Deep Learning for User Interest and Response Prediction in Online Display Advertising

User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data Science and Engineering Jg. 5; H. 1; S. 12 - 26
Hauptverfasser: Gharibshah, Zhabiz, Zhu, Xingquan, Hainline, Arthur, Conway, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer
SpringerOpen
Schlagworte:
ISSN:2364-1185, 2364-1541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks, LSTM cp and LSTM ip , for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction.
AbstractList User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks, LSTM cp and LSTM ip , for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction.
Abstract User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks, $${\hbox {LSTM}}_{\mathrm{cp}}$$ LSTM cp and $${\hbox {LSTM}}_{\mathrm{ip}}$$ LSTM ip , for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction.
User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks, $${\hbox {LSTM}}_{\mathrm{cp}}$$ LSTM cp and $${\hbox {LSTM}}_{\mathrm{ip}}$$ LSTM ip , for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction.
User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks, [Formula omitted] and [Formula omitted], for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction.
Audience Academic
Author Conway, Michael
Gharibshah, Zhabiz
Hainline, Arthur
Zhu, Xingquan
Author_xml – sequence: 1
  givenname: Zhabiz
  surname: Gharibshah
  fullname: Gharibshah, Zhabiz
  email: zgharibshah2017@fau.edu
  organization: Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University
– sequence: 2
  givenname: Xingquan
  surname: Zhu
  fullname: Zhu, Xingquan
  organization: Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University
– sequence: 3
  givenname: Arthur
  surname: Hainline
  fullname: Hainline, Arthur
  organization: Bidtellect Inc
– sequence: 4
  givenname: Michael
  surname: Conway
  fullname: Conway, Michael
  organization: Bidtellect Inc
BookMark eNp9UcFu3CAQtaJUSprmB3ri2oMTsMHAcZW0zUorpUq7ZzTGg8XKgRU4Vffvy66bQ3qI0Ihh9N6bYd7H6jzEgFX1mdEbRqm8zZxRputTUMZEfTirLpu24zUTnJ2_5kyJi-o65x2ltCkvzrvLanuPuCcbhBR8GImLiWwzJrIOMybMM4EwkCfM-xgykh8JB29nHwPxgTyGyQck9z7vJziQ1fAb0-xz0flUfXAwZbz-d19V229ff9091JvH7-u71aa2XPK55mV6LLPxBiQTbeM0hcYxBxoFaiut6lpmlYaeKqd71wMi7VTrJHUWSnJVrRfdIcLO7JN_hnQwEbw5FWIaDZSR7ITGCSFd02nZy46DVKpXlDmmhWRskP1R62bRGqHAfXBxTmDLGfDZ27Jx50t91bHSVzS6LYQvbwgFM-OfeYSXnM3659NbrFqwNsWcEzpj_QzHRZYmfjKMmqOVZrHSnOJopTkUavMf9fWf75LahZQLOIyYzC6-pFC8eI_1FzyDscE
CitedBy_id crossref_primary_10_1007_s00778_023_00808_x
crossref_primary_10_1007_s10618_020_00706_8
crossref_primary_10_1002_asmb_2671
crossref_primary_10_1108_IJCS_03_2021_0011
crossref_primary_10_1007_s00778_021_00685_2
crossref_primary_10_1093_comjnl_bxae117
crossref_primary_10_1108_YC_09_2024_2214
crossref_primary_10_1016_j_peva_2023_102351
crossref_primary_10_1016_j_elerap_2023_101319
crossref_primary_10_3390_electronics14183734
crossref_primary_10_1155_2021_9940232
crossref_primary_10_4018_JOEUC_342092
crossref_primary_10_1049_ccs2_12022
crossref_primary_10_1109_TKDE_2020_3038109
crossref_primary_10_1007_s13278_021_00799_z
crossref_primary_10_1007_s00778_021_00714_0
crossref_primary_10_1016_j_ins_2021_06_072
crossref_primary_10_1109_ACCESS_2023_3282453
crossref_primary_10_1007_s11042_023_14806_2
crossref_primary_10_14778_3750601_3750602
crossref_primary_10_1016_j_eswa_2024_125587
crossref_primary_10_1016_j_is_2023_102207
crossref_primary_10_1016_j_asoc_2021_107777
crossref_primary_10_1007_s11042_022_12457_3
crossref_primary_10_14710_vol15iss2pp237_250
crossref_primary_10_1007_s10618_025_01123_5
crossref_primary_10_1007_s12008_024_01858_3
crossref_primary_10_3390_info12110480
crossref_primary_10_1007_s41019_020_00151_z
crossref_primary_10_1016_j_heliyon_2021_e07761
crossref_primary_10_1145_3544107
crossref_primary_10_3390_s21010199
crossref_primary_10_1007_s11063_024_11687_w
crossref_primary_10_1145_3412364
crossref_primary_10_1007_s00778_025_00908_w
crossref_primary_10_1016_j_ipm_2021_102853
crossref_primary_10_1057_s41270_025_00419_1
crossref_primary_10_1109_TKDE_2020_2994641
crossref_primary_10_1002_cpe_6349
crossref_primary_10_1038_s41598_025_03208_z
crossref_primary_10_1080_10447318_2022_2049081
crossref_primary_10_3390_bdcc9060150
Cites_doi 10.1145/1835804.1835834
10.24963/ijcai.2019/334
10.1109/IRI.2017.55
10.1145/2532128
10.1609/aaai.v33i01.33015941
10.1109/ICDM.2010.127
10.1609/aaai.v30i1.9971
10.1609/aaai.v28i1.8917
10.1002/widm.1253
10.24963/ijcai.2017/239
10.1109/ICDM.2016.0151
10.1145/2806416.2806603
10.1007/978-3-319-56793-8
10.1145/1242572.1242643
10.1145/3209978.3210071
10.1145/2783258.2788582
10.3115/v1/D14-1181
10.24963/ijcai.2019/319
10.1145/3159652.3159714
10.1007/978-3-030-26072-9_14
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 Springer
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 Springer
DBID C6C
AAYXX
CITATION
ISR
DOA
DOI 10.1007/s41019-019-00115-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 2364-1541
EndPage 26
ExternalDocumentID oai_doaj_org_article_f557f2697b764a788b801f195711d7b8
A616835293
10_1007_s41019_019_00115_y
GeographicLocations New York
Taiwan
GeographicLocations_xml – name: New York
– name: Taiwan
GrantInformation_xml – fundername: National Science Foundation (US)
  grantid: CNS-1828181
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
IAO
ISR
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
ABJCF
AFFHD
ARAPS
BGLVJ
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ADMLS
ARCSS
ID FETCH-LOGICAL-c474t-4007e36442a71532f90a2f1fa9e5e9c7c8631c89ab08f9bfbaee0683f70fca683
IEDL.DBID C24
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657155000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2364-1185
IngestDate Fri Oct 03 12:53:08 EDT 2025
Sat Mar 08 18:37:51 EST 2025
Wed Mar 05 05:04:41 EST 2025
Sat Nov 29 06:46:06 EST 2025
Tue Nov 18 21:28:24 EST 2025
Fri Feb 21 02:32:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Click prediction
Display advertising
Campaign
LSTM network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-4007e36442a71532f90a2f1fa9e5e9c7c8631c89ab08f9bfbaee0683f70fca683
OpenAccessLink https://link.springer.com/10.1007/s41019-019-00115-y
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_f557f2697b764a788b801f195711d7b8
gale_infotracacademiconefile_A616835293
gale_incontextgauss_ISR_A616835293
crossref_citationtrail_10_1007_s41019_019_00115_y
crossref_primary_10_1007_s41019_019_00115_y
springer_journals_10_1007_s41019_019_00115_y
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Data Science and Engineering
PublicationTitleAbbrev Data Sci. Eng
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: SpringerOpen
References ChapelleOlivierManavogluErenRosalesRomerSimple and Scalable Response Prediction for Display AdvertisingACM Transactions on Intelligent Systems and Technology20145413410.1145/2532128
Su N, He J, Liu Y, Zhang M, Ma S (2018) User intent, behaviour, and perceived satisfaction in product search. In: Proceedings of the eleventh ACM international conference on web search and data mining (WSDM). ACM, New York, NY, USA pp 547–555
Guo H, Tang R, Ye Y, Li Z, He X (2017) DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th international joint conference on artificial intelligence, Melbourne, Australia, August 19–25
Sheil H, Rana O, Reilly R (2018) Predicting purchasing intent: automatic feature learning using recurrent neural networks. arXiv:1807.08207
Deng W, Ling X, Qi Y, Tan T, Manavoglu E, Zhang Q (2018) Ad click prediction in sequence with long short-term memory networks: an externality-aware model. In: The 41st international ACM SIGIR conference on research and development in information retrieval (SIGIR ’18). ACM, New York, NY, USA, pp 1065–1068
Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Doha, Qatar, pp 1746–1751
Guo T, Zhu X, Wang Y, Chen F (2019) Discriminative sample generation for deep imbalanced learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 2406–2412
Li C, Lu Y, Mei Q, Wang D, Pandey S (2015) Click-through prediction for advertising in twitter timeline. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (KDD). ACM, New York, NY, USA, pp 1959–1968
Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv:1506.00019
Liu H, Zhu X, Kalish K, Kayne J (2017) ULTR-CTR: fast page grouping using URL truncation for real-time click through rate estimation. In: Proceedings of the of the IEEE international conference on information reuse and integration (IRI), pp 444–451
Zhu X, Tao H, Wu Z, Cao J, Kalish K, Kayne J (2017) Fraud prevention in online digital advertising. Springer briefs in computer science. ISBN 978-3-319-56792-1, pp 1–51
Liu Q, Wu S, Wang L, Tan T (2016) Predicting the next location: a recurrent model with spatial and temporal contexts. In: Proceedings of the thirtieth AAAI conference on artificial intelligence (AAAI). AAAI Press, pp 194–200
Zhang Y, Dai H, Xu C, Feng J, Wang T, Bian J, Wang B, Liu T-Y (2014) Sequential click prediction for sponsored search with recurrent neural networks. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence (AAAI). AAAI Press, pp 1369–1375
Richardson M, Dominowska E, Ragno R (2007) Predicting clicks: estimating the click-through rate for new ads. In: Proceedings of the 16th international conference on world wide web, ACM, New York, NY, USA, pp 521–530
WangXLiWCuiYZhangRMaoJHuaXSClick-through rate estimation for rare events in online advertisingOnline multimedia advertising: techniques and technologies2010HersheyIGI Global112
Feng Y, Lv F, Shen W, Wang M, Sun F, Zhu Y, Yang K (2019) Deep session interest network for click-through rate prediction. In: Sarit Kraus (ed) Proceedings of the 28th international joint conference on artificial intelligence (IJCAI’19). AAAI Press, pp 2301–2307
ZhangDLiYFanJGaoLShenFShenHTProcessing long queries against short text: top-k advertisement matching in news stream applicationsACM TOIS201735328:128:27
IAB (2016) POpenRTB API specification version 2.5. https://www.iab.com/guidelines/real-time-bidding-rtb-project. Accessed 15 Mar 2019
Agarwal D, Agrawal R, Khanna R, Kota N (2010) Estimating rates of rare events with multiple hierarchies through scalable log-linear models. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD). ACM, New York, NY, USA, pp 213–222
Zhou G, Mou N, Fan Y, Pi Q, Bian W, Zhou C, Zhu X, Gai K (2019) Deep interest evolution network for click-through rate prediction. In: Proceedings of the AAAI conference on artificial intelligence, vol 33(01)
Ormandi R, Yang H, Lu Q (2015) Scalable multidimensional hierarchical Bayesian modeling on spark. In: Wei F, Albert B, Qiang Y, Philip SY (eds) Proceedings of the 4th international conference on big data, streams and heterogeneous source mining: algorithms, systems, programming models and applications (BIGMINE’15), vol 41. JMLR.org, pp 33–48
AvilaCPVijayaMSClick through rate prediction for display advertisementInt J Comput Appl20161361521530
European Commission (2018) 2018 reform EU data protection rules. https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en. Accessed 15 Mar 2019
Rendle S (2010) Factorization machines. In: Proceedings of the 2010 IEEE international conference on data mining (ICDM), December 13–17, pp 995–1000
ZhangDongxiangGuoLongNieLiqiangShaoJieWuSaiShenHeng TaoTargeted Advertising in Public Transportation Systems with Quantitative EvaluationACM Transactions on Information Systems2017353129
Qu Y, Cai H, Ren K, Zhang W, Yu Y, Wen Y, Wang J (2016) Product based neural networks for user response prediction. In: IEEE 16th international conference on data mining (ICDM), pp 1149–1154
GharibshahZhabizZhuXingquanHainlineArthurConwayMichaelDeep Learning for Online Display Advertising User Clicks and Interests PredictionWeb and Big Data2019ChamSpringer International Publishing19620410.1007/978-3-030-26072-9_14
Liu Q, Yu F, Wu S, Wang L (2015) A convolutional click prediction model. In: Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM). ACM, New York, NY, USA, pp 1743–1746
Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide and deep learning for recommender systems. In: Proceedings of the 1st workshop on deep learning for recommender systems (DLRS 2016). ACM, New York, NY, USA, pp 7–10
IAB (2017) Iab tech lab content taxonomy. https://www.iab.com/guidelines/iab-quality-assurance-guidelines-qag-taxonomy/. Accessed 15 Mar 2019
ZhangLWangSLiuBDeep learning for sentiment analysis : a surveyWiley Interdiscip Rev Data Min Knowl Discov20188e125310.1002/widm.1253
115_CR30
115_CR31
X Wang (115_CR10) 2010
L Zhang (115_CR27) 2018; 8
115_CR14
Olivier Chapelle (115_CR15) 2014; 5
115_CR12
115_CR13
115_CR11
115_CR29
115_CR20
Zhabiz Gharibshah (115_CR7) 2019
115_CR28
115_CR25
115_CR26
115_CR23
115_CR24
115_CR21
115_CR22
Dongxiang Zhang (115_CR16) 2017; 35
115_CR18
115_CR19
115_CR6
115_CR5
115_CR8
D Zhang (115_CR17) 2017; 35
115_CR2
115_CR1
115_CR4
CP Avila (115_CR9) 2016; 136
115_CR3
References_xml – reference: IAB (2017) Iab tech lab content taxonomy. https://www.iab.com/guidelines/iab-quality-assurance-guidelines-qag-taxonomy/. Accessed 15 Mar 2019
– reference: Li C, Lu Y, Mei Q, Wang D, Pandey S (2015) Click-through prediction for advertising in twitter timeline. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (KDD). ACM, New York, NY, USA, pp 1959–1968
– reference: Richardson M, Dominowska E, Ragno R (2007) Predicting clicks: estimating the click-through rate for new ads. In: Proceedings of the 16th international conference on world wide web, ACM, New York, NY, USA, pp 521–530
– reference: Agarwal D, Agrawal R, Khanna R, Kota N (2010) Estimating rates of rare events with multiple hierarchies through scalable log-linear models. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD). ACM, New York, NY, USA, pp 213–222
– reference: Liu H, Zhu X, Kalish K, Kayne J (2017) ULTR-CTR: fast page grouping using URL truncation for real-time click through rate estimation. In: Proceedings of the of the IEEE international conference on information reuse and integration (IRI), pp 444–451
– reference: Zhang Y, Dai H, Xu C, Feng J, Wang T, Bian J, Wang B, Liu T-Y (2014) Sequential click prediction for sponsored search with recurrent neural networks. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence (AAAI). AAAI Press, pp 1369–1375
– reference: European Commission (2018) 2018 reform EU data protection rules. https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en. Accessed 15 Mar 2019
– reference: GharibshahZhabizZhuXingquanHainlineArthurConwayMichaelDeep Learning for Online Display Advertising User Clicks and Interests PredictionWeb and Big Data2019ChamSpringer International Publishing19620410.1007/978-3-030-26072-9_14
– reference: Liu Q, Wu S, Wang L, Tan T (2016) Predicting the next location: a recurrent model with spatial and temporal contexts. In: Proceedings of the thirtieth AAAI conference on artificial intelligence (AAAI). AAAI Press, pp 194–200
– reference: Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Doha, Qatar, pp 1746–1751
– reference: ZhangLWangSLiuBDeep learning for sentiment analysis : a surveyWiley Interdiscip Rev Data Min Knowl Discov20188e125310.1002/widm.1253
– reference: Rendle S (2010) Factorization machines. In: Proceedings of the 2010 IEEE international conference on data mining (ICDM), December 13–17, pp 995–1000
– reference: Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide and deep learning for recommender systems. In: Proceedings of the 1st workshop on deep learning for recommender systems (DLRS 2016). ACM, New York, NY, USA, pp 7–10
– reference: Qu Y, Cai H, Ren K, Zhang W, Yu Y, Wen Y, Wang J (2016) Product based neural networks for user response prediction. In: IEEE 16th international conference on data mining (ICDM), pp 1149–1154
– reference: Guo H, Tang R, Ye Y, Li Z, He X (2017) DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th international joint conference on artificial intelligence, Melbourne, Australia, August 19–25
– reference: IAB (2016) POpenRTB API specification version 2.5. https://www.iab.com/guidelines/real-time-bidding-rtb-project. Accessed 15 Mar 2019
– reference: AvilaCPVijayaMSClick through rate prediction for display advertisementInt J Comput Appl20161361521530
– reference: ZhangDongxiangGuoLongNieLiqiangShaoJieWuSaiShenHeng TaoTargeted Advertising in Public Transportation Systems with Quantitative EvaluationACM Transactions on Information Systems2017353129
– reference: Zhou G, Mou N, Fan Y, Pi Q, Bian W, Zhou C, Zhu X, Gai K (2019) Deep interest evolution network for click-through rate prediction. In: Proceedings of the AAAI conference on artificial intelligence, vol 33(01)
– reference: ZhangDLiYFanJGaoLShenFShenHTProcessing long queries against short text: top-k advertisement matching in news stream applicationsACM TOIS201735328:128:27
– reference: WangXLiWCuiYZhangRMaoJHuaXSClick-through rate estimation for rare events in online advertisingOnline multimedia advertising: techniques and technologies2010HersheyIGI Global112
– reference: Deng W, Ling X, Qi Y, Tan T, Manavoglu E, Zhang Q (2018) Ad click prediction in sequence with long short-term memory networks: an externality-aware model. In: The 41st international ACM SIGIR conference on research and development in information retrieval (SIGIR ’18). ACM, New York, NY, USA, pp 1065–1068
– reference: Guo T, Zhu X, Wang Y, Chen F (2019) Discriminative sample generation for deep imbalanced learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 2406–2412
– reference: Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv:1506.00019
– reference: ChapelleOlivierManavogluErenRosalesRomerSimple and Scalable Response Prediction for Display AdvertisingACM Transactions on Intelligent Systems and Technology20145413410.1145/2532128
– reference: Su N, He J, Liu Y, Zhang M, Ma S (2018) User intent, behaviour, and perceived satisfaction in product search. In: Proceedings of the eleventh ACM international conference on web search and data mining (WSDM). ACM, New York, NY, USA pp 547–555
– reference: Sheil H, Rana O, Reilly R (2018) Predicting purchasing intent: automatic feature learning using recurrent neural networks. arXiv:1807.08207
– reference: Zhu X, Tao H, Wu Z, Cao J, Kalish K, Kayne J (2017) Fraud prevention in online digital advertising. Springer briefs in computer science. ISBN 978-3-319-56792-1, pp 1–51
– reference: Liu Q, Yu F, Wu S, Wang L (2015) A convolutional click prediction model. In: Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM). ACM, New York, NY, USA, pp 1743–1746
– reference: Ormandi R, Yang H, Lu Q (2015) Scalable multidimensional hierarchical Bayesian modeling on spark. In: Wei F, Albert B, Qiang Y, Philip SY (eds) Proceedings of the 4th international conference on big data, streams and heterogeneous source mining: algorithms, systems, programming models and applications (BIGMINE’15), vol 41. JMLR.org, pp 33–48
– reference: Feng Y, Lv F, Shen W, Wang M, Sun F, Zhu Y, Yang K (2019) Deep session interest network for click-through rate prediction. In: Sarit Kraus (ed) Proceedings of the 28th international joint conference on artificial intelligence (IJCAI’19). AAAI Press, pp 2301–2307
– ident: 115_CR25
  doi: 10.1145/1835804.1835834
– ident: 115_CR28
  doi: 10.24963/ijcai.2019/334
– ident: 115_CR3
  doi: 10.1109/IRI.2017.55
– volume: 5
  start-page: 1
  issue: 4
  year: 2014
  ident: 115_CR15
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/2532128
– ident: 115_CR22
  doi: 10.1609/aaai.v33i01.33015941
– ident: 115_CR11
  doi: 10.1109/ICDM.2010.127
– ident: 115_CR26
– ident: 115_CR24
– ident: 115_CR21
  doi: 10.1609/aaai.v30i1.9971
– ident: 115_CR31
  doi: 10.1609/aaai.v28i1.8917
– ident: 115_CR4
– ident: 115_CR2
– volume: 8
  start-page: e1253
  year: 2018
  ident: 115_CR27
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1253
– ident: 115_CR6
  doi: 10.24963/ijcai.2017/239
– start-page: 1
  volume-title: Online multimedia advertising: techniques and technologies
  year: 2010
  ident: 115_CR10
– ident: 115_CR12
  doi: 10.1109/ICDM.2016.0151
– volume: 136
  start-page: 521
  issue: 1
  year: 2016
  ident: 115_CR9
  publication-title: Int J Comput Appl
– ident: 115_CR13
  doi: 10.1145/2806416.2806603
– ident: 115_CR1
  doi: 10.1007/978-3-319-56793-8
– ident: 115_CR8
  doi: 10.1145/1242572.1242643
– ident: 115_CR14
  doi: 10.1145/3209978.3210071
– ident: 115_CR20
– ident: 115_CR5
  doi: 10.1145/2783258.2788582
– ident: 115_CR30
  doi: 10.3115/v1/D14-1181
– ident: 115_CR29
– volume: 35
  start-page: 1
  issue: 3
  year: 2017
  ident: 115_CR16
  publication-title: ACM Transactions on Information Systems
– ident: 115_CR18
– ident: 115_CR23
  doi: 10.24963/ijcai.2019/319
– ident: 115_CR19
  doi: 10.1145/3159652.3159714
– volume: 35
  start-page: 28:1
  issue: 3
  year: 2017
  ident: 115_CR17
  publication-title: ACM TOIS
– start-page: 196
  volume-title: Web and Big Data
  year: 2019
  ident: 115_CR7
  doi: 10.1007/978-3-030-26072-9_14
SSID ssj0002118446
ssib044734210
ssib048876940
Score 2.4564674
Snippet User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and...
Abstract User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response...
SourceID doaj
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Advertising campaigns
Advertising executives
Algorithm Analysis and Problem Complexity
Analysis
Artificial Intelligence
Campaign
Chemistry and Earth Sciences
Click prediction
Computer Science
Data Mining and Knowledge Discovery
Database Management
Deep learning
Display advertising
Email marketing
LSTM network
Machine learning
Physics
Statistics for Engineering
Systems and Data Security
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA4iPvhS6o_Sa6sEEbTo0t1sNtk82qroi4jtwb2FJJscB7Iet1q4_74z2dyd92JffFjYXbILM_kymUkm3xBy7GRTOfB8M8-DgwDFVlkNoW0WbAMjSxhbViYWm5B3d_VopO5flfrCnLCeHrhX3I9QVTIwoaSVghsI2CzY1FCoShZFI2085ptL9SqYAiRxLkvOVhMboFSKBVEc2mgIe2rO-8pzgmfwVKUTNfFcHQegYhoRXOgyZfO1WSuS-69M-PoGapyXrj-SD8mhpBe9IDtkw7e7ZCcN2Y6eJl7p73tkeOn9lCZC1TEFb5UOAYA0LgrC5EBN29CHPmfW0_sZbuFgt9FJS3tGUno56aaPZk4XZZzhP_tkeH3159dNlqoqZI5L_pxhIXQPQnNmJJg7FlRuWCiCUb7yyklXi7JwtTI2r4OywRrvc1GXQebBGbj5RDbbp9Z_JhRCH5WzwJjJGy5rYaGDeMObBvwCK5kZkGKhNe0S5ThWvnjUS7LkqGkdL9S0ng_I2fKbaU-48Wbrn9gZy5ZIlh1fAIR0gpD-H4QG5Ai7UiMdRov5NmPz0nX69veDvhCFQB9VlQNykhqFJ5DBmXR8ATSBDFprLc8XkNDJIHRviPDlPUT4SrYZLgTE5LhvZPN59uIPyJb7C1CYHcax8Q8aDQdZ
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning for User Interest and Response Prediction in Online Display Advertising
URI https://link.springer.com/article/10.1007/s41019-019-00115-y
https://doaj.org/article/f557f2697b764a788b801f195711d7b8
Volume 5
WOSCitedRecordID wos000657155000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734210
  issn: 2364-1185
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: K7-
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: M7S
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: C24
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB-0Kvhi7Wnx_ChBBBVd2M1l8_FY-4E-WEr1oG8hySZHoewdt61wL_7tTrLZOw6koA-77IbZjySTmUky8xuAd040tUPLt_AsOJyg2LqQOLUtgm1wZHFjJ7VJySbE2Zm8vFTnOSisG7zdhy3JJKnXwW4MuSf69uAR7ZhidR8e1JVU0ZHvaIM5zpiYMLpRasihgg8gcVE-45RHMtZnneOswLs6R9P8_TNbGisB-2_E9_bmadJJp7v_V5un8CTboOSwZ5o9uOfbEewO-R1IHu4jeJTcQ103gr1c1pEPGaf64zOYHnu_IBmgdUbQ-iVTZGiSFhlR2RDTNuSi98H15HwZt4QiG5CrlvQIp-T4qltcmxUZ0kLje57D9PTk59HXImdpKBwT7KaIidU9NiSjRqD4pEGVhoYqGOVrr5xwkk8qJ5WxpQzKBmu8L7mcBFEGZ_BiH3baeetfAMGplCppoNSUDROSW2YEa1jToJ1hBTVjqIae0C5DmMdMGtd6Db6cmlWnIzarXo3h0_qZRQ_gcSf1l9jBa8oIvp0K5suZzmNZh7oWgXIlrOD4h1JaVPOhUrWoqkZYOYa3kT10hNdoo__OzNx2nf7240If8opHm1dNxvA-E4U51sGZHA6BLRERubYoPw8spLOA6e6owst_I38Fj2lcQkhuda9h52Z569_AQ_cLO315kEbWQVqowPP33yd_AJTFGBw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB-0KvaLtafi-QwiqOjC7l42j4-1tbRYj1J70G8hySZHoewdt23h_nsn2ewdB1LQD4HdMPtIMplHMvkNwEfL68qi5Zs56i06KKbKBLq2mTc1ziymzajSMdkEH4_FxYU8TYfC2j7avd-SjJJ6ddiNIveE2B4swY7JlvfhQYBeCYF8-2vMcUr5iJZrpYYcylkPEhfkM7o8gtIu6xyjGd5V6TTN3z-zobEisP9afG9unkaddLjzf615Ck-SDUr2OqbZhXuuGcBOn9-BpOk-gEcxPNS2A9hNdS35nHCqvzyDyYFzc5IAWqcErV8yQYYmcZERlQ3RTU3OuhhcR04XYUsosAG5bEiHcEoOLtv5lV6SPi00vuc5TA5_nO8fZSlLQ2Ypp9dZSKzusCNpqTmKz9LLXJe-8Fq6yknLrWCjwgqpTS68NN5o53ImRp7n3mq8eAFbzaxxL4GgKyXz0pelzmvKBTNUc1rTukY7w_BSD6HoR0LZBGEeMmlcqRX4cuxWFUvoVrUcwtfVM_MOwONO6u9hgFeUAXw7VswWU5XmsvJVxX3JJDec4R8KYVDN-0JWvChqbsQQPgT2UAFeownxO1N907bq-PeZ2mMFCzavHA3hUyLyM2yD1ek4BPZEQOTaoPzWs5BKAqa9owmv_o38PTw-Ov91ok6Oxz9fw3YZlhNiiN0b2Lpe3Li38NDeIgMs3sVZ9geU-xjb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-27oO-rGu20exTjME2OlNbkS35sWsWVjZC6Bbom5BkKRSKE-J0kP9-J1lOFhiFsQeBLc4fkk53J-nudwDvDK9yg5ZvYpkzuEDReSJwaZs4XeHMKpQe5Cokm-Djsbi8LCd_RPEHb_fuSLKNafAoTfXqZFG5k03gG0NO8n4-WLxNk6zvwj1_IuV5_GyLP84YHzC6VXDIrbzoAOO8rMblj2CszUBXsATv8hhZ8_fP7GivAPK_FeW7B6lBP40O_r9lj-FRtE3JactMh3DH1j046PI-kCgGevAguI2apgeHsa4hHyJ-9ccnMB1auyARuHVG0ComU2R0EjYfUQkRVVfkovXNtWSy9EdFnj3IVU1a5FMyvGoW12pNunTR-J6nMB19-Xn2NYnZGxLDOFslPuG6xU5lVHEUq9SVqaIuc6q0uS0NN6IYZEaUSqfCldppZW1aiIHjqTMKL57BXj2v7REQXGKVKXWUqrRiOMiaKc4qVlVof2hOVR-yblSkidDmPsPGtdyAModulaH4bpXrPhxvnlm0wB63Un_2g72h9KDcoWK-nMk4x6XLc-5oUXLNC_xDITSqf5eVOc-yimvRh7eeVaSH3ai9X89M3TSNPP9xIU-LrPC2cDnow_tI5ObYBqNimAT2hEfq2qH81LGTjIKnuaUJz_-N_A08nAxH8vv5-NsL2Kd-lyF43r2EvdXyxr6C--YXjv_ydZhwvwFeLyG_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+User+Interest+and+Response+Prediction+in+Online+Display+Advertising&rft.jtitle=Data+science+and+engineering&rft.au=Gharibshah%2C+Zhabiz&rft.au=Zhu%2C+Xingquan&rft.au=Hainline%2C+Arthur&rft.au=Conway%2C+Michael&rft.date=2020-03-01&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=5&rft.issue=1&rft.spage=12&rft.epage=26&rft_id=info:doi/10.1007%2Fs41019-019-00115-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41019_019_00115_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon