
– start-page: 77
  volume-title: Heat Stress Tolerance Plants
  year: 2020
  ident: B91
  article-title: Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress
  doi: 10.1002/9781119432401.ch5
– volume: 71
  start-page: 470
  year: 2020
  ident: B95
  article-title: Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz476
– volume: 58
  start-page: 1442
  year: 2017
  ident: B41
  article-title: Sugar transporters in plants: new insights and discoveries
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcx090
– year: 2021
  ident: B73
  article-title: A transaldolase from Aquilaria Sinensis involves in ABA-mediated seed germination and root growth
  doi: 10.21203/rs.3.rs-234062/v1
– start-page: 109
  volume-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation
  year: 2012
  ident: B75
  article-title: Changes in climate extremes and their impacts on the natural physical environment
  doi: 10.1017/CBO9781139177245.006
– volume: 163
  year: 2020
  ident: B38
  article-title: Growth temperature influences postharvest glucosinolate concentrations and hydrolysis product formation in first and second cuts of rocket salad
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111157
– volume: 142
  start-page: 59
  year: 2019
  ident: B17
  article-title: Growth and photosynthetic responses in Brassica napus differ during stress and recovery periods when exposed to combined heat, drought and elevated CO2
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.06.026
– volume: 16
  start-page: 107
  year: 2023
  ident: B66
  article-title: Glucosinolates: Structure, classification, biosynthesis and functions in higher plants
  publication-title: Agro Productividad
  doi: 10.32854/agrop.v16i3.2567
– volume: 61
  start-page: 57
  year: 2016
  ident: B25
  article-title: Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia)
  publication-title: Ann. Agric. Sci.
  doi: 10.1016/j.aoas.2016.02.001
– volume: 54
  start-page: 57
  year: 2009
  ident: B29
  article-title: Role of glucosinolates in insect-plant relationships and multitrophic interactions
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev.ento.54.110807.090623
– start-page: 3
  volume-title: Plant Transcription Factors
  year: 2023
  ident: B15
  article-title: Plant transcription factors: An overview of their role in plant life
  doi: 10.1016/B978-0-323-90613-5.00003-0
– volume: 154
  start-page: 357
  year: 2010
  ident: B33
  article-title: Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.157008
– volume: 50
  start-page: 6239
  year: 2002
  ident: B84
  article-title: Influence of temperature and ontogeny on the Levels of glucosinolates in broccoli (Brassica oleracea Var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf020309x
– volume: 28
  start-page: 27
  year: 2000
  ident: B42
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– volume: 161
  start-page: 297
  year: 2014
  ident: B26
  article-title: Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress
  publication-title: Biol. Trace Element Res.
  doi: 10.1007/s12011-014-0120-7
– volume: 56
  start-page: 422
  year: 2012
  ident: B24
  article-title: Involvement of G6PDH in heat stress tolerance in the calli from Przewalskia tangutica and Nicotiana tabacum
  publication-title: Biol. plantarum
  doi: 10.1007/s10535-012-0072-8
– volume: 292
  year: 2024
  ident: B16
  article-title: U-13C-glucose incorporation into source leaves of Brassica napus highlights light-dependent regulations of metabolic fluxes within central carbon metabolism
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2023.154162
– volume: 10
  year: 2020
  ident: B82
  article-title: Both biosynthesis and transport are involved in glucosinolate accumulation during root-herbivory in Brassica rapa
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01653
– volume: 16
  start-page: 344
  year: 2013
  ident: B31
  article-title: Succinate dehydrogenase: the complex roles of a simple enzyme
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2013.02.007
– volume: 12
  year: 2022
  ident: B94
  article-title: Inter-varietal variation in phenolic profile, sugar contents, antioxidant, anti-proliferative and antibacterial activities of selected brassica species
  publication-title: Appl. Sci.
  doi: 10.3390/app12125811
– volume: 16
  start-page: 1555
  year: 2002
  ident: B59
  article-title: In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato
  publication-title: Genes Dev.
  doi: 10.1101/gad.228802
– volume: 161
  start-page: 222
  year: 2021
  ident: B68
  article-title: Effect of short-term high temperature on the accumulation of glucosinolates in Brassica rapa
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.02.013
– year: 2023
  ident: B46
  article-title: Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1157678
– ident: B90
– volume: 34
  start-page: 1431
  year: 2011
  ident: B98
  article-title: Plant adaptation to frequent alterations between high and low temperatures: Remodelling of membrane lipids and maintenance of unsaturation levels
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02341.x
– volume: 7
  year: 2016
  ident: B52
  article-title: Identification and characterization of the glucose-6-phosphate dehydrogenase gene family in the para rubber tree, Hevea brasiliensis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00215
– volume: 40
  start-page: 121
  year: 2017
  ident: B22
  article-title: Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12850
– volume: 13
  year: 2022
  ident: B45
  article-title: Genetic and physiological responses to heat stress in Brassica napus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.832147
– volume: 44
  start-page: 2090
  year: 2021
  ident: B74
  article-title: Responses of leaf respiration to heatwaves
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14018
– volume: 44
  start-page: 1992
  year: 2021
  ident: B37
  article-title: Plant heat stress: concepts directing future research
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14050
– volume: 5
  year: 2014
  ident: B65
  article-title: An update on source-to-sink carbon partitioning in tomato
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00516
– volume: 9
  year: 2020
  ident: B72
  article-title: Glucosinolate content in brassica genetic resources and their distribution pattern within and between inner, middle, and outer leaves
  publication-title: Plants
  doi: 10.3390/plants9111421
– year: 2025
  ident: B83
  article-title: Oilseeds: World markets and trade. United States Department of Agriculture, Foreign Agricultural Service
– volume: 6
  year: 2018
  ident: B47
  article-title: Heat and drought stresses in crops and approaches for their mitigation
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00026
– volume: 20
  start-page: 184
  year: 2020
  ident: B79
  article-title: AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-02369-5
– volume: 70
  start-page: 512
  year: 2013
  ident: B9
  article-title: Cloning and expression analysis of transketolase gene in Cucumis sativus L
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.06.017
– volume: 67
  start-page: 4117
  year: 2016
  ident: B61
  article-title: Concurrent elevation of CO2, O3 and temperature severely affects oil quality and quantity in rapeseed
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw180
– volume: 23
  year: 2022
  ident: B49
  article-title: Combined analysis of the metabolome and transcriptome to explore heat stress responses and adaptation mechanisms in celery (Apium graveolens L.)
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23063367
– volume: 92
  start-page: 452
  year: 2017
  ident: B78
  article-title: The high quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype
  publication-title: Plant J.
  doi: 10.1111/tpj.13669
– volume: 21
  start-page: 404
  year: 2021
  ident: B100
  article-title: Alterations in the leaf lipidome of Brassica carinata under high-temperature stress
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-021-03189-x
SSID ssj0000500997
Score 2.4247522
Snippet Oilseed rape ( Brassica napus ), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress...
Oilseed rape ( ), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during...
Oilseed rape (Brassica napus), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress...
SourceID doaj
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1507338
SubjectTerms Agricultural production
Antioxidants
Biomarkers
Brassica
Brassica napus
Carbohydrates
Cell walls
Cellular stress response
Chlorophyll
Climate change
Computer Science
Crops
Cultivars
DNA methylation
Down-regulation
Environmental Sciences
Flowering
Flowers & plants
Genes
Glucosinolates
Glycolysis
Heat shock factors
Heat shock proteins
Heat stress
Heat tolerance
Heat treating
Heat treatment
Heat treatments
Heat waves
High temperature
High-performance liquid chromatography
HPLC
LC-MS
Life Sciences
Liquid chromatography
Marker-assisted selection
Mass spectrometry
Mass spectroscopy
Metabolic pathways
Metabolism
Metabolites
Oilseed crops
oilseed rape
Oilseeds
Oxidative phosphorylation
Pentose
Pentose phosphate pathway
Phosphorylation
Physiology
Plant breeding
Rape plants
Rapeseed
Real time
RNA-seq
Seeds
Sugar
Temperature effects
Temperature tolerance
Transcriptomes
Transcriptomics
Vegetable oils
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg2wMX3o9AQQZxQgp1Yie2T6iLWvVQrVYIUG-R48d2pTRZNruV9sZPZybJBjjQC4dIUey8NOOZbzwvQt5LI0KaWBtr7VksLPMxaEUfp8Yqbjnc1XVR-H4hZzN1eannw4ZbO4RV7mViJ6hdY3GP_JiDnpVgIMvs0-pHjF2j0Ls6tNC4Sw6wUpmYkIPp6Wz-ZdxlYRlCINm7M8Ea08dhVWGV7jT7iFCIY17KHwqpq9sPauYKoyL_BTk71XP24H8_-iG5P4BOetJzySNyx9ePyeG0AWC4e0J-ztcgAeuFdxQlM-3TR-iyptM1QGugIq3NatvSPqWRhgo7q-FZ7Rdd3fBqR_tsy5buMCKOmhoO9MO3tI-JX9ZgQm98N9BuF2BN02u_AQaslu31U_Lt7PTr5_N4aMwQWyHFJhZBu5Kb1GUuLZ2WRrKgU5tn1iY-kcZYroRTKmimyyTIILRlOUIRWSopHH9GJnVT-xeEOpGIUKYlz63B0oOlzF2mldOAzAQPaUTYnjqFHaqWY_OMqgDrBQlaIEELJGgxEDQiH8ZbVn3JjtsmT5Hk40Sstt1daNaLYli8Rcg54Dhtc_QDq1xoF7hWmU-yUplUs4i8A4b56xnnJxcFXutSncHmvUkicrTnkWKQE23xm0Ei8nYchhWObhtT-2aLc5iU2I5DRuR5z4fjqwQDQM2Ufnn7w1-Re_jTXaCmPiKTzXrrX5NDe7NZtus3w6L5BQaRIRE
  priority: 102
  providerName: ProQuest
Title Prolonged heat stress in Brassica napus during flowering negatively impacts yield and alters glucosinolate and sugars metabolism
URI https://www.ncbi.nlm.nih.gov/pubmed/40416089
https://www.proquest.com/docview/3273798775
https://www.proquest.com/docview/3207701037
https://utc.hal.science/hal-05334010
https://doaj.org/article/f633999c604648649df3985e15b8a290
Volume 16
WOSCitedRecordID wos001493000800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M0K
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M7P
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: BENPR
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: PIMPY
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg2QMXtLzDLpVBnJDCJrET28ct6moRu1WEAJVT5PhRKnXTqmlX6gXx05mJs1U5ABcOtarYSVrP2PONPPMNIW-E5j5LjYmVcknMTeJisIouzrSRzDC4q6ui8PVSjMdyMlHlXqkvjAkL9MBh4k59wcCGKlPgGZwsuLKeKZm7NK-lzlTnrQPq2XOmAqs3Qh8RjjHBC1OnfjlHdu4sf4cQiGE-yp4h6vj6wbx8x2jIP0HNzuScH5EHPVakZ-E3PiR3XPOIHA4XgOe2j8nPcgUbVzN1luKGSkPWB501dLgCRAyTTxu93LQ0ZCJSP8eCaPitcdOO7nu-pSFJsqVbDGSjuoEPHp-3NISyzxrwfNeu62g3U3CC6bVbg97MZ-31E_LlfPT5_UXc11OIDRd8HXOvbM10ZnOb1VYJLRKvMlPkxqQuFVobJrmV0qtE1akXniuTFIggRC0Ft-wpOWgWjXtOqOUp93VWs8JoZAysRWFzJa0CQMWZzyKS3E5uZXqycax5Ma_A6UB5VCiPCuVR9fKIyNvdLcvAtPG3wUOU2G4gkmR3F0B1ql51qn-pTkReg7x_e8bF2WWF17oMZXBVb9KInNyqQ9Uv77ZiAPqEkkLkEXm164aFiactunGLDY5JhMAqGiIiz4Ia7V7FE8DBiVQv_sffOCb3cWq6KEx1Qg7Wq417SQ7NzXrWrgbkrpjIAbk3HI3LT4NulUB7lXzEVpTY_hhBf_nhqvz2C5ErFzY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLfGmAQXvj8CAwyCC1JY4jixfUBoBaZOK1UPA-2WOf4olbKkNO1Qb_xF_I28l7QFDuy2A4dIUew4SvLze79nvw9CXgrNPYuNCZVyUchN5ELQii5k2sjEJHBXW0Xhy0AMh_LkRI22yM91LAy6Va5lYiuobW1wjXwvAT0rwEAW6bvptxCrRuHu6rqERgeLI7f8DiZb8_bwA_zfV4wdfDx-3w9XVQVCwwWfh9wrWySa2dSywiqhReQVM1lqTOxiobVJJLdSehWpIvbCc2WiDPWoKKTgNoFxr5CrQCOYbF0FR5s1nShFwiW6zVOw_dSen5aYE5ylb5B4JRgF84f6a6sEgFL7ij6Y_yK4raI7uPm_faJb5MaKUtP9bg7cJluuukN2ejXQ3uVd8mM0A_lejZ2lqHdoFxxDJxXtzcBwAIzSSk8XDe0CNqkvsW4cnlVu3GZFL5e0iyVt6BL9_aiu4EAvg4Z2Hv-Tqi6Bs7cNzWKsoeHMzWF6lZPm7B75fClvf59sV3XlHhJqecx9wYokMxoTKxYis6mSVgHv5IlnAYnWaMjNKic7lgYpc7DNEEA5AihHAOUrAAXk9eaWaZeQ5KLOPYTYpiPmEm8v1LNxvhJNuc8SYKnKZLjLLTOurE-UTF2cFlIzFQXkBQD0rzH6-4Mcr7WB3GDRn8cB2V1jMl9JwSb_DciAPN80g_zCTSlduXqBfSIhsNiICMiDDvebR_EIzIVIqkcXD_6MXOsffxrkg8Ph0WNyHT9A65Kqdsn2fLZwT8iOOZ9PmtnTdrpScnrZ4P8F0Od9Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prolonged+heat+stress+in+Brassica+napus+during+flowering+negatively+impacts+yield+and+alters+glucosinolate+and+sugars+metabolism&rft.jtitle=Frontiers+in+plant+science&rft.au=Kourani%2C+Mariam&rft.au=Anastasiadi%2C+Maria&rft.au=Hammond%2C+John+P&rft.au=Mohareb%2C+Fady&rft.date=2025-05-09&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=16&rft.spage=1507338&rft_id=info:doi/10.3389%2Ffpls.2025.1507338&rft_id=info%3Apmid%2F40416089&rft.externalDocID=40416089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon