Bayesian inference for nonlinear multivariate diffusion models observed with error

Diffusion processes governed by stochastic differential equations (SDEs) are a well-established tool for modelling continuous time data from a wide range of areas. Consequently, techniques have been developed to estimate diffusion parameters from partial and discrete observations. Likelihood-based i...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis Vol. 52; no. 3; pp. 1674 - 1693
Main Authors: Golightly, A., Wilkinson, D.J.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 2008
Elsevier Science
Elsevier
Series:Computational Statistics & Data Analysis
Subjects:
ISSN:0167-9473, 1872-7352
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diffusion processes governed by stochastic differential equations (SDEs) are a well-established tool for modelling continuous time data from a wide range of areas. Consequently, techniques have been developed to estimate diffusion parameters from partial and discrete observations. Likelihood-based inference can be problematic as closed form transition densities are rarely available. One widely used solution involves the introduction of latent data points between every pair of observations to allow a Euler–Maruyama approximation of the true transition densities to become accurate. In recent literature, Markov chain Monte Carlo (MCMC) methods have been used to sample the posterior distribution of latent data and model parameters; however, naive schemes suffer from a mixing problem that worsens with the degree of augmentation. A global MCMC scheme that can be applied to a large class of diffusions and whose performance is not adversely affected by the number of latent values is therefore explored. The methodology is illustrated by estimating parameters governing an auto-regulatory gene network, using partial and discrete data that are subject to measurement error.
AbstractList Diffusion processes governed by stochastic differential equations (SDEs) are a well-established tool for modelling continuous time data from a wide range of areas. Consequently, techniques have been developed to estimate diffusion parameters from partial and discrete observations. Likelihood-based inference can be problematic as closed form transition densities are rarely available. One widely used solution involves the introduction of latent data points between every pair of observations to allow a Euler-Maruyama approximation of the true transition densities to become accurate. In recent literature, Markov chain Monte Carlo (MCMC) methods have been used to sample the posterior distribution of latent data and model parameters; however, naive schemes suffer from a mixing problem that worsens with the degree of augmentation. A global MCMC scheme that can be applied to a large class of diffusions and whose performance is not adversely affected by the number of latent values is therefore explored. The methodology is illustrated by estimating parameters governing an auto-regulatory gene network, using partial and discrete data that are subject to measurement error.
Author Golightly, A.
Wilkinson, D.J.
Author_xml – sequence: 1
  givenname: A.
  surname: Golightly
  fullname: Golightly, A.
  email: a.golightly@ncl.ac.uk
– sequence: 2
  givenname: D.J.
  surname: Wilkinson
  fullname: Wilkinson, D.J.
  email: d.j.wilkinson@ncl.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20017587$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeecsdana/v_3a52_3ay_3a2008_3ai_3a3_3ap_3a1674-1693.htm$$DView record in RePEc
BookMark eNp9kUuPFCEUhYkZE3tG_4Cr2uiuangWdOJGJ-Mj6cTE6JpQcMnQqYIW6Db976XSo4tZzOJyN-c7wDnX6CqmCAi9JXggmIy3-8EWZwaKsRywGDDZvkAboiTtJRP0Cm2aSPZbLtkrdF3KHmNMuVQb9OOTOUMJJnYhesgQLXQ-5a75zyGCyd1ynGs4mRxMhc4F748lpNgtycFcujQVyCdw3Z9QHzrIOeXX6KU3c4E3j_sG_fp8__Pua7_7_uXb3cddb7nktedOKUeZEAorLmEySslxslYBOE6AU0_VNGJl_UgMnZjxVNiJqVEKbiei2A16f_E95PT7CKXqJRQL82wipGPRtH2RCcKacHcRZjiA1YccFpPPGgDW0KLRJ82MoO04t2kZqrZCG9bm0KZlxzUZt0w_1KXZvXu81xRrZp9NtKH8t208kULJplMXnc2plAxe21BNbeHVbMKsCdZrd3qv12esnNRY6NZdQ-kT9J_7s9CHC9R6gVOArIsNa6EuZLBVuxSew_8CSDm1EQ
CitedBy_id crossref_primary_10_1016_j_jcp_2019_07_035
crossref_primary_10_1007_s11009_022_09949_y
crossref_primary_10_1016_j_neucom_2009_11_026
crossref_primary_10_1111_j_1467_9876_2009_00696_x
crossref_primary_10_1016_j_jtbi_2020_110255
crossref_primary_10_1093_biomet_ass034
crossref_primary_10_1007_s11222_011_9310_8
crossref_primary_10_1371_journal_pcbi_1009746
crossref_primary_10_1140_epjb_s10051_021_00149_0
crossref_primary_10_1214_16_AAP1236
crossref_primary_10_1515_snde_2012_0026
crossref_primary_10_1016_j_csda_2019_01_006
crossref_primary_10_1515_sagmb_2014_0071
crossref_primary_10_1111_biom_12152
crossref_primary_10_1214_11_BA608
crossref_primary_10_1007_s11222_007_9043_x
crossref_primary_10_1002_env_2353
crossref_primary_10_1016_j_physd_2023_133784
crossref_primary_10_1007_s00180_011_0246_4
crossref_primary_10_1007_s10100_012_0237_8
crossref_primary_10_1093_biomet_asv051
crossref_primary_10_1007_s11222_022_10083_5
crossref_primary_10_1016_j_csda_2008_07_036
crossref_primary_10_1111_j_1467_9868_2009_00736_x
crossref_primary_10_1534_genetics_116_187278
crossref_primary_10_1080_10618600_2022_2027243
crossref_primary_10_1007_s11222_011_9255_y
crossref_primary_10_1007_s11203_025_09326_9
crossref_primary_10_1080_00949655_2020_1746788
crossref_primary_10_1093_jjfinec_nbp027
crossref_primary_10_1016_j_csda_2010_04_018
crossref_primary_10_1214_20_BA1216
crossref_primary_10_1214_25_AOS2496
crossref_primary_10_1214_16_BA1009
crossref_primary_10_1016_j_jcp_2015_12_043
crossref_primary_10_1080_10618600_2013_783484
crossref_primary_10_1007_s00180_017_0728_0
crossref_primary_10_1137_17M1151900
crossref_primary_10_1111_rssb_12497
crossref_primary_10_1177_00375497211009576
crossref_primary_10_1093_bib_bbp072
crossref_primary_10_1007_s11222_011_9244_1
crossref_primary_10_1016_j_csda_2014_10_011
crossref_primary_10_1007_s11222_015_9625_y
crossref_primary_10_1007_s00180_018_0846_3
crossref_primary_10_1016_j_jat_2010_05_002
crossref_primary_10_1016_j_csda_2009_07_025
crossref_primary_10_1080_01621459_2012_714715
crossref_primary_10_1093_biostatistics_kxs052
crossref_primary_10_1111_sjos_12362
crossref_primary_10_1080_03610918_2017_1291960
crossref_primary_10_1007_s11222_013_9441_1
crossref_primary_10_1093_rfs_hhn110
crossref_primary_10_1007_s00180_012_0352_y
crossref_primary_10_1111_rssb_12061
crossref_primary_10_1371_journal_pone_0019616
crossref_primary_10_1109_JIOT_2024_3365657
crossref_primary_10_1002_cjs_10096
crossref_primary_10_1002_wics_1585
crossref_primary_10_1007_s11203_019_09199_9
crossref_primary_10_1007_s00249_009_0520_3
crossref_primary_10_1007_s11336_019_09664_7
crossref_primary_10_1038_nrg2509
crossref_primary_10_1007_s00285_017_1099_4
crossref_primary_10_1016_j_spa_2012_12_001
crossref_primary_10_1080_17442508_2017_1381097
crossref_primary_10_1111_j_1467_9469_2012_00812_x
crossref_primary_10_1080_02664763_2019_1677573
crossref_primary_10_1007_s11009_023_10056_9
crossref_primary_10_1111_rssb_12118
crossref_primary_10_1175_MWR_D_15_0261_1
crossref_primary_10_1007_s11222_014_9469_x
crossref_primary_10_1214_15_BA948
crossref_primary_10_1016_j_jcp_2020_109635
crossref_primary_10_1063_5_0081668
crossref_primary_10_1016_j_mbs_2013_03_008
crossref_primary_10_1017_apr_2024_12
crossref_primary_10_1080_01621459_2012_720899
crossref_primary_10_1111_rssc_12222
crossref_primary_10_1137_16M1079282
crossref_primary_10_1007_s11222_016_9660_3
crossref_primary_10_1098_rsos_200270
crossref_primary_10_1080_01621459_2012_655995
crossref_primary_10_1002_aic_14409
crossref_primary_10_1016_j_neuroimage_2012_12_018
crossref_primary_10_1016_j_compchemeng_2014_01_006
crossref_primary_10_1155_2012_752631
crossref_primary_10_3934_fods_2022008
crossref_primary_10_1214_08_BA332
crossref_primary_10_1088_1751_8113_41_35_355002
crossref_primary_10_1515_sagmb_2017_0046
Cites_doi 10.1016/j.spa.2006.04.004
10.1016/S0168-9525(98)01659-X
10.2307/2670179
10.1198/106186002835
10.1016/0378-4371(92)90283-V
10.1007/s11222-006-9392-x
10.1093/biomet/88.3.603
10.1109/78.978383
10.1111/j.1467-9868.2006.00552.x
10.1111/1468-0262.00226
10.1093/biomet/84.3.653
10.1089/cmb.2006.13.838
10.1023/A:1008935410038
10.2307/2965410
10.2307/3318679
10.1049/ip-f-2.1993.0015
10.2307/2289457
10.1198/073500101316970403
10.2307/2328983
10.1086/260062
10.1093/genetics/149.4.1633
10.1007/PL00008786
10.2307/1911242
10.1111/j.1541-0420.2005.00345.x
10.1198/073500102288618397
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
8FD
FR3
P64
RC3
DOI 10.1016/j.csda.2007.05.019
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 1693
ExternalDocumentID eeecsdana_v_3a52_3ay_3a2008_3ai_3a3_3ap_3a1674_1693_htm
20017587
10_1016_j_csda_2007_05_019
S0167947307002198
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
STF
X
X2L
8FD
FR3
P64
RC3
ID FETCH-LOGICAL-c474t-4d88d235580847eba8876bcc8eed41e42f28b608cf61a2b3af25cb386754cb183
ISICitedReferencesCount 135
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000253669700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-9473
IngestDate Sat Sep 27 23:15:48 EDT 2025
Wed Aug 18 03:10:08 EDT 2021
Mon Jul 21 09:15:25 EDT 2025
Sat Nov 29 03:40:34 EST 2025
Tue Nov 18 22:17:51 EST 2025
Fri Feb 23 02:20:06 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords MCMC
Nonlinear stochastic differential equation
Innovation scheme
Bayesian inference
Reparameterisation
Particle filter
Density estimation
Parameter estimation
Mixing
Statistical distribution
Error estimation
Differential equation
Continuous time
Multivariate analysis
Stochastic method
Stochastic process
Markov chain
Distribution function
Diffusion process
Integral equation
Approximation theory
Latent value
Measurement error
Posterior distribution
Stochastic equation
Bayes estimation
Mixed distribution
Monte Carlo method
Data analysis
Approximation
Discrete data
Statistical estimation
Numerical analysis
Statistical computation
Non linear model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-4d88d235580847eba8876bcc8eed41e42f28b608cf61a2b3af25cb386754cb183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://durham-repository.worktribe.com/output/1214220
PQID 20243513
PQPubID 23462
PageCount 20
ParticipantIDs proquest_miscellaneous_20243513
repec_primary_eeecsdana_v_3a52_3ay_3a2008_3ai_3a3_3ap_3a1674_1693_htm
pascalfrancis_primary_20017587
crossref_citationtrail_10_1016_j_csda_2007_05_019
crossref_primary_10_1016_j_csda_2007_05_019
elsevier_sciencedirect_doi_10_1016_j_csda_2007_05_019
PublicationCentury 2000
PublicationDate 2008
2008-1-00
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Computational Statistics & Data Analysis
PublicationTitle Computational statistics & data analysis
PublicationYear 2008
Publisher Elsevier B.V
Elsevier Science
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
– name: Elsevier
References Ptashne (bib30) 1992
Berzuini, Best, Gilks, Larizza (bib2) 1997; 92
Del Moral, Jacod, Protter (bib9) 2002; 120
Tanner, Wong (bib36) 1987; 82
Beskos, Papaspiliopoulos, Roberts, Fearnhead (bib3) 2006; 68
Chib, Pitt, Shephard (bib7) 2006
Elerian, Chib, Shephard (bib13) 2001; 69
Latchman (bib23) 2002
Storvik (bib33) 2002; 50
Golightly, Wilkinson (bib18) 2006; 16
Golightly, Wilkinson (bib17) 2005; 61
Eraker (bib14) 2001; 19
Bibby, Sørensen (bib4) 1995; 1
Doucet, Godsill, Andrieu (bib11) 2000; 10
Golightly, Wilkinson (bib19) 2006; 13
Gordon, N.J., Salmond, D.J., Smith, A.F.M., 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc-F 140, 107–113.
Pitt, Shephard (bib29) 1999; 446
Stroud, Polson, Muller (bib35) 2004
Øksendal (bib26) 1995
Johannes, Polson, Stroud (bib21) 2006
Arkin, Ross, McAdams (bib1) 1998; 149
Chan, Karolyi, Longstaff, Sanders (bib6) 1992; 47
Black, Scholes (bib5) 1973; 81
Liu, West (bib24) 2001
Stramer, O., Yan, J., 2007. Asymptotics of an efficient Monte Carlo estimation for the transition density of diffusion processes. Methodol. Comput. Appl. doi
Kalogeropoulos (bib22) 2006
Shephard, Pitt (bib32) 1997; 84
Gillespie (bib16) 1992; 188
Wilkinson (bib37) 2003
Roberts, Stramer (bib31) 2001; 88
Durham, Gallant (bib12) 2002; 20
McAdams, Arkin (bib25) 1999; 15
Papaspiliopolous, Roberts, Skôld (bib27) 2003
Pedersen (bib28) 1995; 1995
.
Cox, Ingersoll, Ross (bib8) 1985; 53
Fearnhead (bib15) 2002; 11
Wilkinson (bib38) 2006
Delyon, Hu (bib10) 2006; 116
Storvik (10.1016/j.csda.2007.05.019_bib33) 2002; 50
Gillespie (10.1016/j.csda.2007.05.019_bib16) 1992; 188
Papaspiliopolous (10.1016/j.csda.2007.05.019_bib27) 2003
10.1016/j.csda.2007.05.019_bib34
Roberts (10.1016/j.csda.2007.05.019_bib31) 2001; 88
Cox (10.1016/j.csda.2007.05.019_bib8) 1985; 53
Latchman (10.1016/j.csda.2007.05.019_bib23) 2002
Arkin (10.1016/j.csda.2007.05.019_bib1) 1998; 149
Wilkinson (10.1016/j.csda.2007.05.019_bib37) 2003
Berzuini (10.1016/j.csda.2007.05.019_bib2) 1997; 92
Beskos (10.1016/j.csda.2007.05.019_bib3) 2006; 68
Golightly (10.1016/j.csda.2007.05.019_bib18) 2006; 16
Shephard (10.1016/j.csda.2007.05.019_bib32) 1997; 84
Pedersen (10.1016/j.csda.2007.05.019_bib28) 1995; 1995
Doucet (10.1016/j.csda.2007.05.019_bib11) 2000; 10
Johannes (10.1016/j.csda.2007.05.019_bib21) 2006
Kalogeropoulos (10.1016/j.csda.2007.05.019_bib22) 2006
Tanner (10.1016/j.csda.2007.05.019_bib36) 1987; 82
Chan (10.1016/j.csda.2007.05.019_bib6) 1992; 47
Fearnhead (10.1016/j.csda.2007.05.019_bib15) 2002; 11
Pitt (10.1016/j.csda.2007.05.019_bib29) 1999; 446
10.1016/j.csda.2007.05.019_bib20
Elerian (10.1016/j.csda.2007.05.019_bib13) 2001; 69
McAdams (10.1016/j.csda.2007.05.019_bib25) 1999; 15
Ptashne (10.1016/j.csda.2007.05.019_bib30) 1992
Stroud (10.1016/j.csda.2007.05.019_bib35) 2004
Bibby (10.1016/j.csda.2007.05.019_bib4) 1995; 1
Durham (10.1016/j.csda.2007.05.019_bib12) 2002; 20
Eraker (10.1016/j.csda.2007.05.019_bib14) 2001; 19
Black (10.1016/j.csda.2007.05.019_bib5) 1973; 81
Chib (10.1016/j.csda.2007.05.019_bib7) 2006
Delyon (10.1016/j.csda.2007.05.019_bib10) 2006; 116
Golightly (10.1016/j.csda.2007.05.019_bib17) 2005; 61
Øksendal (10.1016/j.csda.2007.05.019_bib26) 1995
Del Moral (10.1016/j.csda.2007.05.019_bib9) 2002; 120
Liu (10.1016/j.csda.2007.05.019_bib24) 2001
Golightly (10.1016/j.csda.2007.05.019_bib19) 2006; 13
Wilkinson (10.1016/j.csda.2007.05.019_bib38) 2006
References_xml – volume: 50
  start-page: 281
  year: 2002
  end-page: 289
  ident: bib33
  article-title: Particle filters for state-space models with the presence of unknown static parameters
  publication-title: IEEE. Trans. Signal. Process.
– volume: 82
  start-page: 528
  year: 1987
  end-page: 540
  ident: bib36
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: J. Amer. Statist. Assoc.
– reference: Stramer, O., Yan, J., 2007. Asymptotics of an efficient Monte Carlo estimation for the transition density of diffusion processes. Methodol. Comput. Appl. doi:
– year: 2006
  ident: bib7
  article-title: Likelihood based inference for diffusion driven models
– year: 2006
  ident: bib38
  article-title: Stochastic Modelling for Systems Biology
– reference: Gordon, N.J., Salmond, D.J., Smith, A.F.M., 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc-F 140, 107–113.
– year: 1995
  ident: bib26
  article-title: Stochastic Differential Equations: An Introduction with Applications
– volume: 149
  start-page: 633
  year: 1998
  end-page: 648
  ident: bib1
  article-title: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected
  publication-title: Genetics
– year: 2001
  ident: bib24
  article-title: Combined parameter and state estimation in simulation-based filtering
  publication-title: Sequential Monte Carlo Methods in Practice
– volume: 446
  start-page: 590
  year: 1999
  end-page: 599
  ident: bib29
  article-title: Filtering via simulation: auxiliary particle filters
  publication-title: J. Amer. Statist. Assoc.
– volume: 84
  start-page: 653
  year: 1997
  end-page: 667
  ident: bib32
  article-title: Likelihood analysis of non-Gaussian measurement time series
  publication-title: Biometrika
– start-page: 307
  year: 2003
  end-page: 326
  ident: bib27
  article-title: Non-centered parameterisations for hierarchical models and data augmentation
  publication-title: Bayesian Statistics 7
– volume: 15
  start-page: 65
  year: 1999
  end-page: 69
  ident: bib25
  article-title: Its a noisy business: genetic regulation at the nanomolar scale
  publication-title: Trends. Genet.
– volume: 120
  start-page: 346
  year: 2002
  end-page: 368
  ident: bib9
  article-title: The Monte Carlo method for filtering with discrete-time observations
  publication-title: Probab. Theory Related Fields
– volume: 88
  start-page: 603
  year: 2001
  end-page: 621
  ident: bib31
  article-title: On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm
  publication-title: Biometrika
– start-page: 323
  year: 2003
  end-page: 324
  ident: bib37
  article-title: Discussion to ‘Non centred parameterisations for hierarchical models and data augmentation’ by Papaspiliopoulos, Roberts and Skold
  publication-title: Bayesian Statistics 7
– volume: 47
  start-page: 1209
  year: 1992
  end-page: 1228
  ident: bib6
  article-title: An empirical comparison of alternative models of the short-term interest
  publication-title: J. Finance
– volume: 10
  start-page: 197
  year: 2000
  end-page: 208
  ident: bib11
  article-title: On sequential Monte Carlo sampling methods for Bayesian filtering
  publication-title: Statistist. Comput.
– volume: 188
  start-page: 404
  year: 1992
  end-page: 425
  ident: bib16
  article-title: A rigorous derivation of the chemical master equation
  publication-title: Physica A
– volume: 61
  start-page: 781
  year: 2005
  end-page: 788
  ident: bib17
  article-title: Bayesian inference for stochastic kinetic models using a diffusion approximation
  publication-title: Biometrics
– year: 2006
  ident: bib22
  article-title: Likelihood-based inference for a class of multivariate diffusions with unobserved paths
– volume: 69
  start-page: 959
  year: 2001
  end-page: 993
  ident: bib13
  article-title: Likelihood inference for discretely observed nonlinear diffusions
  publication-title: Econometrica
– volume: 16
  start-page: 323
  year: 2006
  end-page: 338
  ident: bib18
  article-title: Bayesian sequential inference for nonlinear multivariate diffusions
  publication-title: Statist. Comput.
– start-page: 236
  year: 2004
  end-page: 247
  ident: bib35
  article-title: Practical filtering for stochastic volatility models
  publication-title: State Space and Unobserved Components Models
– volume: 19
  start-page: 177
  year: 2001
  end-page: 191
  ident: bib14
  article-title: MCMC analysis of diffusion models with application to finance
  publication-title: J. Bus. Econ. Statist.
– volume: 1
  start-page: 17
  year: 1995
  end-page: 39
  ident: bib4
  article-title: Martingale estimating functions for discretely observed diffusion processes
  publication-title: Bernouilli
– volume: 81
  start-page: 637
  year: 1973
  end-page: 659
  ident: bib5
  article-title: The pricing of options and corporate liabilities
  publication-title: J. Polit. Econ.
– year: 2002
  ident: bib23
  article-title: Gene Regulation: A Eukaryotic Perspective
– volume: 1995
  start-page: 55
  year: 1995
  end-page: 71
  ident: bib28
  article-title: A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations
  publication-title: Scand. J. Statist.
– volume: 13
  start-page: 838
  year: 2006
  end-page: 851
  ident: bib19
  article-title: Bayesian sequential inference for stochastic kinetic biochemical network models
  publication-title: J. Comput. Biol.
– year: 2006
  ident: bib21
  article-title: Optimal filtering of jump diffusions: extracting latent states from asset prices
– volume: 20
  start-page: 279
  year: 2002
  end-page: 316
  ident: bib12
  article-title: Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes
  publication-title: J. Bus. Econ. Statist.
– volume: 11
  start-page: 848
  year: 2002
  end-page: 862
  ident: bib15
  article-title: MCMC, sufficient statistics and particle filters
  publication-title: J. Graphical Statist.
– volume: 53
  start-page: 385
  year: 1985
  end-page: 407
  ident: bib8
  article-title: A theory of the term structure of interest rates
  publication-title: Econometrica
– volume: 92
  start-page: 1403
  year: 1997
  end-page: 1412
  ident: bib2
  article-title: Dynamic conditional independence models and Markov chain Monte Carlo methods
  publication-title: J. Amer. Statist. Assoc.
– year: 1992
  ident: bib30
  article-title: A Genetic Switch: Phage
– volume: 116
  start-page: 1660
  year: 2006
  end-page: 1675
  ident: bib10
  article-title: Simulation of conditioned diffusion and application to parameter estimation
  publication-title: Stochastic Process. Appl.
– reference: .
– volume: 68
  start-page: 1
  year: 2006
  end-page: 29
  ident: bib3
  article-title: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes
  publication-title: J. Roy. Statist. Soc. Ser. B. Methodology
– volume: 116
  start-page: 1660
  year: 2006
  ident: 10.1016/j.csda.2007.05.019_bib10
  article-title: Simulation of conditioned diffusion and application to parameter estimation
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2006.04.004
– ident: 10.1016/j.csda.2007.05.019_bib34
– year: 2006
  ident: 10.1016/j.csda.2007.05.019_bib21
– start-page: 307
  year: 2003
  ident: 10.1016/j.csda.2007.05.019_bib27
  article-title: Non-centered parameterisations for hierarchical models and data augmentation
– volume: 15
  start-page: 65
  year: 1999
  ident: 10.1016/j.csda.2007.05.019_bib25
  article-title: Its a noisy business: genetic regulation at the nanomolar scale
  publication-title: Trends. Genet.
  doi: 10.1016/S0168-9525(98)01659-X
– year: 2002
  ident: 10.1016/j.csda.2007.05.019_bib23
– year: 1992
  ident: 10.1016/j.csda.2007.05.019_bib30
– volume: 446
  start-page: 590
  issue: 94
  year: 1999
  ident: 10.1016/j.csda.2007.05.019_bib29
  article-title: Filtering via simulation: auxiliary particle filters
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2670179
– volume: 11
  start-page: 848
  year: 2002
  ident: 10.1016/j.csda.2007.05.019_bib15
  article-title: MCMC, sufficient statistics and particle filters
  publication-title: J. Graphical Statist.
  doi: 10.1198/106186002835
– volume: 188
  start-page: 404
  year: 1992
  ident: 10.1016/j.csda.2007.05.019_bib16
  article-title: A rigorous derivation of the chemical master equation
  publication-title: Physica A
  doi: 10.1016/0378-4371(92)90283-V
– volume: 16
  start-page: 323
  issue: 4
  year: 2006
  ident: 10.1016/j.csda.2007.05.019_bib18
  article-title: Bayesian sequential inference for nonlinear multivariate diffusions
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-006-9392-x
– year: 2006
  ident: 10.1016/j.csda.2007.05.019_bib22
– volume: 1995
  start-page: 55
  issue: 22
  year: 1995
  ident: 10.1016/j.csda.2007.05.019_bib28
  article-title: A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations
  publication-title: Scand. J. Statist.
– volume: 88
  start-page: 603
  issue: 4
  year: 2001
  ident: 10.1016/j.csda.2007.05.019_bib31
  article-title: On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm
  publication-title: Biometrika
  doi: 10.1093/biomet/88.3.603
– volume: 50
  start-page: 281
  issue: 2
  year: 2002
  ident: 10.1016/j.csda.2007.05.019_bib33
  article-title: Particle filters for state-space models with the presence of unknown static parameters
  publication-title: IEEE. Trans. Signal. Process.
  doi: 10.1109/78.978383
– volume: 68
  start-page: 1
  year: 2006
  ident: 10.1016/j.csda.2007.05.019_bib3
  article-title: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes
  publication-title: J. Roy. Statist. Soc. Ser. B. Methodology
  doi: 10.1111/j.1467-9868.2006.00552.x
– volume: 69
  start-page: 959
  issue: 4
  year: 2001
  ident: 10.1016/j.csda.2007.05.019_bib13
  article-title: Likelihood inference for discretely observed nonlinear diffusions
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00226
– start-page: 323
  year: 2003
  ident: 10.1016/j.csda.2007.05.019_bib37
  article-title: Discussion to ‘Non centred parameterisations for hierarchical models and data augmentation’ by Papaspiliopoulos, Roberts and Skold
– volume: 84
  start-page: 653
  year: 1997
  ident: 10.1016/j.csda.2007.05.019_bib32
  article-title: Likelihood analysis of non-Gaussian measurement time series
  publication-title: Biometrika
  doi: 10.1093/biomet/84.3.653
– volume: 13
  start-page: 838
  issue: 3
  year: 2006
  ident: 10.1016/j.csda.2007.05.019_bib19
  article-title: Bayesian sequential inference for stochastic kinetic biochemical network models
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2006.13.838
– start-page: 236
  year: 2004
  ident: 10.1016/j.csda.2007.05.019_bib35
  article-title: Practical filtering for stochastic volatility models
– year: 2006
  ident: 10.1016/j.csda.2007.05.019_bib7
– volume: 10
  start-page: 197
  year: 2000
  ident: 10.1016/j.csda.2007.05.019_bib11
  article-title: On sequential Monte Carlo sampling methods for Bayesian filtering
  publication-title: Statistist. Comput.
  doi: 10.1023/A:1008935410038
– volume: 92
  start-page: 1403
  issue: 440
  year: 1997
  ident: 10.1016/j.csda.2007.05.019_bib2
  article-title: Dynamic conditional independence models and Markov chain Monte Carlo methods
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2965410
– volume: 1
  start-page: 17
  year: 1995
  ident: 10.1016/j.csda.2007.05.019_bib4
  article-title: Martingale estimating functions for discretely observed diffusion processes
  publication-title: Bernouilli
  doi: 10.2307/3318679
– ident: 10.1016/j.csda.2007.05.019_bib20
  doi: 10.1049/ip-f-2.1993.0015
– year: 1995
  ident: 10.1016/j.csda.2007.05.019_bib26
– volume: 82
  start-page: 528
  issue: 398
  year: 1987
  ident: 10.1016/j.csda.2007.05.019_bib36
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2289457
– volume: 19
  start-page: 177
  year: 2001
  ident: 10.1016/j.csda.2007.05.019_bib14
  article-title: MCMC analysis of diffusion models with application to finance
  publication-title: J. Bus. Econ. Statist.
  doi: 10.1198/073500101316970403
– volume: 47
  start-page: 1209
  year: 1992
  ident: 10.1016/j.csda.2007.05.019_bib6
  article-title: An empirical comparison of alternative models of the short-term interest
  publication-title: J. Finance
  doi: 10.2307/2328983
– volume: 81
  start-page: 637
  year: 1973
  ident: 10.1016/j.csda.2007.05.019_bib5
  article-title: The pricing of options and corporate liabilities
  publication-title: J. Polit. Econ.
  doi: 10.1086/260062
– volume: 149
  start-page: 633
  year: 1998
  ident: 10.1016/j.csda.2007.05.019_bib1
  article-title: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells
  publication-title: Genetics
  doi: 10.1093/genetics/149.4.1633
– year: 2006
  ident: 10.1016/j.csda.2007.05.019_bib38
– volume: 120
  start-page: 346
  year: 2002
  ident: 10.1016/j.csda.2007.05.019_bib9
  article-title: The Monte Carlo method for filtering with discrete-time observations
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/PL00008786
– volume: 53
  start-page: 385
  year: 1985
  ident: 10.1016/j.csda.2007.05.019_bib8
  article-title: A theory of the term structure of interest rates
  publication-title: Econometrica
  doi: 10.2307/1911242
– year: 2001
  ident: 10.1016/j.csda.2007.05.019_bib24
  article-title: Combined parameter and state estimation in simulation-based filtering
– volume: 61
  start-page: 781
  issue: 3
  year: 2005
  ident: 10.1016/j.csda.2007.05.019_bib17
  article-title: Bayesian inference for stochastic kinetic models using a diffusion approximation
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00345.x
– volume: 20
  start-page: 279
  year: 2002
  ident: 10.1016/j.csda.2007.05.019_bib12
  article-title: Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes
  publication-title: J. Bus. Econ. Statist.
  doi: 10.1198/073500102288618397
SSID ssj0002478
Score 2.2983508
Snippet Diffusion processes governed by stochastic differential equations (SDEs) are a well-established tool for modelling continuous time data from a wide range of...
SourceID proquest
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1674
SubjectTerms Bayesian inference
Exact sciences and technology
General topics
Innovation scheme
Mathematics
MCMC
Multivariate analysis
Nonlinear stochastic differential equation
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Parametric inference
Particle filter
Probability and statistics
Reparameterisation
Sciences and techniques of general use
Statistics
Title Bayesian inference for nonlinear multivariate diffusion models observed with error
URI https://dx.doi.org/10.1016/j.csda.2007.05.019
http://econpapers.repec.org/article/eeecsdana/v_3a52_3ay_3a2008_3ai_3a3_3ap_3a1674-1693.htm
https://www.proquest.com/docview/20243513
Volume 52
WOSCitedRecordID wos000253669700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLeg5bAJIRggymP4wK3K1Dp2kxwHFDY0NgRFKifLdhyxiaVR0lbbf8_n-LF0ggEHDo6qKG6i_H7298j3QOgVmBxUg10QAeCTiALoUSZYEcV5DtqCTEaaibbZRHJ8nM7n2ScXVtS07QSSskwvLrLqv0IN5wBskzr7D3CHP4UT8BtAhyPADse_Av61uNRtZuSpz-VrQwlLWxND1DaGcA02MqiZbYOUlfGY2Z44zXAhjZ_WB6Xrul7UXQXWdoHwHkSTjuQqPRsKmXDToXBlTkJkz8nR4fuD2dG3Dc-pcxyctFEGb_fc1ynvfkivvGE-I8ZtQl0nJWy-GbUtSvwuy0iHTXFnyzRpEB3xa4rD_HJrt16Gsz3V5MKVnjQVV7MrQeY_3l-TbyHq0ISPgXmU3EZ9koAh1UP9_cPp_EOQ3IRaye2f3yVZ2XjA6_f9nSJztxINLK_C9kXZMFz6ta606ugvs_vonjM88L4lzAN0S5c7aPtjqNrb7KCtLwHOh-iz5xEOPMLAIxx4hLs8woFH2PIIex5hwyPc8ugR-vpuOntzELkGHJGiCV1GNE_TnJgC_CNQYrQUIJEmUqkUFCs61pQUJJWTUaqKyVgQGYuCMCXjFIxQqiQIi8eoB0-lnyBMJJi-Y5lLUuQ0YUQypqimSZZpU0OSDdDYv02uXHV60yTlB_dhiGfcIGDapiZ8xDggMEDDMKeytVluvJp5kLjTLq3WyIFhN87b3UA03MrTaYBeeog57M3mg5so9WLVwBUErJFxPEDTFvkwVWttblMKvuaxYAQOlzDalrCxOIURw6hgmNXBzZrg35fnT__0KM_Qlo1nMi7C56i3rFf6Bbqj1kCeetfR_SfxQ8cp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+inference+for+nonlinear+multivariate+diffusion+models+observed+with+error&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=GOLIGHTLY%2C+A&rft.au=WILKINSON%2C+D.+J&rft.date=2008&rft.pub=Elsevier+Science&rft.issn=0167-9473&rft.volume=52&rft.issue=3&rft.spage=1674&rft.epage=1693&rft_id=info:doi/10.1016%2Fj.csda.2007.05.019&rft.externalDBID=n%2Fa&rft.externalDocID=20017587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon