Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images

Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people’s safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of inter...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 33; no. 24; pp. 16899 - 16919
Main Authors: Houssein, Essam H., Emam, Marwa M., Ali, Abdelmgeid A.
Format: Journal Article
Language:English
Published: London Springer London 01.12.2021
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people’s safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO’s initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu’s method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu’s method for all the used metrics.
AbstractList Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO's initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu's method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu's method for all the used metrics.Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO's initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu's method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu's method for all the used metrics.
Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO's initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu's method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu's method for all the used metrics.
Author Houssein, Essam H.
Emam, Marwa M.
Ali, Abdelmgeid A.
Author_xml – sequence: 1
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University
– sequence: 2
  givenname: Marwa M.
  surname: Emam
  fullname: Emam, Marwa M.
  organization: Faculty of Computers and Information, Minia University
– sequence: 3
  givenname: Abdelmgeid A.
  surname: Ali
  fullname: Ali, Abdelmgeid A.
  organization: Faculty of Computers and Information, Minia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34248291$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi3Uim4X_gAHFIkLl1B_J7kgoS2FlSr1UjhieW0n68qxF9tZqfx6nG4LbQ89jMfyPO_o9cwpOPLBGwDeIfgJQdicJQgZRjWcg-OG1OQVWCBKygWy9ggsYEfnEiUn4DSlGwgh5S17DU4IxbTFHVqAX-txF8Pe6GqUPssqytuqD1EO1g9V2GU72j8y2-Dn12qcXLa1M3vjqryNJm2D0zM5pflcXf1cn9eoq1bXlR3lYNIbcNxLl8zb-7wEPy6-Xq--15dX39arL5e1og3NNUWbjcYUa9QpprVqjCGYot6QrlMIEs5Yj1HfKkVL1hvNNWkJNk3JmjFOluDzoe9u2oxGK-NzlE7sYrERb0WQVjyteLsVQ9iLFnPUYlQafLxvEMPvyaQsRpuUcU56E6YkMGOQE8ybtqAfnqE3YYq-fK9QHWkon9EleP_Y0T8rD6MvQHsAVAwpRdMLZfPdqItB6wSCYt6yOGxZwDnmLQtSpPiZ9KH7iyJyEKUC-8HE_7ZfUP0FC7C5qg
CitedBy_id crossref_primary_10_1002_cpe_7543
crossref_primary_10_1038_s41598_023_36066_8
crossref_primary_10_1080_21681163_2021_2024088
crossref_primary_10_1016_j_eswa_2024_123977
crossref_primary_10_1080_21681163_2022_2140074
crossref_primary_10_1007_s42979_023_01915_w
crossref_primary_10_1016_j_bspc_2022_104159
crossref_primary_10_1080_21681163_2023_2242523
crossref_primary_10_1080_21681163_2023_2165161
crossref_primary_10_1155_2022_4431817
crossref_primary_10_1016_j_asoc_2022_108483
crossref_primary_10_1007_s10586_024_04982_7
crossref_primary_10_1016_j_est_2021_103848
crossref_primary_10_1007_s00521_022_07445_5
crossref_primary_10_1016_j_compbiomed_2023_106950
crossref_primary_10_1016_j_compbiomed_2022_106075
crossref_primary_10_1007_s11042_022_14024_2
crossref_primary_10_1016_j_eswa_2024_124581
crossref_primary_10_1155_2022_4587880
crossref_primary_10_3233_JIFS_222783
crossref_primary_10_1080_21681163_2022_2117645
crossref_primary_10_1038_s41598_024_73335_6
crossref_primary_10_1007_s42235_024_00481_y
crossref_primary_10_1080_21681163_2022_2117647
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1177_18724981241301913
crossref_primary_10_1016_j_compbiomed_2021_104827
crossref_primary_10_1080_21681163_2023_2245925
crossref_primary_10_3390_electronics11152342
crossref_primary_10_3390_s21165482
crossref_primary_10_1038_s41598_023_48479_6
crossref_primary_10_1016_j_asoc_2023_110561
crossref_primary_10_1016_j_compbiomed_2023_106966
crossref_primary_10_3390_math9182230
crossref_primary_10_1016_j_est_2023_109974
crossref_primary_10_1080_21681163_2023_2199891
crossref_primary_10_3389_feart_2022_870299
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_1007_s00521_022_07043_5
crossref_primary_10_1016_j_compbiomed_2024_109175
crossref_primary_10_3389_feart_2022_849079
crossref_primary_10_1007_s11042_023_15341_w
crossref_primary_10_3390_app14219785
crossref_primary_10_3390_math11040979
crossref_primary_10_4018_IJSIR_349907
crossref_primary_10_1371_journal_pone_0285211
crossref_primary_10_1007_s00521_023_08492_2
crossref_primary_10_1007_s11220_024_00506_0
crossref_primary_10_1002_ima_22830
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1016_j_eswa_2022_119015
crossref_primary_10_3390_math11112591
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1080_19942060_2023_2192258
crossref_primary_10_1109_ACCESS_2023_3276264
crossref_primary_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1007_s11042_023_15031_7
crossref_primary_10_1007_s10489_022_03977_4
crossref_primary_10_1016_j_eswa_2023_120367
crossref_primary_10_1007_s00521_024_09524_1
crossref_primary_10_1007_s42235_022_00295_w
crossref_primary_10_1038_s41598_023_49176_0
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_1016_j_knosys_2022_110247
crossref_primary_10_1080_21681163_2023_2245069
crossref_primary_10_1007_s00521_025_11210_9
crossref_primary_10_1016_j_compbiomed_2024_108498
crossref_primary_10_3390_app13053223
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_1007_s11042_023_14367_4
crossref_primary_10_1007_s11831_025_10363_z
crossref_primary_10_3390_math11030707
crossref_primary_10_1038_s41598_024_59960_1
crossref_primary_10_1016_j_matcom_2023_11_019
crossref_primary_10_1109_ACCESS_2023_3255793
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_primary_10_1016_j_eswa_2022_118999
crossref_primary_10_1080_21681163_2025_2500433
crossref_primary_10_3390_biomimetics10060356
Cites_doi 10.1007/s00521-020-05626-8
10.1109/ACCESS.2020.2971249
10.1016/j.eswa.2014.09.043
10.1016/j.scs.2020.102669
10.1007/978-3-030-60039-6_11
10.3923/jse.2016.16.28
10.1109/CYBER.2015.7288151
10.1016/j.knosys.2019.105190
10.1016/j.future.2019.02.028
10.1016/j.procs.2015.05.203
10.1007/s00500-017-2794-1
10.1016/j.asoc.2020.106063
10.1016/j.compeleceng.2017.12.037
10.1016/j.patrec.2016.10.007
10.1007/978-3-030-28917-1_1
10.1023/A:1008202821328
10.1016/j.eswa.2020.113428
10.1007/s10664-013-9249-9
10.1007/s10489-020-01893-z
10.1016/j.engappai.2020.103731
10.59275/j.melba.2020-48g7
10.1016/j.asoc.2020.107052
10.1016/0020-0255(86)90006-X
10.3390/a9030043
10.1016/j.advengsoft.2013.12.007
10.1016/j.asoc.2012.03.072
10.1038/s41598-020-71294-2
10.1016/j.asoc.2020.106642
10.3233/BME-151432
10.1016/j.bspc.2019.101677
10.1016/j.bspc.2020.102259
10.1016/j.eswa.2020.114159
10.1016/j.eswa.2019.113122
10.1016/j.asoc.2017.03.018
10.1016/j.eswa.2017.07.043
10.1016/j.eswa.2020.113233
10.1006/cgip.1993.1040
10.1016/j.cie.2017.06.028
10.1007/s00521-020-05118-9
10.1016/0734-189X(85)90133-1
10.1007/978-3-540-74377-4_7
10.1515/9780691187563
10.1016/j.eswa.2017.04.023
10.1016/j.advengsoft.2016.01.008
10.1109/TSMC.1979.4310076
10.1016/j.asoc.2016.11.011
10.1016/j.compeleceng.2017.08.008
10.1109/CIMCA.2005.1631345
10.1007/s00521-019-04611-0
10.1007/s00521-019-04210-z
10.1109/NABIC.2009.5393690
10.1007/s00521-018-3771-z
10.1007/s12065-019-00238-1
10.1007/978-3-030-60039-6_1
10.1007/s42452-020-04013-1
10.1016/0734-189X(85)90125-2
10.1007/s00521-021-05991-y
10.1007/s00521-020-04989-2
10.1038/scientificamerican0792-66
10.1016/j.engappai.2019.103300
10.1016/j.advengsoft.2017.07.002
10.1016/0734-189X(88)90022-9
10.1007/s00521-020-04820-y
10.1016/j.eswa.2016.06.044
10.1016/j.engappai.2018.04.009
10.1016/j.eswa.2021.114766
10.1109/TIP.2003.819861
10.1016/j.knosys.2015.02.029
10.1016/j.eswa.2021.114689
10.1109/MCI.2006.329691
10.1016/j.knosys.2015.07.006
10.1109/ACCESS.2020.3007928
10.1016/j.future.2019.07.015
10.2991/ijcis.d.210309.001
10.1016/j.knosys.2015.12.022
10.1007/s00521-019-04465-6
10.1016/j.eswa.2018.09.008
10.1007/s12652-021-02892-9
10.1016/j.eswa.2018.08.045
10.1016/j.neucom.2017.04.060
10.1007/978-1-4612-4380-9_16
10.1038/s41467-020-17971-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00521-021-06273-3
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 16919
ExternalDocumentID PMC8261821
34248291
10_1007_s00521_021_06273_3
Genre Journal Article
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-41bbd242d19c5ddc7ee3241fe399c103655f21f8cc4f21dbd6d3832e76d3d5563
IEDL.DBID RSV
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670722000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 01:49:14 EST 2025
Fri Sep 05 06:37:50 EDT 2025
Wed Nov 05 03:03:10 EST 2025
Mon Jul 21 05:59:21 EDT 2025
Tue Nov 18 22:26:13 EST 2025
Sat Nov 29 02:59:22 EST 2025
Fri Feb 21 02:47:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords COVID-19 CT images
Manta ray foraging optimization
Otsu’s method
Multilevel thresholding image segmentation
Meta-heuristics algorithms
Language English
License The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-41bbd242d19c5ddc7ee3241fe399c103655f21f8cc4f21dbd6d3832e76d3d5563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8127-7233
OpenAccessLink http://dx.doi.org/10.1007/s00521-021-06273-3
PMID 34248291
PQID 2593746506
PQPubID 2043988
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8261821
proquest_miscellaneous_2550632678
proquest_journals_2593746506
pubmed_primary_34248291
crossref_citationtrail_10_1007_s00521_021_06273_3
crossref_primary_10_1007_s00521_021_06273_3
springer_journals_10_1007_s00521_021_06273_3
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationTitleAlternate Neural Comput Appl
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ArcuriAFraserGParameter tuning or default values? An empirical investigation in search-based software engineeringEmpir Softw Eng2013183594623
GuptaSDeepKHybrid sine cosine artificial bee colony algorithm for global optimization and image segmentationNeural Comput Appl2020321395219543
Houssein EH, Neggaz N, Hosney ME, Mohamed WM, Hassaballah M (2021) Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities. Neural Comput Appl 1–18
Rahimi I, Chen F, Gandomi AH (2021) A review on covid-19 forecasting models. Neural Comput Appl 1–11
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process2004134600612
ZhaoFZhangJWangJZhangCA shuffled complex evolution algorithm with opposition-based learning for a permutation flow shop scheduling problemInt J Comput Integr Manuf2015281112201235
ChakrabortyFRoyPKNandiDOppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholdingEvolut Intell2019123445467
AartsEAartsEHLLenstraJKLocal search in combinatorial optimization2003PrincetonPrinceton University Press1106.90002
Zhao J, Zhang Y, He X, Xie P (2020) Covid-CT-dataset: a CT scan dataset about covid-19. arXiv preprint arXiv:2003.13865
Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M (2020) Covid-19 image data collection: prospective predictions are the future. arXiv preprint arXiv:2006.11988
AyalaHVHdos SantosFMMarianiCdos Santos CoelhoLImage thresholding segmentation based on a novel beta differential evolution approachExpert Syst Appl201542421362142
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872
AlrosanAAlomoushWNorwawiNAlswaittiMMakhadmehSNAn improved artificial bee colony algorithm based on mean best-guided approach for continuous optimization problems and real brain MRI images segmentationNeural Comput Appl202133516711697
Sharma K, Singh H, Sharma DK, Kumar A, Nayyar A, Krishnamurthi R (2021) Dynamic models and control techniques for drone delivery of medications and other healthcare items in covid-19 hotspots. In: Emerging technologies for battling covid-19: applications and innovations, pp 1–34
SahlolATYousriDEweesAAAl-QanessMAADamaseviciusRElazizMACovid-19 image classification using deep features and fractional-order marine predators algorithmSci Rep2020101115
Rojas-MoralesNRojasM-CRUretaEMA survey and classification of opposition-based metaheuristicsComput Ind Eng2017110424435
GlasbeyCAAn analysis of histogram-based thresholding algorithmsCVGIP Graph Models Image Process1993556532537
BohatVKAryaKVA new heuristic for multilevel thresholding of imagesExpert Syst Appl2019117176203
SahooPKSoltaniSAKCWongAKCA survey of thresholding techniquesComput Vis Graph Image Process1988412233260
Abdel-Basset M, Chang V, Mohamed R (2020) A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems. Neural Comput Appl 1–34
Zhou C, Tian L, Zhao H, Zhao K (2015) A method of two-dimensional otsu image threshold segmentation based on improved firefly algorithm. In: 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER). IEEE, pp 1420–1424
WangMChenHYangBZhaoXLufengHCaiZNHuangHTongCToward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnosesNeurocomputing20172676984
StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711434135914795530888.90135
Liao C, Li S, Luo Z (2006) Gene selection using Wilcoxon rank sum test and support vector machine for cancer classification. In: International conference on computational and information science. Springer, pp 57–66
Cuevas E, Gálvez J, Avalos O (2020) Introduction to optimization and metaheuristic methods. In: Recent metaheuristics algorithms for parameter identification. Springer, pp 1–8
LiYBaiXJiaoLXueYuPartitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentationAppl Soft Comput201756345356
DinkarSKDeepKMirjaliliSThapliyalSOpposition-based Laplacian equilibrium optimizer with application in image segmentation using multilevel thresholdingExpert Syst Appl2021174114766
Aja-FernándezSCurialeAHVegas-Sánchez-FerreroGA local fuzzy thresholding methodology for multiregion image segmentationKnowl-Based Syst201583112
HollandJHGenetic algorithmsSci Am199226716673
FarshiTRDrakeJHÖzcanEA multimodal particle swarm optimization-based approach for image segmentationExpert Syst Appl2020149113233
KandhwayPBhandariAKSinghAA novel reformed histogram equalization based medical image contrast enhancement using krill herd optimizationBiomed Signal Process Control202056101677
MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191
GongCOpposition-based adaptive fireworks algorithmAlgorithms2016934335232851461.90177
TharwatAHassanienAEElnaghiBEA BA-based algorithm for parameter optimization of support vector machinePattern Recognit Lett2017931322
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661
AzizMAEEweesAAHassanienAEWhale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentationExpert Syst Appl201783242256
HousseinEHHelmyBEOlivaDElngarAAShabanHA novel black widow optimization algorithm for multilevel thresholding image segmentationExpert Syst Appl2020167114159
ZhaoWZhangZWangLManta Ray foraging optimization: an effective bio-inspired optimizer for engineering applicationsEng Appl Artif Intell202087103300
OlivaDHinojosaSOsuna-EncisoVCuevasEPérez-CisnerosMSanchez-AnteGImage segmentation by minimum cross entropy using evolutionary methodsSoft Comput2019232431450
TsaiW-HMoment-preserving thresolding: a new approachComput Vis Graph Image Process1985293377393
ArangurenIValdiviaAMorales-CastañedaBOlivaDElazizMAPerez-CisnerosMImproving the segmentation of magnetic resonance brain images using the lshade optimization algorithmBiomed Signal Process Control202164102259
SinghSMittalNSinghHA multilevel thresholding algorithm using LebTLBO for image segmentationNeural Comput Appl2020321668116706
ZivkovicMNebojsa BacaninKVenkatachalamANDjordjevicAStrumbergerIAl-TurjmanFCovid-19 cases prediction by using hybrid machine learning and beetle antennae search approachSustain Cities Soc202166102669
MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249
FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst2020191105190
MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst201696120133
AkayBA study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholdingAppl Soft Comput201313630663091
YousriDElazizMAAbualigahLOlivaDAl-qanessMAAEweesAACovid-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributionsAppl Soft Comput2020101107052
BhandariAKKumarAChaudharySSinghGKA novel color image multilevel thresholding based segmentation using nature inspired optimization algorithmsExpert Syst Appl201663112133
ElazizMAOlivaDXiongSAn improved opposition-based sine cosine algorithm for global optimizationExpert Syst Appl201790484500
Devi A, Nayyar A (2021) Perspectives on the definition of data visualization: a mapping study and discussion on coronavirus (covid-19) dataset. In: Emerging technologies for battling Covid-19: applications and innovations, pp 223–240
MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
Abdel-BassetMChangVMohamedRHsma\_woa: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray imagesAppl Soft Comput202095106642
HongpeiXErdbrinkCDKrzhizhanovskayaVVHow to speed up optimization? Opposite-center learning and its application to differential evolutionProcedia Comput Sci201551805814
ElazizMAEweesAAYousriDNajiHSAlwerfaliQAAwadSLAl-QanessMAAAn improved marine predators algorithm with fuzzy entropy for multilevel thresholding: real world example of covid-19 CT image segmentationIEEE Access20208125306125330
HashimFAHousseinEHHussainKMabroukMSAl-AtabanyWA modified henry gas solubility optimization for solving motif discovery problemNeural Comput Appl202032141075910771
Fathollahi-FardAMHajiaghaei-KeshteliMTavakkoli-MoghaddamRThe social engineering optimizer (SEO)Eng Appl Artif Intell201872267293
EweesAAElazizMAAl-QanessMAAKhalilHAKimSImproved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentationIEEE Access202082630426315
HousseinEHSaadMRHashimFAShabanHHassaballahMLévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell202094103731
Ashish Kumar BhandariA novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentationNeural Comput Appl202032945834613
Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214
WangRZhouYZhaoCHaizhouWA hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentationBio-Med Mater Eng201526s1S1345S1351
MerzbanMHElbayoumiMEfficient solution of otsu multilevel image thresholding: a comparative studyExpert Syst Appl2019116299309
HousseinEHMahdyMABlondinMJSheblDMohamedWMHybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problemsExpert Syst Appl2021174114689
PandaRAgrawalSSamantarayLAbrahamAAn evolutionary gray gradient algorithm for multil
S Mirjalili (6273_CR85) 2016; 95
FA Hashim (6273_CR26) 2020; 32
S Mirjalili (6273_CR40) 2016; 96
W-H Tsai (6273_CR16) 1985; 29
A Tharwat (6273_CR31) 2017; 93
VK Bohat (6273_CR32) 2019; 117
F Zhao (6273_CR49) 2015; 28
MAE Aziz (6273_CR62) 2017; 83
6273_CR33
Ashish Kumar Bhandari (6273_CR72) 2020; 32
6273_CR35
F Chakraborty (6273_CR74) 2019; 12
A Faramarzi (6273_CR87) 2020; 191
H Gao (6273_CR67) 2018; 70
I Aranguren (6273_CR52) 2021; 64
W Zhao (6273_CR43) 2020; 87
S Aja-Fernández (6273_CR12) 2015; 83
E Aarts (6273_CR44) 2003
A Arcuri (6273_CR88) 2013; 18
PK Sahoo (6273_CR19) 1988; 41
AM Fathollahi-Fard (6273_CR37) 2018; 72
AA Heidari (6273_CR41) 2019; 97
M Abdel-Basset (6273_CR59) 2020; 95
B Akay (6273_CR79) 2013; 13
SK Dinkar (6273_CR51) 2021; 174
6273_CR81
EH Houssein (6273_CR8) 2020; 167
FA Hashim (6273_CR23) 2020; 51
6273_CR2
H Zapata (6273_CR28) 2020; 18
A Alrosan (6273_CR58) 2021; 33
AA Ewees (6273_CR63) 2020; 8
6273_CR84
6273_CR4
6273_CR82
6273_CR83
L He (6273_CR11) 2020; 89
6273_CR1
S Gupta (6273_CR29) 2020; 32
6273_CR46
OE Turgut (6273_CR78) 2021; 3
AT Sahlol (6273_CR60) 2020; 10
M Wang (6273_CR20) 2017; 267
S Pare (6273_CR69) 2018; 70
JN Kapur (6273_CR15) 1985; 29
X Hongpei (6273_CR47) 2015; 51
S Mirjalili (6273_CR36) 2014; 69
M Zivkovic (6273_CR61) 2021; 66
EH Houssein (6273_CR27) 2020; 94
6273_CR6
SA Harmon (6273_CR5) 2020; 11
E Rodríguez-Esparza (6273_CR10) 2020; 155
TR Farshi (6273_CR68) 2020; 149
M Tubishat (6273_CR76) 2020; 145
Y Li (6273_CR55) 2017; 56
MA Elaziz (6273_CR77) 2017; 90
B Kosko (6273_CR14) 1986; 40
N Otsu (6273_CR17) 1979; 9
EH Houssein (6273_CR30) 2021; 174
R Wang (6273_CR57) 2015; 26
S Singh (6273_CR71) 2020; 32
R-E Precup (6273_CR25) 2021; 14
MH Merzban (6273_CR9) 2019; 116
Z Yang (6273_CR70) 2020; 32
R Storn (6273_CR38) 1997; 11
CA Glasbey (6273_CR75) 1993; 55
D Yousri (6273_CR3) 2020; 101
J Li (6273_CR48) 2016; 10
D Oliva (6273_CR18) 2019; 23
M Dorigo (6273_CR39) 2006; 1
YJ Kim (6273_CR53) 2019; 67
R Panda (6273_CR56) 2017; 50
Z Wang (6273_CR80) 2004; 13
N Rojas-Morales (6273_CR45) 2017; 110
HVH Ayala (6273_CR13) 2015; 42
AK Bhandari (6273_CR66) 2016; 63
EH Houssein (6273_CR73) 2021; 167
C Gong (6273_CR50) 2016; 9
JH Holland (6273_CR34) 1992; 267
6273_CR64
6273_CR21
6273_CR65
P Kandhway (6273_CR54) 2020; 56
FA Hashim (6273_CR22) 2019; 101
6273_CR24
S Mirjalili (6273_CR42) 2015; 89
S Mirjalili (6273_CR86) 2017; 114
MA Elaziz (6273_CR7) 2020; 8
References_xml – reference: KandhwayPBhandariAKSinghAA novel reformed histogram equalization based medical image contrast enhancement using krill herd optimizationBiomed Signal Process Control202056101677
– reference: KapurJNSahooPKWongAKCA new method for gray-level picture thresholding using the entropy of the histogramComput Vis Graph Image Process1985293273285
– reference: SinghSMittalNSinghHA multilevel thresholding algorithm using LebTLBO for image segmentationNeural Comput Appl2020321668116706
– reference: ArangurenIValdiviaAMorales-CastañedaBOlivaDElazizMAPerez-CisnerosMImproving the segmentation of magnetic resonance brain images using the lshade optimization algorithmBiomed Signal Process Control202164102259
– reference: Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation, 2005 and international conference on intelligent agents, web technologies and internet commerce, vol 1. IEEE, pp 695–701
– reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191
– reference: Zhou C, Tian L, Zhao H, Zhao K (2015) A method of two-dimensional otsu image threshold segmentation based on improved firefly algorithm. In: 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER). IEEE, pp 1420–1424
– reference: TubishatMIdrisNShuibLAbushariahMAMMirjaliliSImproved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selectionExpert Syst Appl2020145113122
– reference: Hussien AG (2021) An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems. J Ambient Intell Humaniz Comput 1–22
– reference: ElazizMAOlivaDXiongSAn improved opposition-based sine cosine algorithm for global optimizationExpert Syst Appl201790484500
– reference: OlivaDHinojosaSOsuna-EncisoVCuevasEPérez-CisnerosMSanchez-AnteGImage segmentation by minimum cross entropy using evolutionary methodsSoft Comput2019232431450
– reference: GuptaSDeepKHybrid sine cosine artificial bee colony algorithm for global optimization and image segmentationNeural Comput Appl2020321395219543
– reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249
– reference: Zhao J, Zhang Y, He X, Xie P (2020) Covid-CT-dataset: a CT scan dataset about covid-19. arXiv preprint arXiv:2003.13865
– reference: HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFuture Gener Comput Syst2019101646667
– reference: Abdel-Basset M, Chang V, Mohamed R (2020) A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems. Neural Comput Appl 1–34
– reference: Fathollahi-FardAMHajiaghaei-KeshteliMTavakkoli-MoghaddamRThe social engineering optimizer (SEO)Eng Appl Artif Intell201872267293
– reference: YangZAngusWA non-revisiting quantum-behaved particle swarm optimization based multilevel thresholding for image segmentationNeural Comput Appl202032161201112031
– reference: HousseinEHMahdyMABlondinMJSheblDMohamedWMHybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problemsExpert Syst Appl2021174114689
– reference: LiYBaiXJiaoLXueYuPartitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentationAppl Soft Comput201756345356
– reference: Rodríguez-EsparzaEZanella-CalzadaLAOlivaDHeidariAAZaldivarDPérez-CisnerosMFoongLKAn efficient Harris Hawks-inspired image segmentation methodExpert Syst Appl2020155113428
– reference: Aja-FernándezSCurialeAHVegas-Sánchez-FerreroGA local fuzzy thresholding methodology for multiregion image segmentationKnowl-Based Syst201583112
– reference: GaoHZhengFPunC-MHaidongHLanRA multi-level thresholding image segmentation based on an improved artificial bee colony algorithmComput Electr Eng201870931938
– reference: YousriDElazizMAAbualigahLOlivaDAl-qanessMAAEweesAACovid-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributionsAppl Soft Comput2020101107052
– reference: HollandJHGenetic algorithmsSci Am199226716673
– reference: DinkarSKDeepKMirjaliliSThapliyalSOpposition-based Laplacian equilibrium optimizer with application in image segmentation using multilevel thresholdingExpert Syst Appl2021174114766
– reference: WangMChenHYangBZhaoXLufengHCaiZNHuangHTongCToward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnosesNeurocomputing20172676984
– reference: DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag2006142839
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
– reference: GongCOpposition-based adaptive fireworks algorithmAlgorithms2016934335232851461.90177
– reference: Sharma K, Singh H, Sharma DK, Kumar A, Nayyar A, Krishnamurthi R (2021) Dynamic models and control techniques for drone delivery of medications and other healthcare items in covid-19 hotspots. In: Emerging technologies for battling covid-19: applications and innovations, pp 1–34
– reference: AartsEAartsEHLLenstraJKLocal search in combinatorial optimization2003PrincetonPrinceton University Press1106.90002
– reference: BhandariAKKumarAChaudharySSinghGKA novel color image multilevel thresholding based segmentation using nature inspired optimization algorithmsExpert Syst Appl201663112133
– reference: Abdel-BassetMChangVMohamedRHsma\_woa: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray imagesAppl Soft Comput202095106642
– reference: Khalifa NEM, Taha MHN, Hassanien AE, Elghamrawy S (2020) Detection of coronavirus (covid-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset. arXiv preprint arXiv:2004.01184
– reference: AyalaHVHdos SantosFMMarianiCdos Santos CoelhoLImage thresholding segmentation based on a novel beta differential evolution approachExpert Syst Appl201542421362142
– reference: MerzbanMHElbayoumiMEfficient solution of otsu multilevel image thresholding: a comparative studyExpert Syst Appl2019116299309
– reference: TsaiW-HMoment-preserving thresolding: a new approachComput Vis Graph Image Process1985293377393
– reference: Rojas-MoralesNRojasM-CRUretaEMA survey and classification of opposition-based metaheuristicsComput Ind Eng2017110424435
– reference: MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst201696120133
– reference: SahlolATYousriDEweesAAAl-QanessMAADamaseviciusRElazizMACovid-19 image classification using deep features and fractional-order marine predators algorithmSci Rep2020101115
– reference: Houssein EH, Neggaz N, Hosney ME, Mohamed WM, Hassaballah M (2021) Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities. Neural Comput Appl 1–18
– reference: HousseinEHHelmyBEOlivaDElngarAAShabanHA novel black widow optimization algorithm for multilevel thresholding image segmentationExpert Syst Appl2021167114159
– reference: HashimFAHousseinEHHussainKMabroukMSAl-AtabanyWA modified henry gas solubility optimization for solving motif discovery problemNeural Comput Appl202032141075910771
– reference: ZhaoFZhangJWangJZhangCA shuffled complex evolution algorithm with opposition-based learning for a permutation flow shop scheduling problemInt J Comput Integr Manuf2015281112201235
– reference: ZhaoWZhangZWangLManta Ray foraging optimization: an effective bio-inspired optimizer for engineering applicationsEng Appl Artif Intell202087103300
– reference: Ashish Kumar BhandariA novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentationNeural Comput Appl202032945834613
– reference: LiJChenTZhangTLiYXA cuckoo optimization algorithm using elite opposition-based learning and chaotic disturbanceJ Softw Eng2016101628
– reference: PandaRAgrawalSSamantarayLAbrahamAAn evolutionary gray gradient algorithm for multilevel thresholding of brain MR images using soft computing techniquesAppl Soft Comput20175094108
– reference: HashimFAHussainEHHousseinKMabroukMSAl-AtabanyWArchimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problemsAppl Intell202051315311551
– reference: HousseinEHSaadMRHashimFAShabanHHassaballahMLévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell202094103731
– reference: ZivkovicMNebojsa BacaninKVenkatachalamANDjordjevicAStrumbergerIAl-TurjmanFCovid-19 cases prediction by using hybrid machine learning and beetle antennae search approachSustain Cities Soc202166102669
– reference: OtsuNA threshold selection method from gray-level histogramsIEEE Trans Syst Man Cybern1979916266558673
– reference: AlrosanAAlomoushWNorwawiNAlswaittiMMakhadmehSNAn improved artificial bee colony algorithm based on mean best-guided approach for continuous optimization problems and real brain MRI images segmentationNeural Comput Appl202133516711697
– reference: Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214
– reference: TurgutOEA novel chaotic Manta-Ray foraging optimization algorithm for thermo-economic design optimization of an air-fin coolerSN Appl Sci2021311362482058
– reference: KimYJJangHLeeKParkSMinS-GHongCParkJHLeeKKimJHongWPaip 2019: liver cancer segmentation challengeMed Image Anal2019671018542021
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process2004134600612
– reference: BohatVKAryaKVA new heuristic for multilevel thresholding of imagesExpert Syst Appl2019117176203
– reference: Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, pp 196–202
– reference: FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst2020191105190
– reference: TharwatAHassanienAEElnaghiBEA BA-based algorithm for parameter optimization of support vector machinePattern Recognit Lett2017931322
– reference: Devi A, Nayyar A (2021) Perspectives on the definition of data visualization: a mapping study and discussion on coronavirus (covid-19) dataset. In: Emerging technologies for battling Covid-19: applications and innovations, pp 223–240
– reference: Liao C, Li S, Luo Z (2006) Gene selection using Wilcoxon rank sum test and support vector machine for cancer classification. In: International conference on computational and information science. Springer, pp 57–66
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661
– reference: AzizMAEEweesAAHassanienAEWhale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentationExpert Syst Appl201783242256
– reference: ChakrabortyFRoyPKNandiDOppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholdingEvolut Intell2019123445467
– reference: GlasbeyCAAn analysis of histogram-based thresholding algorithmsCVGIP Graph Models Image Process1993556532537
– reference: Rahimi I, Chen F, Gandomi AH (2021) A review on covid-19 forecasting models. Neural Comput Appl 1–11
– reference: ElazizMAEweesAAYousriDNajiHSAlwerfaliQAAwadSLAl-QanessMAAAn improved marine predators algorithm with fuzzy entropy for multilevel thresholding: real world example of covid-19 CT image segmentationIEEE Access20208125306125330
– reference: ArcuriAFraserGParameter tuning or default values? An empirical investigation in search-based software engineeringEmpir Softw Eng2013183594623
– reference: HeLHuangSAn efficient krill herd algorithm for color image multilevel thresholding segmentation problemAppl Soft Comput202089106063
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872
– reference: EweesAAElazizMAAl-QanessMAAKhalilHAKimSImproved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentationIEEE Access202082630426315
– reference: FarshiTRDrakeJHÖzcanEA multimodal particle swarm optimization-based approach for image segmentationExpert Syst Appl2020149113233
– reference: SahooPKSoltaniSAKCWongAKCA survey of thresholding techniquesComput Vis Graph Image Process1988412233260
– reference: Cuevas E, Gálvez J, Avalos O (2020) Introduction to optimization and metaheuristic methods. In: Recent metaheuristics algorithms for parameter identification. Springer, pp 1–8
– reference: HarmonSASanfordTHShengXTurkbeyEBRothHZiyueXYangDMyronenkoAAndersonVAmalouAArtificial intelligence for the detection of covid-19 pneumonia on chest CT using multinational datasetsNat Commun202011117
– reference: AkayBA study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholdingAppl Soft Comput201313630663091
– reference: PrecupR-EDavidR-CRomanR-CPetriuEMSzedlak-StineanA-ISlime mould algorithm-based tuning of cost-effective fuzzy controllers for servo systemsInt J Comput Intell Syst202114110421052
– reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711434135914795530888.90135
– reference: KoskoBFuzzy entropy and conditioningInf Sci19864021651748790410623.94005
– reference: HousseinEHHelmyBEOlivaDElngarAAShabanHA novel black widow optimization algorithm for multilevel thresholding image segmentationExpert Syst Appl2020167114159
– reference: PareSBhandariAKKumarASinghGKA new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithmComput Electr Eng201870476495
– reference: HongpeiXErdbrinkCDKrzhizhanovskayaVVHow to speed up optimization? Opposite-center learning and its application to differential evolutionProcedia Comput Sci201551805814
– reference: ZapataHPerozoNAnguloWContrerasJA hybrid swarm algorithm for collective construction of 3d structuresInt J Artif Intell2020181118
– reference: Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M (2020) Covid-19 image data collection: prospective predictions are the future. arXiv preprint arXiv:2006.11988
– reference: WangRZhouYZhaoCHaizhouWA hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentationBio-Med Mater Eng201526s1S1345S1351
– ident: 6273_CR2
  doi: 10.1007/s00521-020-05626-8
– volume: 8
  start-page: 26304
  year: 2020
  ident: 6273_CR63
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971249
– volume: 42
  start-page: 2136
  issue: 4
  year: 2015
  ident: 6273_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.09.043
– volume: 66
  start-page: 102669
  year: 2021
  ident: 6273_CR61
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102669
– ident: 6273_CR4
  doi: 10.1007/978-3-030-60039-6_11
– volume: 10
  start-page: 16
  year: 2016
  ident: 6273_CR48
  publication-title: J Softw Eng
  doi: 10.3923/jse.2016.16.28
– ident: 6273_CR64
  doi: 10.1109/CYBER.2015.7288151
– volume: 191
  start-page: 105190
  year: 2020
  ident: 6273_CR87
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105190
– volume: 97
  start-page: 849
  year: 2019
  ident: 6273_CR41
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 51
  start-page: 805
  year: 2015
  ident: 6273_CR47
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.05.203
– volume: 23
  start-page: 431
  issue: 2
  year: 2019
  ident: 6273_CR18
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2794-1
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 6273_CR28
  publication-title: Int J Artif Intell
– volume: 89
  start-page: 106063
  year: 2020
  ident: 6273_CR11
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106063
– volume: 70
  start-page: 931
  year: 2018
  ident: 6273_CR67
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.12.037
– ident: 6273_CR83
– volume: 93
  start-page: 13
  year: 2017
  ident: 6273_CR31
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2016.10.007
– ident: 6273_CR1
– ident: 6273_CR33
  doi: 10.1007/978-3-030-28917-1_1
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 6273_CR38
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 155
  start-page: 113428
  year: 2020
  ident: 6273_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113428
– volume: 18
  start-page: 594
  issue: 3
  year: 2013
  ident: 6273_CR88
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-013-9249-9
– volume: 51
  start-page: 1531
  issue: 3
  year: 2020
  ident: 6273_CR23
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01893-z
– volume: 94
  start-page: 103731
  year: 2020
  ident: 6273_CR27
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103731
– ident: 6273_CR84
  doi: 10.59275/j.melba.2020-48g7
– volume: 101
  start-page: 107052
  year: 2020
  ident: 6273_CR3
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.107052
– volume: 40
  start-page: 165
  issue: 2
  year: 1986
  ident: 6273_CR14
  publication-title: Inf Sci
  doi: 10.1016/0020-0255(86)90006-X
– volume: 9
  start-page: 43
  issue: 3
  year: 2016
  ident: 6273_CR50
  publication-title: Algorithms
  doi: 10.3390/a9030043
– volume: 69
  start-page: 46
  year: 2014
  ident: 6273_CR36
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 13
  start-page: 3066
  issue: 6
  year: 2013
  ident: 6273_CR79
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.03.072
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 6273_CR60
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-71294-2
– volume: 95
  start-page: 106642
  year: 2020
  ident: 6273_CR59
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106642
– volume: 26
  start-page: S1345
  issue: s1
  year: 2015
  ident: 6273_CR57
  publication-title: Bio-Med Mater Eng
  doi: 10.3233/BME-151432
– volume: 56
  start-page: 101677
  year: 2020
  ident: 6273_CR54
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.101677
– volume: 64
  start-page: 102259
  year: 2021
  ident: 6273_CR52
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102259
– volume: 67
  start-page: 2021
  issue: 101854
  year: 2019
  ident: 6273_CR53
  publication-title: Med Image Anal
– volume: 167
  start-page: 114159
  year: 2021
  ident: 6273_CR73
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114159
– volume: 145
  start-page: 113122
  year: 2020
  ident: 6273_CR76
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113122
– volume: 56
  start-page: 345
  year: 2017
  ident: 6273_CR55
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.018
– volume: 90
  start-page: 484
  year: 2017
  ident: 6273_CR77
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.07.043
– volume: 149
  start-page: 113233
  year: 2020
  ident: 6273_CR68
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113233
– volume: 55
  start-page: 532
  issue: 6
  year: 1993
  ident: 6273_CR75
  publication-title: CVGIP Graph Models Image Process
  doi: 10.1006/cgip.1993.1040
– volume: 110
  start-page: 424
  year: 2017
  ident: 6273_CR45
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2017.06.028
– volume: 33
  start-page: 1671
  issue: 5
  year: 2021
  ident: 6273_CR58
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05118-9
– volume: 29
  start-page: 377
  issue: 3
  year: 1985
  ident: 6273_CR16
  publication-title: Comput Vis Graph Image Process
  doi: 10.1016/0734-189X(85)90133-1
– ident: 6273_CR82
  doi: 10.1007/978-3-540-74377-4_7
– volume-title: Local search in combinatorial optimization
  year: 2003
  ident: 6273_CR44
  doi: 10.1515/9780691187563
– volume: 83
  start-page: 242
  year: 2017
  ident: 6273_CR62
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.023
– volume: 95
  start-page: 51
  year: 2016
  ident: 6273_CR85
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 6273_CR17
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1979.4310076
– volume: 50
  start-page: 94
  year: 2017
  ident: 6273_CR56
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.11.011
– volume: 70
  start-page: 476
  year: 2018
  ident: 6273_CR69
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.08.008
– ident: 6273_CR46
  doi: 10.1109/CIMCA.2005.1631345
– volume: 32
  start-page: 10759
  issue: 14
  year: 2020
  ident: 6273_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04611-0
– volume: 32
  start-page: 12011
  issue: 16
  year: 2020
  ident: 6273_CR70
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04210-z
– ident: 6273_CR35
  doi: 10.1109/NABIC.2009.5393690
– volume: 28
  start-page: 1220
  issue: 11
  year: 2015
  ident: 6273_CR49
  publication-title: Int J Comput Integr Manuf
– volume: 32
  start-page: 4583
  issue: 9
  year: 2020
  ident: 6273_CR72
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3771-z
– volume: 12
  start-page: 445
  issue: 3
  year: 2019
  ident: 6273_CR74
  publication-title: Evolut Intell
  doi: 10.1007/s12065-019-00238-1
– ident: 6273_CR6
  doi: 10.1007/978-3-030-60039-6_1
– volume: 3
  start-page: 1
  issue: 1
  year: 2021
  ident: 6273_CR78
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-04013-1
– volume: 167
  start-page: 114159
  year: 2020
  ident: 6273_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114159
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 6273_CR15
  publication-title: Comput Vis Graph Image Process
  doi: 10.1016/0734-189X(85)90125-2
– ident: 6273_CR24
  doi: 10.1007/s00521-021-05991-y
– volume: 32
  start-page: 16681
  year: 2020
  ident: 6273_CR71
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04989-2
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 6273_CR34
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 87
  start-page: 103300
  year: 2020
  ident: 6273_CR43
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103300
– volume: 114
  start-page: 163
  year: 2017
  ident: 6273_CR86
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 41
  start-page: 233
  issue: 2
  year: 1988
  ident: 6273_CR19
  publication-title: Comput Vis Graph Image Process
  doi: 10.1016/0734-189X(88)90022-9
– ident: 6273_CR65
  doi: 10.1007/s00521-020-04820-y
– volume: 63
  start-page: 112
  year: 2016
  ident: 6273_CR66
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.06.044
– volume: 72
  start-page: 267
  year: 2018
  ident: 6273_CR37
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.009
– volume: 174
  start-page: 114766
  year: 2021
  ident: 6273_CR51
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114766
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 6273_CR80
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 83
  start-page: 1
  year: 2015
  ident: 6273_CR12
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.02.029
– volume: 174
  start-page: 114689
  year: 2021
  ident: 6273_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114689
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 6273_CR39
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2006.329691
– volume: 89
  start-page: 228
  year: 2015
  ident: 6273_CR42
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 8
  start-page: 125306
  year: 2020
  ident: 6273_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007928
– volume: 101
  start-page: 646
  year: 2019
  ident: 6273_CR22
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.07.015
– volume: 14
  start-page: 1042
  issue: 1
  year: 2021
  ident: 6273_CR25
  publication-title: Int J Comput Intell Syst
  doi: 10.2991/ijcis.d.210309.001
– volume: 96
  start-page: 120
  year: 2016
  ident: 6273_CR40
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 32
  start-page: 9521
  issue: 13
  year: 2020
  ident: 6273_CR29
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04465-6
– volume: 116
  start-page: 299
  year: 2019
  ident: 6273_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.09.008
– ident: 6273_CR21
  doi: 10.1007/s12652-021-02892-9
– volume: 117
  start-page: 176
  year: 2019
  ident: 6273_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.045
– volume: 267
  start-page: 69
  year: 2017
  ident: 6273_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– ident: 6273_CR81
  doi: 10.1007/978-1-4612-4380-9_16
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 6273_CR5
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17971-2
SSID ssj0004685
Score 2.5697703
Snippet Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people’s safety and health. Many algorithms were developed to identify...
Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16899
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computed tomography
Computer Science
Coronaviruses
COVID-19
Data Mining and Knowledge Discovery
Evaluation
Heuristic methods
Image classification
Image Processing and Computer Vision
Image segmentation
Machine learning
Medical imaging
Optimization
Original
Original Article
Probability and Statistics in Computer Science
Signal to noise ratio
Trigonometric functions
Viral diseases
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcASFAxcKtECgICNxo1brxFnbJ4QWKpBQ6aFUFYdGiR9lpW62bLZI_D0zXiftUrUXDpYlP5SMZsYzY88D4G2jQq2Nr7kyWnIpvOWNCILSa8sy2CbkMY776Kva39fHx-YgXbh1ya2yPxPjQe1mlu7Id1BNL5REfWL0_vwXp6pR9LqaSmjchXuUJYFKNxyUP67ERcaSnGjBkHePLFLQTAydo_tQHKU2QhHOi1XBdE3bvO40-c_LaRRIe-v_C8ojeJhUUfZhSTuP4Y5vn8B6X-aBJa7fgJPlxYN3bIpoqNm8_sNQ1Y3ljdgMj5xpiuWkURY9FPkZ-SKxBRJKl963GHnYn7Lxt6MvH7kwbHzIJlM8zLpN-L736XD8maeyDNxKJReI0KZxKNmdMLZ0zirvUSsTwaOuYwVKxLIMuQjaWom9a9zIoRmce4W9o3xkT2GtnbX-ObCm0N7I0tTClTI0XqPxaHIncxmsdqLOQPQ4qWzKWU6lM86qIdtyxGO1S43wWBUZvBv2nC8zdty6eqvHUZW4t6suEZTBm2Ea-Y4eU-rWzy5oDU6j7qt0Bs-WlDF8rkAAdG5EBmqFZoYFlNN7daad_Iy5vdHaQ4sPd2731HX5WzdD8eJ2KF7Cg5woPXrhbMHaYn7hX8F9-3sx6eavI8_8BSx7HKU
  priority: 102
  providerName: ProQuest
Title Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images
URI https://link.springer.com/article/10.1007/s00521-021-06273-3
https://www.ncbi.nlm.nih.gov/pubmed/34248291
https://www.proquest.com/docview/2593746506
https://www.proquest.com/docview/2550632678
https://pubmed.ncbi.nlm.nih.gov/PMC8261821
Volume 33
WOSCitedRecordID wos000670722000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8MQ2Hnhh4zuwVUbiDSLhxKntRyibQEKlglFVPBAl_oBKa4qaDol_z53rZCsDJHiIrMTnJLbPvjvfF8CTWvpKaVelUiuRCu5MWnPPKby2KLypfRb8uKdv5XisZjM9iU5hbWft3qkkw07dO7vRCSaKvnQNkeim-Q7sFRRthmT0D9NL3pAhESfKLQQp8ugq8_t3bJOjKzzmVVPJX_SlgQyd7P9fBw7gZmQ72YsNntyCa665DftdSgcWV_gd-Lw5ZHCWLXDIK7aqfjBka0MqI7bE7WUR_TbpKQvWiOkZ2R2xNSJFG3VZjKzpv7DRu-mbVynXbHTK5gvcuNq78PHk-HT0Oo0pGFIjpFjj5NW1RSpuuTaFtUY6hxwY9w75GsOR-hWFz7hXxggsbW2HFkXezEksLcUeuwe7zbJxD4DVuXJaFLrithC-dgoFRZ1ZkQlvlOVVArybidLE-OSUJuOs7CMrhwEsn9NFA1jmCTzt23zbROf4K_RhN8FlXKltieJfLgXyqcMEHvfVuMZIcVI1bnlOMFiNfK5UCdzf4EP_uRw7oDLNE5BbmNIDUPzu7Zpm_jXE8UbJDqU7bPmsw5eL3_pzLx7-G_gjuJERygULnEPYXa_O3RFcN9_X83Y1gB05UwPYe3k8nrzHu0nxaRBW00-NFBXd
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJcWl4tgQJGghNErRNnYx8Qgm2rrrosFVqqngiJ7cBK3Wy72YL6p_iNzDiPslT01gMHy5IfiZ18Hs_Y8wB4kcV5KpVN_VhJ4QtutZ_xnJN7bRHlOssDZ8d9OIiHQ3l0pA6W4FdjC0NqlQ1NdITaTDWdkW8imx7GAvmJ7tuTU5-iRtHtahNCo4LFvj3_iSJb-aa_jf_3ZRDs7ox6e34dVcDXIhZzHE-WGdyYDFc6MkbH1iJTwXOLW7XmSNCjKA94LrUWmJvMdA1KcYGNMTfkTgufewOWRYiD6cDy-53hwac_LDFdEFCUmUifSIS1mY4z1qMTWCyl1EWmwQ8Xt8JL_O1lNc2_7mrdFri7-r99vDuwUjPb7F21Ou7Cki3uwWoTyILVdO0-fKmOVqxhEwRaymbpOUNm3gVwYlMkqpPaWpVKmdPB9I9J24rNcSmU9Q0eIxuCb6z38bC_7XPFeiM2niC5Lh_A52uZ5Rp0imlhHwLLQmmViFTKTSTyzEoUj1VgRCByLQ1PPeANBhJde2Wn4CDHSetP2uEm2aJEuElCD161fU4qnyRXtt5oMJHU9KlMLgDhwfO2GikLXRelhZ2eURusRu4-lh6sV0hsXxfiBGSguAfxAkbbBuS1fLGmGH933stRnkWZFnu-btB8Max_z-LR1bN4Brf2Rh8GyaA_3H8MtwNaZU7naAM689mZfQI39Y_5uJw9rVcsg6_XjfPflc97Eg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8DQ2hHhh4ztjAyPxBtFw4tT2I-qoNjGVCUa1J6LEH1BpTac2Q-Lf7875YN0ACfFgWYrPSWyffXe-L4BXpfSF0q6IpVYiFtyZuOSeU3htkXlT-iT4cU-O5HisTk_18RUv_mDt3qkkG58GitJU1Xvn1u_1jm90m4liMJUBEuA4vQUbAiUZMur69HlyxTMyJOVEGYYgRdq6zfz-Hauk6Qa_edNs8pruNJCk0eb_D2YL7rXsKHvX4M99WHPVA9jsUj2wduc_hK_N5YOzbIZLUbBF8ZMhuxtSHLE5Hjuz1p-TnrJgpRifkT0SqxFZlq2Oi5GV_Tc2_Dg53I-5ZsMTNp3hgbZ8BF9G70-GB3GbmiE2QooaF7UsLVJ3y7XJrDXSOeTMuHfI7xiOVDHLfMK9MkZgbUs7sCgKJ05ibSkm2WNYr-aVewqsTJXTItMFt5nwpVMoQOrEikR4oywvIuDdquSmjVtO6TPO8j7icpjA_C0VmsA8jeB13-e8idrxV-idbrHzdgcvcxQLUymQfx1E8LJvxr1HCpWicvMLgsFm5H-liuBJgxv951IcgEo0j0CuYE0PQHG9V1uq6fcQ3xslPpT6sOebDnd-_dafR7H9b-Av4M7x_ig_Ohx_eAZ3E8K-YKSzA-v14sLtwm3zo54uF8_DhroExYAeIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+manta+ray+foraging+optimization+for+multi-level+thresholding+using+COVID-19+CT+images&rft.jtitle=Neural+computing+%26+applications&rft.au=Houssein%2C+Essam+H&rft.au=Emam%2C+Marwa+M&rft.au=Ali%2C+Abdelmgeid+A&rft.date=2021-12-01&rft.issn=0941-0643&rft.volume=33&rft.issue=24&rft.spage=16899&rft_id=info:doi/10.1007%2Fs00521-021-06273-3&rft_id=info%3Apmid%2F34248291&rft.externalDocID=34248291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon