Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images
Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people’s safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of inter...
Saved in:
| Published in: | Neural computing & applications Vol. 33; no. 24; pp. 16899 - 16919 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.12.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people’s safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO’s initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu’s method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu’s method for all the used metrics. |
|---|---|
| AbstractList | Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO's initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu's method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu's method for all the used metrics.Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO's initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu's method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu's method for all the used metrics. Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO's initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu's method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu's method for all the used metrics. |
| Author | Houssein, Essam H. Emam, Marwa M. Ali, Abdelmgeid A. |
| Author_xml | – sequence: 1 givenname: Essam H. orcidid: 0000-0002-8127-7233 surname: Houssein fullname: Houssein, Essam H. email: essam.halim@mu.edu.eg organization: Faculty of Computers and Information, Minia University – sequence: 2 givenname: Marwa M. surname: Emam fullname: Emam, Marwa M. organization: Faculty of Computers and Information, Minia University – sequence: 3 givenname: Abdelmgeid A. surname: Ali fullname: Ali, Abdelmgeid A. organization: Faculty of Computers and Information, Minia University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34248291$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1v1DAQhi3Uim4X_gAHFIkLl1B_J7kgoS2FlSr1UjhieW0n68qxF9tZqfx6nG4LbQ89jMfyPO_o9cwpOPLBGwDeIfgJQdicJQgZRjWcg-OG1OQVWCBKygWy9ggsYEfnEiUn4DSlGwgh5S17DU4IxbTFHVqAX-txF8Pe6GqUPssqytuqD1EO1g9V2GU72j8y2-Dn12qcXLa1M3vjqryNJm2D0zM5pflcXf1cn9eoq1bXlR3lYNIbcNxLl8zb-7wEPy6-Xq--15dX39arL5e1og3NNUWbjcYUa9QpprVqjCGYot6QrlMIEs5Yj1HfKkVL1hvNNWkJNk3JmjFOluDzoe9u2oxGK-NzlE7sYrERb0WQVjyteLsVQ9iLFnPUYlQafLxvEMPvyaQsRpuUcU56E6YkMGOQE8ybtqAfnqE3YYq-fK9QHWkon9EleP_Y0T8rD6MvQHsAVAwpRdMLZfPdqItB6wSCYt6yOGxZwDnmLQtSpPiZ9KH7iyJyEKUC-8HE_7ZfUP0FC7C5qg |
| CitedBy_id | crossref_primary_10_1002_cpe_7543 crossref_primary_10_1038_s41598_023_36066_8 crossref_primary_10_1080_21681163_2021_2024088 crossref_primary_10_1016_j_eswa_2024_123977 crossref_primary_10_1080_21681163_2022_2140074 crossref_primary_10_1007_s42979_023_01915_w crossref_primary_10_1016_j_bspc_2022_104159 crossref_primary_10_1080_21681163_2023_2242523 crossref_primary_10_1080_21681163_2023_2165161 crossref_primary_10_1155_2022_4431817 crossref_primary_10_1016_j_asoc_2022_108483 crossref_primary_10_1007_s10586_024_04982_7 crossref_primary_10_1016_j_est_2021_103848 crossref_primary_10_1007_s00521_022_07445_5 crossref_primary_10_1016_j_compbiomed_2023_106950 crossref_primary_10_1016_j_compbiomed_2022_106075 crossref_primary_10_1007_s11042_022_14024_2 crossref_primary_10_1016_j_eswa_2024_124581 crossref_primary_10_1155_2022_4587880 crossref_primary_10_3233_JIFS_222783 crossref_primary_10_1080_21681163_2022_2117645 crossref_primary_10_1038_s41598_024_73335_6 crossref_primary_10_1007_s42235_024_00481_y crossref_primary_10_1080_21681163_2022_2117647 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1177_18724981241301913 crossref_primary_10_1016_j_compbiomed_2021_104827 crossref_primary_10_1080_21681163_2023_2245925 crossref_primary_10_3390_electronics11152342 crossref_primary_10_3390_s21165482 crossref_primary_10_1038_s41598_023_48479_6 crossref_primary_10_1016_j_asoc_2023_110561 crossref_primary_10_1016_j_compbiomed_2023_106966 crossref_primary_10_3390_math9182230 crossref_primary_10_1016_j_est_2023_109974 crossref_primary_10_1080_21681163_2023_2199891 crossref_primary_10_3389_feart_2022_870299 crossref_primary_10_1007_s10586_024_04601_5 crossref_primary_10_1007_s00521_022_07043_5 crossref_primary_10_1016_j_compbiomed_2024_109175 crossref_primary_10_3389_feart_2022_849079 crossref_primary_10_1007_s11042_023_15341_w crossref_primary_10_3390_app14219785 crossref_primary_10_3390_math11040979 crossref_primary_10_4018_IJSIR_349907 crossref_primary_10_1371_journal_pone_0285211 crossref_primary_10_1007_s00521_023_08492_2 crossref_primary_10_1007_s11220_024_00506_0 crossref_primary_10_1002_ima_22830 crossref_primary_10_1016_j_compbiomed_2024_108329 crossref_primary_10_1016_j_eswa_2022_119015 crossref_primary_10_3390_math11112591 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1080_19942060_2023_2192258 crossref_primary_10_1109_ACCESS_2023_3276264 crossref_primary_10_1016_j_compbiomed_2023_107389 crossref_primary_10_1007_s11042_023_15031_7 crossref_primary_10_1007_s10489_022_03977_4 crossref_primary_10_1016_j_eswa_2023_120367 crossref_primary_10_1007_s00521_024_09524_1 crossref_primary_10_1007_s42235_022_00295_w crossref_primary_10_1038_s41598_023_49176_0 crossref_primary_10_1007_s12530_023_09552_7 crossref_primary_10_1016_j_knosys_2022_110247 crossref_primary_10_1080_21681163_2023_2245069 crossref_primary_10_1007_s00521_025_11210_9 crossref_primary_10_1016_j_compbiomed_2024_108498 crossref_primary_10_3390_app13053223 crossref_primary_10_3390_diagnostics13081422 crossref_primary_10_1007_s11042_023_14367_4 crossref_primary_10_1007_s11831_025_10363_z crossref_primary_10_3390_math11030707 crossref_primary_10_1038_s41598_024_59960_1 crossref_primary_10_1016_j_matcom_2023_11_019 crossref_primary_10_1109_ACCESS_2023_3255793 crossref_primary_10_1016_j_compbiomed_2022_106404 crossref_primary_10_1016_j_eswa_2022_118999 crossref_primary_10_1080_21681163_2025_2500433 crossref_primary_10_3390_biomimetics10060356 |
| Cites_doi | 10.1007/s00521-020-05626-8 10.1109/ACCESS.2020.2971249 10.1016/j.eswa.2014.09.043 10.1016/j.scs.2020.102669 10.1007/978-3-030-60039-6_11 10.3923/jse.2016.16.28 10.1109/CYBER.2015.7288151 10.1016/j.knosys.2019.105190 10.1016/j.future.2019.02.028 10.1016/j.procs.2015.05.203 10.1007/s00500-017-2794-1 10.1016/j.asoc.2020.106063 10.1016/j.compeleceng.2017.12.037 10.1016/j.patrec.2016.10.007 10.1007/978-3-030-28917-1_1 10.1023/A:1008202821328 10.1016/j.eswa.2020.113428 10.1007/s10664-013-9249-9 10.1007/s10489-020-01893-z 10.1016/j.engappai.2020.103731 10.59275/j.melba.2020-48g7 10.1016/j.asoc.2020.107052 10.1016/0020-0255(86)90006-X 10.3390/a9030043 10.1016/j.advengsoft.2013.12.007 10.1016/j.asoc.2012.03.072 10.1038/s41598-020-71294-2 10.1016/j.asoc.2020.106642 10.3233/BME-151432 10.1016/j.bspc.2019.101677 10.1016/j.bspc.2020.102259 10.1016/j.eswa.2020.114159 10.1016/j.eswa.2019.113122 10.1016/j.asoc.2017.03.018 10.1016/j.eswa.2017.07.043 10.1016/j.eswa.2020.113233 10.1006/cgip.1993.1040 10.1016/j.cie.2017.06.028 10.1007/s00521-020-05118-9 10.1016/0734-189X(85)90133-1 10.1007/978-3-540-74377-4_7 10.1515/9780691187563 10.1016/j.eswa.2017.04.023 10.1016/j.advengsoft.2016.01.008 10.1109/TSMC.1979.4310076 10.1016/j.asoc.2016.11.011 10.1016/j.compeleceng.2017.08.008 10.1109/CIMCA.2005.1631345 10.1007/s00521-019-04611-0 10.1007/s00521-019-04210-z 10.1109/NABIC.2009.5393690 10.1007/s00521-018-3771-z 10.1007/s12065-019-00238-1 10.1007/978-3-030-60039-6_1 10.1007/s42452-020-04013-1 10.1016/0734-189X(85)90125-2 10.1007/s00521-021-05991-y 10.1007/s00521-020-04989-2 10.1038/scientificamerican0792-66 10.1016/j.engappai.2019.103300 10.1016/j.advengsoft.2017.07.002 10.1016/0734-189X(88)90022-9 10.1007/s00521-020-04820-y 10.1016/j.eswa.2016.06.044 10.1016/j.engappai.2018.04.009 10.1016/j.eswa.2021.114766 10.1109/TIP.2003.819861 10.1016/j.knosys.2015.02.029 10.1016/j.eswa.2021.114689 10.1109/MCI.2006.329691 10.1016/j.knosys.2015.07.006 10.1109/ACCESS.2020.3007928 10.1016/j.future.2019.07.015 10.2991/ijcis.d.210309.001 10.1016/j.knosys.2015.12.022 10.1007/s00521-019-04465-6 10.1016/j.eswa.2018.09.008 10.1007/s12652-021-02892-9 10.1016/j.eswa.2018.08.045 10.1016/j.neucom.2017.04.060 10.1007/978-1-4612-4380-9_16 10.1038/s41467-020-17971-2 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1007/s00521-021-06273-3 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 16919 |
| ExternalDocumentID | PMC8261821 34248291 10_1007_s00521_021_06273_3 |
| Genre | Journal Article |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB NPM DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c474t-41bbd242d19c5ddc7ee3241fe399c103655f21f8cc4f21dbd6d3832e76d3d5563 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670722000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 01:49:14 EST 2025 Fri Sep 05 06:37:50 EDT 2025 Wed Nov 05 03:03:10 EST 2025 Mon Jul 21 05:59:21 EDT 2025 Tue Nov 18 22:26:13 EST 2025 Sat Nov 29 02:59:22 EST 2025 Fri Feb 21 02:47:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | COVID-19 CT images Manta ray foraging optimization Otsu’s method Multilevel thresholding image segmentation Meta-heuristics algorithms |
| Language | English |
| License | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-41bbd242d19c5ddc7ee3241fe399c103655f21f8cc4f21dbd6d3832e76d3d5563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8127-7233 |
| OpenAccessLink | http://dx.doi.org/10.1007/s00521-021-06273-3 |
| PMID | 34248291 |
| PQID | 2593746506 |
| PQPubID | 2043988 |
| PageCount | 21 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8261821 proquest_miscellaneous_2550632678 proquest_journals_2593746506 pubmed_primary_34248291 crossref_citationtrail_10_1007_s00521_021_06273_3 crossref_primary_10_1007_s00521_021_06273_3 springer_journals_10_1007_s00521_021_06273_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationTitleAlternate | Neural Comput Appl |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | ArcuriAFraserGParameter tuning or default values? An empirical investigation in search-based software engineeringEmpir Softw Eng2013183594623 GuptaSDeepKHybrid sine cosine artificial bee colony algorithm for global optimization and image segmentationNeural Comput Appl2020321395219543 Houssein EH, Neggaz N, Hosney ME, Mohamed WM, Hassaballah M (2021) Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities. Neural Comput Appl 1–18 Rahimi I, Chen F, Gandomi AH (2021) A review on covid-19 forecasting models. Neural Comput Appl 1–11 WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process2004134600612 ZhaoFZhangJWangJZhangCA shuffled complex evolution algorithm with opposition-based learning for a permutation flow shop scheduling problemInt J Comput Integr Manuf2015281112201235 ChakrabortyFRoyPKNandiDOppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholdingEvolut Intell2019123445467 AartsEAartsEHLLenstraJKLocal search in combinatorial optimization2003PrincetonPrinceton University Press1106.90002 Zhao J, Zhang Y, He X, Xie P (2020) Covid-CT-dataset: a CT scan dataset about covid-19. arXiv preprint arXiv:2003.13865 Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M (2020) Covid-19 image data collection: prospective predictions are the future. arXiv preprint arXiv:2006.11988 AyalaHVHdos SantosFMMarianiCdos Santos CoelhoLImage thresholding segmentation based on a novel beta differential evolution approachExpert Syst Appl201542421362142 HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872 AlrosanAAlomoushWNorwawiNAlswaittiMMakhadmehSNAn improved artificial bee colony algorithm based on mean best-guided approach for continuous optimization problems and real brain MRI images segmentationNeural Comput Appl202133516711697 Sharma K, Singh H, Sharma DK, Kumar A, Nayyar A, Krishnamurthi R (2021) Dynamic models and control techniques for drone delivery of medications and other healthcare items in covid-19 hotspots. In: Emerging technologies for battling covid-19: applications and innovations, pp 1–34 SahlolATYousriDEweesAAAl-QanessMAADamaseviciusRElazizMACovid-19 image classification using deep features and fractional-order marine predators algorithmSci Rep2020101115 Rojas-MoralesNRojasM-CRUretaEMA survey and classification of opposition-based metaheuristicsComput Ind Eng2017110424435 GlasbeyCAAn analysis of histogram-based thresholding algorithmsCVGIP Graph Models Image Process1993556532537 BohatVKAryaKVA new heuristic for multilevel thresholding of imagesExpert Syst Appl2019117176203 SahooPKSoltaniSAKCWongAKCA survey of thresholding techniquesComput Vis Graph Image Process1988412233260 Abdel-Basset M, Chang V, Mohamed R (2020) A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems. Neural Comput Appl 1–34 Zhou C, Tian L, Zhao H, Zhao K (2015) A method of two-dimensional otsu image threshold segmentation based on improved firefly algorithm. In: 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER). IEEE, pp 1420–1424 WangMChenHYangBZhaoXLufengHCaiZNHuangHTongCToward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnosesNeurocomputing20172676984 StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711434135914795530888.90135 Liao C, Li S, Luo Z (2006) Gene selection using Wilcoxon rank sum test and support vector machine for cancer classification. In: International conference on computational and information science. Springer, pp 57–66 Cuevas E, Gálvez J, Avalos O (2020) Introduction to optimization and metaheuristic methods. In: Recent metaheuristics algorithms for parameter identification. Springer, pp 1–8 LiYBaiXJiaoLXueYuPartitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentationAppl Soft Comput201756345356 DinkarSKDeepKMirjaliliSThapliyalSOpposition-based Laplacian equilibrium optimizer with application in image segmentation using multilevel thresholdingExpert Syst Appl2021174114766 Aja-FernándezSCurialeAHVegas-Sánchez-FerreroGA local fuzzy thresholding methodology for multiregion image segmentationKnowl-Based Syst201583112 HollandJHGenetic algorithmsSci Am199226716673 FarshiTRDrakeJHÖzcanEA multimodal particle swarm optimization-based approach for image segmentationExpert Syst Appl2020149113233 KandhwayPBhandariAKSinghAA novel reformed histogram equalization based medical image contrast enhancement using krill herd optimizationBiomed Signal Process Control202056101677 MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191 GongCOpposition-based adaptive fireworks algorithmAlgorithms2016934335232851461.90177 TharwatAHassanienAEElnaghiBEA BA-based algorithm for parameter optimization of support vector machinePattern Recognit Lett2017931322 MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661 AzizMAEEweesAAHassanienAEWhale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentationExpert Syst Appl201783242256 HousseinEHHelmyBEOlivaDElngarAAShabanHA novel black widow optimization algorithm for multilevel thresholding image segmentationExpert Syst Appl2020167114159 ZhaoWZhangZWangLManta Ray foraging optimization: an effective bio-inspired optimizer for engineering applicationsEng Appl Artif Intell202087103300 OlivaDHinojosaSOsuna-EncisoVCuevasEPérez-CisnerosMSanchez-AnteGImage segmentation by minimum cross entropy using evolutionary methodsSoft Comput2019232431450 TsaiW-HMoment-preserving thresolding: a new approachComput Vis Graph Image Process1985293377393 ArangurenIValdiviaAMorales-CastañedaBOlivaDElazizMAPerez-CisnerosMImproving the segmentation of magnetic resonance brain images using the lshade optimization algorithmBiomed Signal Process Control202164102259 SinghSMittalNSinghHA multilevel thresholding algorithm using LebTLBO for image segmentationNeural Comput Appl2020321668116706 ZivkovicMNebojsa BacaninKVenkatachalamANDjordjevicAStrumbergerIAl-TurjmanFCovid-19 cases prediction by using hybrid machine learning and beetle antennae search approachSustain Cities Soc202166102669 MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249 FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst2020191105190 MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst201696120133 AkayBA study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholdingAppl Soft Comput201313630663091 YousriDElazizMAAbualigahLOlivaDAl-qanessMAAEweesAACovid-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributionsAppl Soft Comput2020101107052 BhandariAKKumarAChaudharySSinghGKA novel color image multilevel thresholding based segmentation using nature inspired optimization algorithmsExpert Syst Appl201663112133 ElazizMAOlivaDXiongSAn improved opposition-based sine cosine algorithm for global optimizationExpert Syst Appl201790484500 Devi A, Nayyar A (2021) Perspectives on the definition of data visualization: a mapping study and discussion on coronavirus (covid-19) dataset. In: Emerging technologies for battling Covid-19: applications and innovations, pp 223–240 MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167 Abdel-BassetMChangVMohamedRHsma\_woa: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray imagesAppl Soft Comput202095106642 HongpeiXErdbrinkCDKrzhizhanovskayaVVHow to speed up optimization? Opposite-center learning and its application to differential evolutionProcedia Comput Sci201551805814 ElazizMAEweesAAYousriDNajiHSAlwerfaliQAAwadSLAl-QanessMAAAn improved marine predators algorithm with fuzzy entropy for multilevel thresholding: real world example of covid-19 CT image segmentationIEEE Access20208125306125330 HashimFAHousseinEHHussainKMabroukMSAl-AtabanyWA modified henry gas solubility optimization for solving motif discovery problemNeural Comput Appl202032141075910771 Fathollahi-FardAMHajiaghaei-KeshteliMTavakkoli-MoghaddamRThe social engineering optimizer (SEO)Eng Appl Artif Intell201872267293 EweesAAElazizMAAl-QanessMAAKhalilHAKimSImproved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentationIEEE Access202082630426315 HousseinEHSaadMRHashimFAShabanHHassaballahMLévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell202094103731 Ashish Kumar BhandariA novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentationNeural Comput Appl202032945834613 Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214 WangRZhouYZhaoCHaizhouWA hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentationBio-Med Mater Eng201526s1S1345S1351 MerzbanMHElbayoumiMEfficient solution of otsu multilevel image thresholding: a comparative studyExpert Syst Appl2019116299309 HousseinEHMahdyMABlondinMJSheblDMohamedWMHybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problemsExpert Syst Appl2021174114689 PandaRAgrawalSSamantarayLAbrahamAAn evolutionary gray gradient algorithm for multil S Mirjalili (6273_CR85) 2016; 95 FA Hashim (6273_CR26) 2020; 32 S Mirjalili (6273_CR40) 2016; 96 W-H Tsai (6273_CR16) 1985; 29 A Tharwat (6273_CR31) 2017; 93 VK Bohat (6273_CR32) 2019; 117 F Zhao (6273_CR49) 2015; 28 MAE Aziz (6273_CR62) 2017; 83 6273_CR33 Ashish Kumar Bhandari (6273_CR72) 2020; 32 6273_CR35 F Chakraborty (6273_CR74) 2019; 12 A Faramarzi (6273_CR87) 2020; 191 H Gao (6273_CR67) 2018; 70 I Aranguren (6273_CR52) 2021; 64 W Zhao (6273_CR43) 2020; 87 S Aja-Fernández (6273_CR12) 2015; 83 E Aarts (6273_CR44) 2003 A Arcuri (6273_CR88) 2013; 18 PK Sahoo (6273_CR19) 1988; 41 AM Fathollahi-Fard (6273_CR37) 2018; 72 AA Heidari (6273_CR41) 2019; 97 M Abdel-Basset (6273_CR59) 2020; 95 B Akay (6273_CR79) 2013; 13 SK Dinkar (6273_CR51) 2021; 174 6273_CR81 EH Houssein (6273_CR8) 2020; 167 FA Hashim (6273_CR23) 2020; 51 6273_CR2 H Zapata (6273_CR28) 2020; 18 A Alrosan (6273_CR58) 2021; 33 AA Ewees (6273_CR63) 2020; 8 6273_CR84 6273_CR4 6273_CR82 6273_CR83 L He (6273_CR11) 2020; 89 6273_CR1 S Gupta (6273_CR29) 2020; 32 6273_CR46 OE Turgut (6273_CR78) 2021; 3 AT Sahlol (6273_CR60) 2020; 10 M Wang (6273_CR20) 2017; 267 S Pare (6273_CR69) 2018; 70 JN Kapur (6273_CR15) 1985; 29 X Hongpei (6273_CR47) 2015; 51 S Mirjalili (6273_CR36) 2014; 69 M Zivkovic (6273_CR61) 2021; 66 EH Houssein (6273_CR27) 2020; 94 6273_CR6 SA Harmon (6273_CR5) 2020; 11 E Rodríguez-Esparza (6273_CR10) 2020; 155 TR Farshi (6273_CR68) 2020; 149 M Tubishat (6273_CR76) 2020; 145 Y Li (6273_CR55) 2017; 56 MA Elaziz (6273_CR77) 2017; 90 B Kosko (6273_CR14) 1986; 40 N Otsu (6273_CR17) 1979; 9 EH Houssein (6273_CR30) 2021; 174 R Wang (6273_CR57) 2015; 26 S Singh (6273_CR71) 2020; 32 R-E Precup (6273_CR25) 2021; 14 MH Merzban (6273_CR9) 2019; 116 Z Yang (6273_CR70) 2020; 32 R Storn (6273_CR38) 1997; 11 CA Glasbey (6273_CR75) 1993; 55 D Yousri (6273_CR3) 2020; 101 J Li (6273_CR48) 2016; 10 D Oliva (6273_CR18) 2019; 23 M Dorigo (6273_CR39) 2006; 1 YJ Kim (6273_CR53) 2019; 67 R Panda (6273_CR56) 2017; 50 Z Wang (6273_CR80) 2004; 13 N Rojas-Morales (6273_CR45) 2017; 110 HVH Ayala (6273_CR13) 2015; 42 AK Bhandari (6273_CR66) 2016; 63 EH Houssein (6273_CR73) 2021; 167 C Gong (6273_CR50) 2016; 9 JH Holland (6273_CR34) 1992; 267 6273_CR64 6273_CR21 6273_CR65 P Kandhway (6273_CR54) 2020; 56 FA Hashim (6273_CR22) 2019; 101 6273_CR24 S Mirjalili (6273_CR42) 2015; 89 S Mirjalili (6273_CR86) 2017; 114 MA Elaziz (6273_CR7) 2020; 8 |
| References_xml | – reference: KandhwayPBhandariAKSinghAA novel reformed histogram equalization based medical image contrast enhancement using krill herd optimizationBiomed Signal Process Control202056101677 – reference: KapurJNSahooPKWongAKCA new method for gray-level picture thresholding using the entropy of the histogramComput Vis Graph Image Process1985293273285 – reference: SinghSMittalNSinghHA multilevel thresholding algorithm using LebTLBO for image segmentationNeural Comput Appl2020321668116706 – reference: ArangurenIValdiviaAMorales-CastañedaBOlivaDElazizMAPerez-CisnerosMImproving the segmentation of magnetic resonance brain images using the lshade optimization algorithmBiomed Signal Process Control202164102259 – reference: Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation, 2005 and international conference on intelligent agents, web technologies and internet commerce, vol 1. IEEE, pp 695–701 – reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191 – reference: Zhou C, Tian L, Zhao H, Zhao K (2015) A method of two-dimensional otsu image threshold segmentation based on improved firefly algorithm. In: 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER). IEEE, pp 1420–1424 – reference: TubishatMIdrisNShuibLAbushariahMAMMirjaliliSImproved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selectionExpert Syst Appl2020145113122 – reference: Hussien AG (2021) An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems. J Ambient Intell Humaniz Comput 1–22 – reference: ElazizMAOlivaDXiongSAn improved opposition-based sine cosine algorithm for global optimizationExpert Syst Appl201790484500 – reference: OlivaDHinojosaSOsuna-EncisoVCuevasEPérez-CisnerosMSanchez-AnteGImage segmentation by minimum cross entropy using evolutionary methodsSoft Comput2019232431450 – reference: GuptaSDeepKHybrid sine cosine artificial bee colony algorithm for global optimization and image segmentationNeural Comput Appl2020321395219543 – reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249 – reference: Zhao J, Zhang Y, He X, Xie P (2020) Covid-CT-dataset: a CT scan dataset about covid-19. arXiv preprint arXiv:2003.13865 – reference: HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFuture Gener Comput Syst2019101646667 – reference: Abdel-Basset M, Chang V, Mohamed R (2020) A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems. Neural Comput Appl 1–34 – reference: Fathollahi-FardAMHajiaghaei-KeshteliMTavakkoli-MoghaddamRThe social engineering optimizer (SEO)Eng Appl Artif Intell201872267293 – reference: YangZAngusWA non-revisiting quantum-behaved particle swarm optimization based multilevel thresholding for image segmentationNeural Comput Appl202032161201112031 – reference: HousseinEHMahdyMABlondinMJSheblDMohamedWMHybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problemsExpert Syst Appl2021174114689 – reference: LiYBaiXJiaoLXueYuPartitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentationAppl Soft Comput201756345356 – reference: Rodríguez-EsparzaEZanella-CalzadaLAOlivaDHeidariAAZaldivarDPérez-CisnerosMFoongLKAn efficient Harris Hawks-inspired image segmentation methodExpert Syst Appl2020155113428 – reference: Aja-FernándezSCurialeAHVegas-Sánchez-FerreroGA local fuzzy thresholding methodology for multiregion image segmentationKnowl-Based Syst201583112 – reference: GaoHZhengFPunC-MHaidongHLanRA multi-level thresholding image segmentation based on an improved artificial bee colony algorithmComput Electr Eng201870931938 – reference: YousriDElazizMAAbualigahLOlivaDAl-qanessMAAEweesAACovid-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributionsAppl Soft Comput2020101107052 – reference: HollandJHGenetic algorithmsSci Am199226716673 – reference: DinkarSKDeepKMirjaliliSThapliyalSOpposition-based Laplacian equilibrium optimizer with application in image segmentation using multilevel thresholdingExpert Syst Appl2021174114766 – reference: WangMChenHYangBZhaoXLufengHCaiZNHuangHTongCToward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnosesNeurocomputing20172676984 – reference: DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag2006142839 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167 – reference: GongCOpposition-based adaptive fireworks algorithmAlgorithms2016934335232851461.90177 – reference: Sharma K, Singh H, Sharma DK, Kumar A, Nayyar A, Krishnamurthi R (2021) Dynamic models and control techniques for drone delivery of medications and other healthcare items in covid-19 hotspots. In: Emerging technologies for battling covid-19: applications and innovations, pp 1–34 – reference: AartsEAartsEHLLenstraJKLocal search in combinatorial optimization2003PrincetonPrinceton University Press1106.90002 – reference: BhandariAKKumarAChaudharySSinghGKA novel color image multilevel thresholding based segmentation using nature inspired optimization algorithmsExpert Syst Appl201663112133 – reference: Abdel-BassetMChangVMohamedRHsma\_woa: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray imagesAppl Soft Comput202095106642 – reference: Khalifa NEM, Taha MHN, Hassanien AE, Elghamrawy S (2020) Detection of coronavirus (covid-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset. arXiv preprint arXiv:2004.01184 – reference: AyalaHVHdos SantosFMMarianiCdos Santos CoelhoLImage thresholding segmentation based on a novel beta differential evolution approachExpert Syst Appl201542421362142 – reference: MerzbanMHElbayoumiMEfficient solution of otsu multilevel image thresholding: a comparative studyExpert Syst Appl2019116299309 – reference: TsaiW-HMoment-preserving thresolding: a new approachComput Vis Graph Image Process1985293377393 – reference: Rojas-MoralesNRojasM-CRUretaEMA survey and classification of opposition-based metaheuristicsComput Ind Eng2017110424435 – reference: MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst201696120133 – reference: SahlolATYousriDEweesAAAl-QanessMAADamaseviciusRElazizMACovid-19 image classification using deep features and fractional-order marine predators algorithmSci Rep2020101115 – reference: Houssein EH, Neggaz N, Hosney ME, Mohamed WM, Hassaballah M (2021) Enhanced Harris Hawks optimization with genetic operators for selection chemical descriptors and compounds activities. Neural Comput Appl 1–18 – reference: HousseinEHHelmyBEOlivaDElngarAAShabanHA novel black widow optimization algorithm for multilevel thresholding image segmentationExpert Syst Appl2021167114159 – reference: HashimFAHousseinEHHussainKMabroukMSAl-AtabanyWA modified henry gas solubility optimization for solving motif discovery problemNeural Comput Appl202032141075910771 – reference: ZhaoFZhangJWangJZhangCA shuffled complex evolution algorithm with opposition-based learning for a permutation flow shop scheduling problemInt J Comput Integr Manuf2015281112201235 – reference: ZhaoWZhangZWangLManta Ray foraging optimization: an effective bio-inspired optimizer for engineering applicationsEng Appl Artif Intell202087103300 – reference: Ashish Kumar BhandariA novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentationNeural Comput Appl202032945834613 – reference: LiJChenTZhangTLiYXA cuckoo optimization algorithm using elite opposition-based learning and chaotic disturbanceJ Softw Eng2016101628 – reference: PandaRAgrawalSSamantarayLAbrahamAAn evolutionary gray gradient algorithm for multilevel thresholding of brain MR images using soft computing techniquesAppl Soft Comput20175094108 – reference: HashimFAHussainEHHousseinKMabroukMSAl-AtabanyWArchimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problemsAppl Intell202051315311551 – reference: HousseinEHSaadMRHashimFAShabanHHassaballahMLévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell202094103731 – reference: ZivkovicMNebojsa BacaninKVenkatachalamANDjordjevicAStrumbergerIAl-TurjmanFCovid-19 cases prediction by using hybrid machine learning and beetle antennae search approachSustain Cities Soc202166102669 – reference: OtsuNA threshold selection method from gray-level histogramsIEEE Trans Syst Man Cybern1979916266558673 – reference: AlrosanAAlomoushWNorwawiNAlswaittiMMakhadmehSNAn improved artificial bee colony algorithm based on mean best-guided approach for continuous optimization problems and real brain MRI images segmentationNeural Comput Appl202133516711697 – reference: Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214 – reference: TurgutOEA novel chaotic Manta-Ray foraging optimization algorithm for thermo-economic design optimization of an air-fin coolerSN Appl Sci2021311362482058 – reference: KimYJJangHLeeKParkSMinS-GHongCParkJHLeeKKimJHongWPaip 2019: liver cancer segmentation challengeMed Image Anal2019671018542021 – reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process2004134600612 – reference: BohatVKAryaKVA new heuristic for multilevel thresholding of imagesExpert Syst Appl2019117176203 – reference: Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, pp 196–202 – reference: FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst2020191105190 – reference: TharwatAHassanienAEElnaghiBEA BA-based algorithm for parameter optimization of support vector machinePattern Recognit Lett2017931322 – reference: Devi A, Nayyar A (2021) Perspectives on the definition of data visualization: a mapping study and discussion on coronavirus (covid-19) dataset. In: Emerging technologies for battling Covid-19: applications and innovations, pp 223–240 – reference: Liao C, Li S, Luo Z (2006) Gene selection using Wilcoxon rank sum test and support vector machine for cancer classification. In: International conference on computational and information science. Springer, pp 57–66 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661 – reference: AzizMAEEweesAAHassanienAEWhale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentationExpert Syst Appl201783242256 – reference: ChakrabortyFRoyPKNandiDOppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholdingEvolut Intell2019123445467 – reference: GlasbeyCAAn analysis of histogram-based thresholding algorithmsCVGIP Graph Models Image Process1993556532537 – reference: Rahimi I, Chen F, Gandomi AH (2021) A review on covid-19 forecasting models. Neural Comput Appl 1–11 – reference: ElazizMAEweesAAYousriDNajiHSAlwerfaliQAAwadSLAl-QanessMAAAn improved marine predators algorithm with fuzzy entropy for multilevel thresholding: real world example of covid-19 CT image segmentationIEEE Access20208125306125330 – reference: ArcuriAFraserGParameter tuning or default values? An empirical investigation in search-based software engineeringEmpir Softw Eng2013183594623 – reference: HeLHuangSAn efficient krill herd algorithm for color image multilevel thresholding segmentation problemAppl Soft Comput202089106063 – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872 – reference: EweesAAElazizMAAl-QanessMAAKhalilHAKimSImproved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentationIEEE Access202082630426315 – reference: FarshiTRDrakeJHÖzcanEA multimodal particle swarm optimization-based approach for image segmentationExpert Syst Appl2020149113233 – reference: SahooPKSoltaniSAKCWongAKCA survey of thresholding techniquesComput Vis Graph Image Process1988412233260 – reference: Cuevas E, Gálvez J, Avalos O (2020) Introduction to optimization and metaheuristic methods. In: Recent metaheuristics algorithms for parameter identification. Springer, pp 1–8 – reference: HarmonSASanfordTHShengXTurkbeyEBRothHZiyueXYangDMyronenkoAAndersonVAmalouAArtificial intelligence for the detection of covid-19 pneumonia on chest CT using multinational datasetsNat Commun202011117 – reference: AkayBA study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholdingAppl Soft Comput201313630663091 – reference: PrecupR-EDavidR-CRomanR-CPetriuEMSzedlak-StineanA-ISlime mould algorithm-based tuning of cost-effective fuzzy controllers for servo systemsInt J Comput Intell Syst202114110421052 – reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711434135914795530888.90135 – reference: KoskoBFuzzy entropy and conditioningInf Sci19864021651748790410623.94005 – reference: HousseinEHHelmyBEOlivaDElngarAAShabanHA novel black widow optimization algorithm for multilevel thresholding image segmentationExpert Syst Appl2020167114159 – reference: PareSBhandariAKKumarASinghGKA new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithmComput Electr Eng201870476495 – reference: HongpeiXErdbrinkCDKrzhizhanovskayaVVHow to speed up optimization? Opposite-center learning and its application to differential evolutionProcedia Comput Sci201551805814 – reference: ZapataHPerozoNAnguloWContrerasJA hybrid swarm algorithm for collective construction of 3d structuresInt J Artif Intell2020181118 – reference: Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M (2020) Covid-19 image data collection: prospective predictions are the future. arXiv preprint arXiv:2006.11988 – reference: WangRZhouYZhaoCHaizhouWA hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentationBio-Med Mater Eng201526s1S1345S1351 – ident: 6273_CR2 doi: 10.1007/s00521-020-05626-8 – volume: 8 start-page: 26304 year: 2020 ident: 6273_CR63 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971249 – volume: 42 start-page: 2136 issue: 4 year: 2015 ident: 6273_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.09.043 – volume: 66 start-page: 102669 year: 2021 ident: 6273_CR61 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102669 – ident: 6273_CR4 doi: 10.1007/978-3-030-60039-6_11 – volume: 10 start-page: 16 year: 2016 ident: 6273_CR48 publication-title: J Softw Eng doi: 10.3923/jse.2016.16.28 – ident: 6273_CR64 doi: 10.1109/CYBER.2015.7288151 – volume: 191 start-page: 105190 year: 2020 ident: 6273_CR87 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105190 – volume: 97 start-page: 849 year: 2019 ident: 6273_CR41 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 51 start-page: 805 year: 2015 ident: 6273_CR47 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.05.203 – volume: 23 start-page: 431 issue: 2 year: 2019 ident: 6273_CR18 publication-title: Soft Comput doi: 10.1007/s00500-017-2794-1 – volume: 18 start-page: 1 issue: 1 year: 2020 ident: 6273_CR28 publication-title: Int J Artif Intell – volume: 89 start-page: 106063 year: 2020 ident: 6273_CR11 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106063 – volume: 70 start-page: 931 year: 2018 ident: 6273_CR67 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2017.12.037 – ident: 6273_CR83 – volume: 93 start-page: 13 year: 2017 ident: 6273_CR31 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2016.10.007 – ident: 6273_CR1 – ident: 6273_CR33 doi: 10.1007/978-3-030-28917-1_1 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 6273_CR38 publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – volume: 155 start-page: 113428 year: 2020 ident: 6273_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113428 – volume: 18 start-page: 594 issue: 3 year: 2013 ident: 6273_CR88 publication-title: Empir Softw Eng doi: 10.1007/s10664-013-9249-9 – volume: 51 start-page: 1531 issue: 3 year: 2020 ident: 6273_CR23 publication-title: Appl Intell doi: 10.1007/s10489-020-01893-z – volume: 94 start-page: 103731 year: 2020 ident: 6273_CR27 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103731 – ident: 6273_CR84 doi: 10.59275/j.melba.2020-48g7 – volume: 101 start-page: 107052 year: 2020 ident: 6273_CR3 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.107052 – volume: 40 start-page: 165 issue: 2 year: 1986 ident: 6273_CR14 publication-title: Inf Sci doi: 10.1016/0020-0255(86)90006-X – volume: 9 start-page: 43 issue: 3 year: 2016 ident: 6273_CR50 publication-title: Algorithms doi: 10.3390/a9030043 – volume: 69 start-page: 46 year: 2014 ident: 6273_CR36 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 13 start-page: 3066 issue: 6 year: 2013 ident: 6273_CR79 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.03.072 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 6273_CR60 publication-title: Sci Rep doi: 10.1038/s41598-020-71294-2 – volume: 95 start-page: 106642 year: 2020 ident: 6273_CR59 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106642 – volume: 26 start-page: S1345 issue: s1 year: 2015 ident: 6273_CR57 publication-title: Bio-Med Mater Eng doi: 10.3233/BME-151432 – volume: 56 start-page: 101677 year: 2020 ident: 6273_CR54 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101677 – volume: 64 start-page: 102259 year: 2021 ident: 6273_CR52 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102259 – volume: 67 start-page: 2021 issue: 101854 year: 2019 ident: 6273_CR53 publication-title: Med Image Anal – volume: 167 start-page: 114159 year: 2021 ident: 6273_CR73 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114159 – volume: 145 start-page: 113122 year: 2020 ident: 6273_CR76 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113122 – volume: 56 start-page: 345 year: 2017 ident: 6273_CR55 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.03.018 – volume: 90 start-page: 484 year: 2017 ident: 6273_CR77 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.07.043 – volume: 149 start-page: 113233 year: 2020 ident: 6273_CR68 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113233 – volume: 55 start-page: 532 issue: 6 year: 1993 ident: 6273_CR75 publication-title: CVGIP Graph Models Image Process doi: 10.1006/cgip.1993.1040 – volume: 110 start-page: 424 year: 2017 ident: 6273_CR45 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2017.06.028 – volume: 33 start-page: 1671 issue: 5 year: 2021 ident: 6273_CR58 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05118-9 – volume: 29 start-page: 377 issue: 3 year: 1985 ident: 6273_CR16 publication-title: Comput Vis Graph Image Process doi: 10.1016/0734-189X(85)90133-1 – ident: 6273_CR82 doi: 10.1007/978-3-540-74377-4_7 – volume-title: Local search in combinatorial optimization year: 2003 ident: 6273_CR44 doi: 10.1515/9780691187563 – volume: 83 start-page: 242 year: 2017 ident: 6273_CR62 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.023 – volume: 95 start-page: 51 year: 2016 ident: 6273_CR85 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 6273_CR17 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1979.4310076 – volume: 50 start-page: 94 year: 2017 ident: 6273_CR56 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.11.011 – volume: 70 start-page: 476 year: 2018 ident: 6273_CR69 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2017.08.008 – ident: 6273_CR46 doi: 10.1109/CIMCA.2005.1631345 – volume: 32 start-page: 10759 issue: 14 year: 2020 ident: 6273_CR26 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04611-0 – volume: 32 start-page: 12011 issue: 16 year: 2020 ident: 6273_CR70 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04210-z – ident: 6273_CR35 doi: 10.1109/NABIC.2009.5393690 – volume: 28 start-page: 1220 issue: 11 year: 2015 ident: 6273_CR49 publication-title: Int J Comput Integr Manuf – volume: 32 start-page: 4583 issue: 9 year: 2020 ident: 6273_CR72 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3771-z – volume: 12 start-page: 445 issue: 3 year: 2019 ident: 6273_CR74 publication-title: Evolut Intell doi: 10.1007/s12065-019-00238-1 – ident: 6273_CR6 doi: 10.1007/978-3-030-60039-6_1 – volume: 3 start-page: 1 issue: 1 year: 2021 ident: 6273_CR78 publication-title: SN Appl Sci doi: 10.1007/s42452-020-04013-1 – volume: 167 start-page: 114159 year: 2020 ident: 6273_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114159 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 6273_CR15 publication-title: Comput Vis Graph Image Process doi: 10.1016/0734-189X(85)90125-2 – ident: 6273_CR24 doi: 10.1007/s00521-021-05991-y – volume: 32 start-page: 16681 year: 2020 ident: 6273_CR71 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04989-2 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 6273_CR34 publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 87 start-page: 103300 year: 2020 ident: 6273_CR43 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.103300 – volume: 114 start-page: 163 year: 2017 ident: 6273_CR86 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 41 start-page: 233 issue: 2 year: 1988 ident: 6273_CR19 publication-title: Comput Vis Graph Image Process doi: 10.1016/0734-189X(88)90022-9 – ident: 6273_CR65 doi: 10.1007/s00521-020-04820-y – volume: 63 start-page: 112 year: 2016 ident: 6273_CR66 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.06.044 – volume: 72 start-page: 267 year: 2018 ident: 6273_CR37 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.04.009 – volume: 174 start-page: 114766 year: 2021 ident: 6273_CR51 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114766 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 6273_CR80 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – volume: 83 start-page: 1 year: 2015 ident: 6273_CR12 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.02.029 – volume: 174 start-page: 114689 year: 2021 ident: 6273_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114689 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 6273_CR39 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.329691 – volume: 89 start-page: 228 year: 2015 ident: 6273_CR42 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 8 start-page: 125306 year: 2020 ident: 6273_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007928 – volume: 101 start-page: 646 year: 2019 ident: 6273_CR22 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.07.015 – volume: 14 start-page: 1042 issue: 1 year: 2021 ident: 6273_CR25 publication-title: Int J Comput Intell Syst doi: 10.2991/ijcis.d.210309.001 – volume: 96 start-page: 120 year: 2016 ident: 6273_CR40 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 32 start-page: 9521 issue: 13 year: 2020 ident: 6273_CR29 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04465-6 – volume: 116 start-page: 299 year: 2019 ident: 6273_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.09.008 – ident: 6273_CR21 doi: 10.1007/s12652-021-02892-9 – volume: 117 start-page: 176 year: 2019 ident: 6273_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.045 – volume: 267 start-page: 69 year: 2017 ident: 6273_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – ident: 6273_CR81 doi: 10.1007/978-1-4612-4380-9_16 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 6273_CR5 publication-title: Nat Commun doi: 10.1038/s41467-020-17971-2 |
| SSID | ssj0004685 |
| Score | 2.5697703 |
| Snippet | Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people’s safety and health. Many algorithms were developed to identify... Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 16899 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computed tomography Computer Science Coronaviruses COVID-19 Data Mining and Knowledge Discovery Evaluation Heuristic methods Image classification Image Processing and Computer Vision Image segmentation Machine learning Medical imaging Optimization Original Original Article Probability and Statistics in Computer Science Signal to noise ratio Trigonometric functions Viral diseases |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcASFAxcKtECgICNxo1brxFnbJ4QWKpBQ6aFUFYdGiR9lpW62bLZI_D0zXiftUrUXDpYlP5SMZsYzY88D4G2jQq2Nr7kyWnIpvOWNCILSa8sy2CbkMY776Kva39fHx-YgXbh1ya2yPxPjQe1mlu7Id1BNL5REfWL0_vwXp6pR9LqaSmjchXuUJYFKNxyUP67ERcaSnGjBkHePLFLQTAydo_tQHKU2QhHOi1XBdE3bvO40-c_LaRRIe-v_C8ojeJhUUfZhSTuP4Y5vn8B6X-aBJa7fgJPlxYN3bIpoqNm8_sNQ1Y3ljdgMj5xpiuWkURY9FPkZ-SKxBRJKl963GHnYn7Lxt6MvH7kwbHzIJlM8zLpN-L736XD8maeyDNxKJReI0KZxKNmdMLZ0zirvUSsTwaOuYwVKxLIMuQjaWom9a9zIoRmce4W9o3xkT2GtnbX-ObCm0N7I0tTClTI0XqPxaHIncxmsdqLOQPQ4qWzKWU6lM86qIdtyxGO1S43wWBUZvBv2nC8zdty6eqvHUZW4t6suEZTBm2Ea-Y4eU-rWzy5oDU6j7qt0Bs-WlDF8rkAAdG5EBmqFZoYFlNN7daad_Iy5vdHaQ4sPd2731HX5WzdD8eJ2KF7Cg5woPXrhbMHaYn7hX8F9-3sx6eavI8_8BSx7HKU priority: 102 providerName: ProQuest |
| Title | Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images |
| URI | https://link.springer.com/article/10.1007/s00521-021-06273-3 https://www.ncbi.nlm.nih.gov/pubmed/34248291 https://www.proquest.com/docview/2593746506 https://www.proquest.com/docview/2550632678 https://pubmed.ncbi.nlm.nih.gov/PMC8261821 |
| Volume | 33 |
| WOSCitedRecordID | wos000670722000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8MQ2Hnhh4zuwVUbiDSLhxKntRyibQEKlglFVPBAl_oBKa4qaDol_z53rZCsDJHiIrMTnJLbPvjvfF8CTWvpKaVelUiuRCu5MWnPPKby2KLypfRb8uKdv5XisZjM9iU5hbWft3qkkw07dO7vRCSaKvnQNkeim-Q7sFRRthmT0D9NL3pAhESfKLQQp8ugq8_t3bJOjKzzmVVPJX_SlgQyd7P9fBw7gZmQ72YsNntyCa665DftdSgcWV_gd-Lw5ZHCWLXDIK7aqfjBka0MqI7bE7WUR_TbpKQvWiOkZ2R2xNSJFG3VZjKzpv7DRu-mbVynXbHTK5gvcuNq78PHk-HT0Oo0pGFIjpFjj5NW1RSpuuTaFtUY6hxwY9w75GsOR-hWFz7hXxggsbW2HFkXezEksLcUeuwe7zbJxD4DVuXJaFLrithC-dgoFRZ1ZkQlvlOVVArybidLE-OSUJuOs7CMrhwEsn9NFA1jmCTzt23zbROf4K_RhN8FlXKltieJfLgXyqcMEHvfVuMZIcVI1bnlOMFiNfK5UCdzf4EP_uRw7oDLNE5BbmNIDUPzu7Zpm_jXE8UbJDqU7bPmsw5eL3_pzLx7-G_gjuJERygULnEPYXa_O3RFcN9_X83Y1gB05UwPYe3k8nrzHu0nxaRBW00-NFBXd |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJcWl4tgQJGghNErRNnYx8Qgm2rrrosFVqqngiJ7cBK3Wy72YL6p_iNzDiPslT01gMHy5IfiZ18Hs_Y8wB4kcV5KpVN_VhJ4QtutZ_xnJN7bRHlOssDZ8d9OIiHQ3l0pA6W4FdjC0NqlQ1NdITaTDWdkW8imx7GAvmJ7tuTU5-iRtHtahNCo4LFvj3_iSJb-aa_jf_3ZRDs7ox6e34dVcDXIhZzHE-WGdyYDFc6MkbH1iJTwXOLW7XmSNCjKA94LrUWmJvMdA1KcYGNMTfkTgufewOWRYiD6cDy-53hwac_LDFdEFCUmUifSIS1mY4z1qMTWCyl1EWmwQ8Xt8JL_O1lNc2_7mrdFri7-r99vDuwUjPb7F21Ou7Cki3uwWoTyILVdO0-fKmOVqxhEwRaymbpOUNm3gVwYlMkqpPaWpVKmdPB9I9J24rNcSmU9Q0eIxuCb6z38bC_7XPFeiM2niC5Lh_A52uZ5Rp0imlhHwLLQmmViFTKTSTyzEoUj1VgRCByLQ1PPeANBhJde2Wn4CDHSetP2uEm2aJEuElCD161fU4qnyRXtt5oMJHU9KlMLgDhwfO2GikLXRelhZ2eURusRu4-lh6sV0hsXxfiBGSguAfxAkbbBuS1fLGmGH933stRnkWZFnu-btB8Max_z-LR1bN4Brf2Rh8GyaA_3H8MtwNaZU7naAM689mZfQI39Y_5uJw9rVcsg6_XjfPflc97Eg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8DQ2hHhh4ztjAyPxBtFw4tT2I-qoNjGVCUa1J6LEH1BpTac2Q-Lf7875YN0ACfFgWYrPSWyffXe-L4BXpfSF0q6IpVYiFtyZuOSeU3htkXlT-iT4cU-O5HisTk_18RUv_mDt3qkkG58GitJU1Xvn1u_1jm90m4liMJUBEuA4vQUbAiUZMur69HlyxTMyJOVEGYYgRdq6zfz-Hauk6Qa_edNs8pruNJCk0eb_D2YL7rXsKHvX4M99WHPVA9jsUj2wduc_hK_N5YOzbIZLUbBF8ZMhuxtSHLE5Hjuz1p-TnrJgpRifkT0SqxFZlq2Oi5GV_Tc2_Dg53I-5ZsMTNp3hgbZ8BF9G70-GB3GbmiE2QooaF7UsLVJ3y7XJrDXSOeTMuHfI7xiOVDHLfMK9MkZgbUs7sCgKJ05ibSkm2WNYr-aVewqsTJXTItMFt5nwpVMoQOrEikR4oywvIuDdquSmjVtO6TPO8j7icpjA_C0VmsA8jeB13-e8idrxV-idbrHzdgcvcxQLUymQfx1E8LJvxr1HCpWicvMLgsFm5H-liuBJgxv951IcgEo0j0CuYE0PQHG9V1uq6fcQ3xslPpT6sOebDnd-_dafR7H9b-Av4M7x_ig_Ohx_eAZ3E8K-YKSzA-v14sLtwm3zo54uF8_DhroExYAeIw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+manta+ray+foraging+optimization+for+multi-level+thresholding+using+COVID-19+CT+images&rft.jtitle=Neural+computing+%26+applications&rft.au=Houssein%2C+Essam+H&rft.au=Emam%2C+Marwa+M&rft.au=Ali%2C+Abdelmgeid+A&rft.date=2021-12-01&rft.issn=0941-0643&rft.volume=33&rft.issue=24&rft.spage=16899&rft_id=info:doi/10.1007%2Fs00521-021-06273-3&rft_id=info%3Apmid%2F34248291&rft.externalDocID=34248291 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |