An adaptive backpropagation algorithm for long-term electricity load forecasting
Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and long terms. However, research has identified that ANNs could cause inaccurate predictions of load when used for long-term forecasting. This inaccuracy is attributed to insufficient...
Saved in:
| Published in: | Neural computing & applications Vol. 34; no. 1; pp. 477 - 491 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.01.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and long terms. However, research has identified that ANNs could cause inaccurate predictions of load when used for long-term forecasting. This inaccuracy is attributed to insufficient training data and increased accumulated errors, especially in long-term estimations. This study develops an improved ANN model with an Adaptive Backpropagation Algorithm (ABPA) for best practice in the forecasting long-term load demand of electricity. The ABPA includes proposing new forecasting formulations that adjust/adapt forecast values, so it takes into consideration the deviation between trained and future input datasets' different behaviours. The architecture of the Multi-Layer Perceptron (MLP) model, along with its traditional Backpropagation Algorithm (BPA), is used as a baseline for the proposed development. The forecasting formula is further improved by introducing adjustment factors to smooth out behavioural differences between the trained and new/future datasets. A computational study based on actual monthly electricity consumption inputs from 2011 to 2020, provided by the Iraqi Ministry of Electricity, is conducted to verify the proposed adaptive algorithm's performance. Different types of energy consumption and the electricity cut period (unsatisfied demand) factor are also considered in this study as vital factors. The developed ANN model, including its proposed ABPA, is then compared with traditional and popular prediction techniques such as regression and other advanced machine learning approaches, including Recurrent Neural Networks (RNNs), to justify its superiority amongst them. The results reveal that the most accurate long-term forecasts with the minimum Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) values of (1.195.650) and (0.045), respectively, are successfully achieved by applying the proposed ABPA. It can be concluded that the proposed ABPA, including the adjustment factor, enables traditional ANN techniques to be efficiently used for long-term forecasting of electricity load demand. |
|---|---|
| AbstractList | Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and long terms. However, research has identified that ANNs could cause inaccurate predictions of load when used for long-term forecasting. This inaccuracy is attributed to insufficient training data and increased accumulated errors, especially in long-term estimations. This study develops an improved ANN model with an Adaptive Backpropagation Algorithm (ABPA) for best practice in the forecasting long-term load demand of electricity. The ABPA includes proposing new forecasting formulations that adjust/adapt forecast values, so it takes into consideration the deviation between trained and future input datasets' different behaviours. The architecture of the Multi-Layer Perceptron (MLP) model, along with its traditional Backpropagation Algorithm (BPA), is used as a baseline for the proposed development. The forecasting formula is further improved by introducing adjustment factors to smooth out behavioural differences between the trained and new/future datasets. A computational study based on actual monthly electricity consumption inputs from 2011 to 2020, provided by the Iraqi Ministry of Electricity, is conducted to verify the proposed adaptive algorithm's performance. Different types of energy consumption and the electricity cut period (unsatisfied demand) factor are also considered in this study as vital factors. The developed ANN model, including its proposed ABPA, is then compared with traditional and popular prediction techniques such as regression and other advanced machine learning approaches, including Recurrent Neural Networks (RNNs), to justify its superiority amongst them. The results reveal that the most accurate long-term forecasts with the minimum Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) values of (1.195.650) and (0.045), respectively, are successfully achieved by applying the proposed ABPA. It can be concluded that the proposed ABPA, including the adjustment factor, enables traditional ANN techniques to be efficiently used for long-term forecasting of electricity load demand. Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and long terms. However, research has identified that ANNs could cause inaccurate predictions of load when used for long-term forecasting. This inaccuracy is attributed to insufficient training data and increased accumulated errors, especially in long-term estimations. This study develops an improved ANN model with an Adaptive Backpropagation Algorithm (ABPA) for best practice in the forecasting long-term load demand of electricity. The ABPA includes proposing new forecasting formulations that adjust/adapt forecast values, so it takes into consideration the deviation between trained and future input datasets' different behaviours. The architecture of the Multi-Layer Perceptron (MLP) model, along with its traditional Backpropagation Algorithm (BPA), is used as a baseline for the proposed development. The forecasting formula is further improved by introducing adjustment factors to smooth out behavioural differences between the trained and new/future datasets. A computational study based on actual monthly electricity consumption inputs from 2011 to 2020, provided by the Iraqi Ministry of Electricity, is conducted to verify the proposed adaptive algorithm's performance. Different types of energy consumption and the electricity cut period (unsatisfied demand) factor are also considered in this study as vital factors. The developed ANN model, including its proposed ABPA, is then compared with traditional and popular prediction techniques such as regression and other advanced machine learning approaches, including Recurrent Neural Networks (RNNs), to justify its superiority amongst them. The results reveal that the most accurate long-term forecasts with the minimum Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) values of (1.195.650) and (0.045), respectively, are successfully achieved by applying the proposed ABPA. It can be concluded that the proposed ABPA, including the adjustment factor, enables traditional ANN techniques to be efficiently used for long-term forecasting of electricity load demand. Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and long terms. However, research has identified that ANNs could cause inaccurate predictions of load when used for long-term forecasting. This inaccuracy is attributed to insufficient training data and increased accumulated errors, especially in long-term estimations. This study develops an improved ANN model with an Adaptive Backpropagation Algorithm (ABPA) for best practice in the forecasting long-term load demand of electricity. The ABPA includes proposing new forecasting formulations that adjust/adapt forecast values, so it takes into consideration the deviation between trained and future input datasets' different behaviours. The architecture of the Multi-Layer Perceptron (MLP) model, along with its traditional Backpropagation Algorithm (BPA), is used as a baseline for the proposed development. The forecasting formula is further improved by introducing adjustment factors to smooth out behavioural differences between the trained and new/future datasets. A computational study based on actual monthly electricity consumption inputs from 2011 to 2020, provided by the Iraqi Ministry of Electricity, is conducted to verify the proposed adaptive algorithm's performance. Different types of energy consumption and the electricity cut period (unsatisfied demand) factor are also considered in this study as vital factors. The developed ANN model, including its proposed ABPA, is then compared with traditional and popular prediction techniques such as regression and other advanced machine learning approaches, including Recurrent Neural Networks (RNNs), to justify its superiority amongst them. The results reveal that the most accurate long-term forecasts with the minimum Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) values of (1.195.650) and (0.045), respectively, are successfully achieved by applying the proposed ABPA. It can be concluded that the proposed ABPA, including the adjustment factor, enables traditional ANN techniques to be efficiently used for long-term forecasting of electricity load demand.Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and long terms. However, research has identified that ANNs could cause inaccurate predictions of load when used for long-term forecasting. This inaccuracy is attributed to insufficient training data and increased accumulated errors, especially in long-term estimations. This study develops an improved ANN model with an Adaptive Backpropagation Algorithm (ABPA) for best practice in the forecasting long-term load demand of electricity. The ABPA includes proposing new forecasting formulations that adjust/adapt forecast values, so it takes into consideration the deviation between trained and future input datasets' different behaviours. The architecture of the Multi-Layer Perceptron (MLP) model, along with its traditional Backpropagation Algorithm (BPA), is used as a baseline for the proposed development. The forecasting formula is further improved by introducing adjustment factors to smooth out behavioural differences between the trained and new/future datasets. A computational study based on actual monthly electricity consumption inputs from 2011 to 2020, provided by the Iraqi Ministry of Electricity, is conducted to verify the proposed adaptive algorithm's performance. Different types of energy consumption and the electricity cut period (unsatisfied demand) factor are also considered in this study as vital factors. The developed ANN model, including its proposed ABPA, is then compared with traditional and popular prediction techniques such as regression and other advanced machine learning approaches, including Recurrent Neural Networks (RNNs), to justify its superiority amongst them. The results reveal that the most accurate long-term forecasts with the minimum Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) values of (1.195.650) and (0.045), respectively, are successfully achieved by applying the proposed ABPA. It can be concluded that the proposed ABPA, including the adjustment factor, enables traditional ANN techniques to be efficiently used for long-term forecasting of electricity load demand. |
| Author | Al-Bazi, Ammar Mohammed, Nooriya A. |
| Author_xml | – sequence: 1 givenname: Nooriya A. surname: Mohammed fullname: Mohammed, Nooriya A. organization: Planning and Studies Office, Ministry of Electricity – sequence: 2 givenname: Ammar orcidid: 0000-0002-5057-4171 surname: Al-Bazi fullname: Al-Bazi, Ammar email: aa8535@coventry.ac.uk organization: School of Mechanical, Aerospace and Automotive Engineering, Coventry University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34393381$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1v1TAQtFARfX3wBzigSFy4BNZfiXNBqqryIVWCA5wtP2eTuiR2sP2q9t_j8EqBHnpY2fLMrHdnTsiRDx4JeUnhLQVo3yUAyWgNazVcifrmCdlQwXnNQaojsoFOrJDgx-QkpSsAEI2Sz8gxF7zjXNEN-XrqK9ObJbtrrHbG_lhiWMxosgsFmMYQXb6cqyHEagp-rDPGucIJbY7OunxbXk2_wmhNys6Pz8nTwUwJX9ydW_L9w_m3s0_1xZePn89OL2orWpFrIaiQ5WpNa0HuehjKLqwdsBk6lB2i7CV0HCUAKlp4XPW2pUohDP1OWb4l7w99l_1uxt6iz9FMeoluNvFWB-P0_4h3l3oM11px2TDalQZv7hrE8HOPKevZJYvTZDyGfdJMNrSjQhX7tuT1A-pV2Edf1tOsoapYzxgrrFf_TnQ_yh-zC4EdCDaGlCIO9xQKek1UHxLVsNaaqL4pIvVAVGz_HU_Zyk2PS_lBmso_fsT4d-xHVL8AB_C2zw |
| CitedBy_id | crossref_primary_10_1007_s00521_022_06912_3 crossref_primary_10_1186_s41601_023_00319_5 crossref_primary_10_1177_14727978241302155 crossref_primary_10_1186_s40807_025_00192_w crossref_primary_10_1007_s00521_022_07753_w crossref_primary_10_1109_ACCESS_2025_3540999 crossref_primary_10_3390_s22124363 crossref_primary_10_2139_ssrn_5340525 crossref_primary_10_1007_s00521_023_09175_8 crossref_primary_10_1007_s00484_024_02763_w crossref_primary_10_3390_math13162648 crossref_primary_10_1007_s00521_022_07889_9 crossref_primary_10_1007_s00202_025_02995_y crossref_primary_10_5004_dwt_2023_29802 crossref_primary_10_1016_j_neucom_2024_127858 crossref_primary_10_3390_inventions9040075 crossref_primary_10_1016_j_egyr_2024_11_027 crossref_primary_10_3390_electricity6030041 crossref_primary_10_32604_cmc_2023_035736 crossref_primary_10_1016_j_jclepro_2023_137130 crossref_primary_10_1155_2022_9885274 crossref_primary_10_3390_electronics11101524 crossref_primary_10_3390_en17071697 crossref_primary_10_1007_s00202_024_02364_1 crossref_primary_10_1016_j_engappai_2023_106826 crossref_primary_10_3390_bdcc7020092 crossref_primary_10_1109_ACCESS_2023_3250110 crossref_primary_10_1007_s00202_025_03162_z crossref_primary_10_1016_j_iot_2024_101441 crossref_primary_10_3390_app14146270 crossref_primary_10_1109_ACCESS_2023_3235724 crossref_primary_10_1038_s41598_025_10557_2 crossref_primary_10_3390_s24227303 crossref_primary_10_1007_s00521_024_09679_x crossref_primary_10_1109_ACCESS_2024_3459950 crossref_primary_10_1007_s44444_025_00012_y crossref_primary_10_1016_j_egyr_2024_05_045 crossref_primary_10_1016_j_egyr_2024_12_078 crossref_primary_10_1016_j_ecmx_2025_100922 crossref_primary_10_1109_ACCESS_2025_3526578 crossref_primary_10_1016_j_apenergy_2024_123685 crossref_primary_10_1109_ACCESS_2022_3177604 crossref_primary_10_1080_15325008_2023_2295963 crossref_primary_10_1038_s41598_022_26499_y crossref_primary_10_1038_s41598_025_88295_8 crossref_primary_10_1016_j_eswa_2023_122477 crossref_primary_10_1109_TPWRS_2023_3289400 crossref_primary_10_3389_fenrg_2023_1116465 crossref_primary_10_1109_ACCESS_2023_3334164 |
| Cites_doi | 10.1016/j.asoc.2010.10.015 10.1007/s00521-017-3171-9 10.1023/A:1012046824237 10.1016/j.sbspro.2012.09.1144 10.1016/j.ijepes.2021.106855 10.1016/j.energy.2018.07.084 10.1016/j.neunet.2019.07.003 10.1109/ICIME.2010.5477756 10.1049/cp.2012.0105 10.1007/s12053-020-09879-z 10.3390/su12031109 10.15676/ijeei.2016.8.2.11 10.1109/ICHIS.2004.27 10.1016/j.seta.2020.100827 10.1007/s00521-003-0390-z 10.3390/en13226105 10.1109/ACCESS.2019.2957072 10.1109/ICE348803.2020.9122859 10.1109/HNICEM.2014.7016237 10.1016/j.energy.2020.117948 10.1109/EIT.2008.4554335 10.1109/TPEC.2018.8312088 10.5040/9781350392434 10.1016/j.energy.2018.08.030 10.1016/j.energy.2020.117197 10.1088/1742-6596/1402/3/033081 10.1109/WF-IoT.2018.8355123 10.1080/00908319708908889 10.1007/s10100-018-0531-1 10.3390/app10165627 10.1109/NIGERCON.2017.8281961 10.1109/TNN.2007.896859 10.3390/su12093612 10.1016/j.apenergy.2017.12.051 10.1016/j.ejor.2009.01.062 10.1007/s00521-009-0290-y 10.1007/978-3-030-34050-6_11 10.1109/PECI.2018.8334980 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1007/s00521-021-06384-x |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 491 |
| ExternalDocumentID | PMC8356219 34393381 10_1007_s00521_021_06384_x |
| Genre | Journal Article |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM PQGLB -4Z -59 -5G -BR -EM ADINQ GQ6 NPM Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-44145c47ca7c05bd0f05227fe6f9e59ee5d5093e500e8147c38dc7188e0fdb8c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684056000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 01:58:49 EST 2025 Sun Nov 09 10:15:18 EST 2025 Wed Nov 05 00:45:22 EST 2025 Wed Feb 19 02:27:17 EST 2025 Tue Nov 18 21:28:20 EST 2025 Sat Nov 29 08:03:53 EST 2025 Thu Apr 10 07:41:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Long-term forecasting Recurrent neural networks Linear regression MLP neural networks Radial basis function networks Load demand Adaptive backpropagation |
| Language | English |
| License | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-44145c47ca7c05bd0f05227fe6f9e59ee5d5093e500e8147c38dc7188e0fdb8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5057-4171 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8356219 |
| PMID | 34393381 |
| PQID | 2618384222 |
| PQPubID | 2043988 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356219 proquest_miscellaneous_2561914864 proquest_journals_2618384222 pubmed_primary_34393381 crossref_primary_10_1007_s00521_021_06384_x crossref_citationtrail_10_1007_s00521_021_06384_x springer_journals_10_1007_s00521_021_06384_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationTitleAlternate | Neural Comput Appl |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | HH Nguyen (6384_CR25) 2004; 13 HR Alirezaei (6384_CR26) 2017; 31 D Solyali (6384_CR16) 2020; 12 6384_CR29 6384_CR28 NA Mohammed (6384_CR3) 2018; 162 S-M Baek (6384_CR7) 2019; 7 T Ahmad (6384_CR22) 2018; 160 6384_CR23 6384_CR45 6384_CR21 6384_CR44 IS Jahan (6384_CR20) 2020; 13 A Majumdar (6384_CR43) 2019; 118 G Nalcaci (6384_CR24) 2019; 27 6384_CR42 6384_CR40 OAS Carpinteiro (6384_CR11) 2009; 18 H Hahn (6384_CR1) 2009; 199 C Mihai (6384_CR6) 2017; 6–9 6384_CR8 AI Almazrouee (6384_CR27) 2020; 10 G Oğcu (6384_CR19) 2012; 58 R Achant (6384_CR18) 2012; 3 JQ Wang (6384_CR41) 2020; 197 6384_CR39 6384_CR14 6384_CR15 6384_CR37 6384_CR12 6384_CR34 6384_CR35 6384_CR10 G Nalcaci (6384_CR17) 2019; 27 6384_CR32 E Choi (6384_CR46) 2020; 12 6384_CR33 6384_CR30 6384_CR31 JM Jiménez (6384_CR38) 2020; 13 GP Zhang (6384_CR13) 2007; 18 L Ghods (6384_CR9) 2011; 7 S Majumdar (6384_CR4) 2007; 19 M Khashei (6384_CR2) 2011; 11 A Rahman (6384_CR36) 2018; 212 JV Ringwood (6384_CR5) 2011; 31 |
| References_xml | – volume: 11 start-page: 2664 issue: 2 year: 2011 ident: 6384_CR2 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.10.015 – volume: 31 start-page: 2131 year: 2017 ident: 6384_CR26 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3171-9 – volume: 31 start-page: 129 year: 2011 ident: 6384_CR5 publication-title: J Intell Rob Syst doi: 10.1023/A:1012046824237 – volume: 58 start-page: 1576 year: 2012 ident: 6384_CR19 publication-title: Procedia Soc Behav Sci doi: 10.1016/j.sbspro.2012.09.1144 – ident: 6384_CR37 doi: 10.1016/j.ijepes.2021.106855 – volume: 160 start-page: 1008 issue: 1 year: 2018 ident: 6384_CR22 publication-title: Energy doi: 10.1016/j.energy.2018.07.084 – volume: 118 start-page: 271 year: 2019 ident: 6384_CR43 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.07.003 – ident: 6384_CR31 doi: 10.1109/ICIME.2010.5477756 – ident: 6384_CR33 doi: 10.1049/cp.2012.0105 – volume: 13 start-page: 1263 year: 2020 ident: 6384_CR38 publication-title: Energ Effi doi: 10.1007/s12053-020-09879-z – volume: 12 start-page: 1109 year: 2020 ident: 6384_CR46 publication-title: Sustainability doi: 10.3390/su12031109 – ident: 6384_CR23 doi: 10.15676/ijeei.2016.8.2.11 – ident: 6384_CR8 doi: 10.1109/ICHIS.2004.27 – ident: 6384_CR14 doi: 10.1016/j.seta.2020.100827 – volume: 13 start-page: 90 year: 2004 ident: 6384_CR25 publication-title: Neural Comput Appl doi: 10.1007/s00521-003-0390-z – volume: 7 start-page: 249 issue: 4 year: 2011 ident: 6384_CR9 publication-title: Iran J Electr Electr Eng – volume: 13 start-page: 6105 year: 2020 ident: 6384_CR20 publication-title: Energies doi: 10.3390/en13226105 – volume: 7 start-page: 172830 year: 2019 ident: 6384_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957072 – ident: 6384_CR35 doi: 10.1109/ICE348803.2020.9122859 – ident: 6384_CR44 – ident: 6384_CR12 doi: 10.1109/HNICEM.2014.7016237 – ident: 6384_CR21 doi: 10.1016/j.energy.2020.117948 – ident: 6384_CR29 doi: 10.1109/EIT.2008.4554335 – ident: 6384_CR39 doi: 10.1109/TPEC.2018.8312088 – ident: 6384_CR45 doi: 10.5040/9781350392434 – volume: 162 start-page: 354 year: 2018 ident: 6384_CR3 publication-title: Energy doi: 10.1016/j.energy.2018.08.030 – volume: 197 start-page: 117197 year: 2020 ident: 6384_CR41 publication-title: Energy doi: 10.1016/j.energy.2020.117197 – ident: 6384_CR30 doi: 10.1088/1742-6596/1402/3/033081 – ident: 6384_CR42 doi: 10.1109/WF-IoT.2018.8355123 – ident: 6384_CR10 – volume: 19 start-page: 771 issue: 8 year: 2007 ident: 6384_CR4 publication-title: Energy Sources doi: 10.1080/00908319708908889 – volume: 27 start-page: 1033 year: 2019 ident: 6384_CR24 publication-title: CEJOR doi: 10.1007/s10100-018-0531-1 – volume: 10 start-page: 562 issue: 16 year: 2020 ident: 6384_CR27 publication-title: Appl Sci doi: 10.3390/app10165627 – ident: 6384_CR28 doi: 10.1109/NIGERCON.2017.8281961 – volume: 3 start-page: 266 issue: 1 year: 2012 ident: 6384_CR18 publication-title: Int J Comput Sci Technol – volume: 18 start-page: 1800 year: 2007 ident: 6384_CR13 publication-title: IEEE Trans Neural Net doi: 10.1109/TNN.2007.896859 – ident: 6384_CR15 – volume: 12 start-page: 3612 year: 2020 ident: 6384_CR16 publication-title: Sustainability doi: 10.3390/su12093612 – ident: 6384_CR34 – volume: 212 start-page: 372 year: 2018 ident: 6384_CR36 publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.051 – volume: 6–9 start-page: 1 year: 2017 ident: 6384_CR6 publication-title: International Conference on Modern Power Systems (MPS) – volume: 199 start-page: 902 issue: 3 year: 2009 ident: 6384_CR1 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2009.01.062 – volume: 18 start-page: 2960 year: 2009 ident: 6384_CR11 publication-title: Neural Comput Appl doi: 10.1007/s00521-009-0290-y – volume: 27 start-page: 1033 issue: 4 year: 2019 ident: 6384_CR17 publication-title: CEJOR doi: 10.1007/s10100-018-0531-1 – ident: 6384_CR32 doi: 10.1007/978-3-030-34050-6_11 – ident: 6384_CR40 doi: 10.1109/PECI.2018.8334980 |
| SSID | ssj0004685 |
| Score | 2.5157335 |
| Snippet | Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and long terms. However, research has... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 477 |
| SubjectTerms | Adaptive algorithms Algorithms Artificial Intelligence Artificial neural networks Back propagation Back propagation networks Best practice Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Economic forecasting Electric power demand Electrical loads Electricity Electricity consumption Energy consumption Forecasting Formulations Image Processing and Computer Vision Learning theory Machine learning Mathematical models Multilayers Neural networks Original Original Article Probability and Statistics in Computer Science Recurrent neural networks |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQ4MCF8aYwUJC4QaV06SM9ToiJA5om8dBuVZqmW8Xopj0QPx8nawtjgASHSlXjtnnY8ecktgEuZMhTEcbSFgzFzY0Daofcj23UJSwOhKKeMHFm74JOh_d6YbdwCpuWp93LLUkzU1fObnoFE01ffSHTuDYix3VPR5vRNvr90ydvSJOIE-0WTemywlXm-28sq6MVjLl6VPLLfqlRQ-36_xqwDVsF7CStBZ_swJrKd6FepnQghYTvQbeVE5GIsZ4ESSzkM9YVpxwzfEQM-6NJNhu8EES6ZDjK-7ae2MkilU4mEdDjU5HoYiXFVJ-o3ofH9s3D9a1dJF2wpRu4MxvhkevhrRSBpF6c0BRr3QxS5aeh8kKlvAQ7nSmPUsUdpGM8kajguKJpEnPJDqCWj3J1BIRzNL58nwtPMuQCnyvtNSsZkwLtIoda4JR9H8kiIrlOjDGMqljKpssiqi_dZdGbBZfVO-NFPI5fqRvlkEaFbE4jtBk5liIwsuC8Kkap0lslIlejOdIgrAzRUvRdCw4XHFD9jiGGQ8PesSBY4o2KQEfsXi7Js4GJ3I1w10cVYcFVySEf1fq5Fcd_Iz-Bzab20TDrRA2ozSZzdQob8nWWTSdnRlbeAUgADyQ priority: 102 providerName: Springer Nature |
| Title | An adaptive backpropagation algorithm for long-term electricity load forecasting |
| URI | https://link.springer.com/article/10.1007/s00521-021-06384-x https://www.ncbi.nlm.nih.gov/pubmed/34393381 https://www.proquest.com/docview/2618384222 https://www.proquest.com/docview/2561914864 https://pubmed.ncbi.nlm.nih.gov/PMC8356219 |
| Volume | 34 |
| WOSCitedRecordID | wos000684056000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9B2QMvfGx8hAHyJN42Cxfnw3maYALtYaoqPqZqL5HjOFBR0kIL6p_PneuEFTRe9pCojZ0m7p3vfnf23QEcmFSVOs0N1xKnW5gngqcqzjnqEpkn2opIuzyzv5JOR_V6adc73MZ-W2UtE52gLoaGfOSHiPSVVOSw-D6651Q1ilZXfQmNRViiTGXI50snp53u-V-Rka4oJ9owtL8nlD5sxgXPkUcUr9KBTBjy6bxqeoM3326bfLV26lTS2er_DmYNVjwYZccz7lmHBVt9hNW60APz8_4TdI8rpgs9ItHIcm1u8XEoiBxRmR5c409Pbu4Y4l82GFbXnMQ9mxXY6RuE-XhVF9RsjR7TPusNuDo7vfzxk_tSDNyESTjhCJrCCD8anRgR5YUo8c87Skobl6mNUmujApGHtJEQVrWxn1SFQbWnrCiLXBm5Ca1qWNltYEqhSRbHSkdGIm_EylIsrZHSaLSW2iKAdk2FzPg85VQuY5A1GZYd5TJBB1EumwbwtblnNMvS8W7v3ZoqmZ-x4-yFJAF8aZpxrtECiq7s8BH7INhM0X6MwwC2ZrzQPE4iskNzvx1AMsclTQfK4z3fUvVvXD5vBMExKo4AvtX89PJa_x7Fzvuj-AzLRxSp4bxFu9CaPDzaPfhgnib98cM-LCY9te9nC37rRn_wfH7x-xlsKBy6 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDgle2PgOG2AkeAILt3YS5wGhMTZtWqkqNKS9ZY7jbBUlLWsH2z_F38id8zHKxN72wEOkKnabXP3z3e9s3x3AS5vowiSZ5UbidFNZLHiio4yjLZFZbJwIjc8z248HA31wkAyX4FcTC0PHKhud6BV1PrG0Rv4Wmb6WmhYs3k-_c6oaRburTQmNChZ77vwnumyzd7sfcXxf9XrbW_ubO7yuKsCtitWco_1XIX60JrYizHJRCOQgceGiInFh4lyYoxGVLhTC6S72kzq3qMG1E0WeaSvxd2_AspIqCjuw_GFrMPz8RySmLwKKPhOdJ1KyDtPxwXq0Aot36ULQK362aAov8dvLxzT_2qv1JnB75X_781bhTk222UY1O-7CkivvwUpTyILVeu0-DDdKZnIzJdXPMmO_onioaD1omRkfoSjz428M-T0bT8ojTuaMVQWERhbdGLxrcmp21szoHPkD-HItcj2ETjkp3WNgWqPLGUXahFYi9iPtKFbYSmkNeoNdEUC3GfXU1nnYqRzIOG0zSHukpIIuQkp6FsDr9jvTKgvJlb3XGxSktUaapRcQCOBF24y6hDaITOkmp9gHyXSC_nGkAnhUYa99nETmKpHeBRAvoLLtQHnKF1vK0bHPV44kP0LDGMCbBr8Xr_VvKZ5cLcVzuLWz_6mf9ncHe2twu0dRKX5lbB0685NT9xRu2h_z0ezkWT1HGRxeN7J_A8QMdoU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLYQIMQL46acQeINKjLSI31EwAQCTROXeKvSNB0To5u2DvHzcdIDxiUhHipVjdvmsOPPSWwD7MmAJyKIpC0YipsT-dQOuBfZqEtY5AtFXWHizF75zSZ_eAhaH7z4zWn3cksy92nQUZrS7LAfJ4eV45tezUQzWF_IQI6NKHLKQUtGH-q6vrn_4BlpknKiDaMpHVa4zXz_jXHV9AVvfj02-Wnv1KikRu3_jZmHuQKOkuOcfxZgQqWLUCtTPZBC8pegdZwSEYu-nhxJJOQT1hunIjOsRHTbvUEne3wmiIBJt5e2bT3hkzzFTkci0MenItbFSoqhPmm9DHeNs9uTc7tIxmBLx3cyG2GT4-KtFL6kbhTTBGt95CfKSwLlBkq5MWIPplxKFa8jHeOxRMXHFU3iiEu2ApNpL1VrQDhHo8zzuHAlQ-7wuNLetJIxKdBeqlML6uU4hLKIVK4TZnTDKsay6bKQ6kt3WfhqwX71Tj-P0_Er9WY5vGEhs8MQbUmOpQiYLNitilHa9BaKSFVvhDQINwO0ID3HgtWcG6rfMcR2aPDXLfDH-KQi0JG8x0vSzqOJ6I0w2EPVYcFByS3v1fq5Fet_I9-BmdZpI7y6aF5uwOyRduMwS0mbMJkNRmoLpuVL1hkOto0IvQFrChrs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+backpropagation+algorithm+for+long-term+electricity+load+forecasting&rft.jtitle=Neural+computing+%26+applications&rft.au=Mohammed%2C+Nooriya+A&rft.au=Al-Bazi%2C+Ammar&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=1&rft.spage=477&rft.epage=491&rft_id=info:doi/10.1007%2Fs00521-021-06384-x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |