Deep Learning for User Interest and Response Prediction in Online Display Advertising
User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming...
Gespeichert in:
| Veröffentlicht in: | Data Science and Engineering Jg. 5; H. 1; S. 12 - 26 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer SpringerOpen |
| Schlagworte: | |
| ISSN: | 2364-1185, 2364-1541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks,
LSTM
cp
and
LSTM
ip
, for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction. |
|---|---|
| AbstractList | User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks,
LSTM
cp
and
LSTM
ip
, for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction. Abstract User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks, $${\hbox {LSTM}}_{\mathrm{cp}}$$ LSTM cp and $${\hbox {LSTM}}_{\mathrm{ip}}$$ LSTM ip , for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction. User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks, $${\hbox {LSTM}}_{\mathrm{cp}}$$ LSTM cp and $${\hbox {LSTM}}_{\mathrm{ip}}$$ LSTM ip , for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction. User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and actions to the displayed advertisement (Ad). On the other hand, user interests can further help determine the probability of an Ad viewer becoming a buying customer. To date, existing methods for Ad click prediction, or click-through rate prediction, mainly consider representing users as a static feature set and train machine learning classifiers to predict clicks. Such approaches do not consider temporal variance and changes in user behaviors, and solely rely on given features for learning. In this paper, we propose two deep learning-based frameworks, [Formula omitted] and [Formula omitted], for user click prediction and user interest modeling. Our goal is to accurately predict (1) the probability of a user clicking on an Ad and (2) the probability of a user clicking a specific type of Ad campaign. To achieve the goal, we collect page information displayed to the users as a temporal sequence and use long short-term memory (LSTM) network to learn features that represents user interests as latent features. Experiments and comparisons on real-world data show that, compared to existing static set-based approaches, considering sequences and temporal variance of user requests results in improvements in user Ad response prediction and campaign specific user Ad click prediction. |
| Audience | Academic |
| Author | Conway, Michael Gharibshah, Zhabiz Hainline, Arthur Zhu, Xingquan |
| Author_xml | – sequence: 1 givenname: Zhabiz surname: Gharibshah fullname: Gharibshah, Zhabiz email: zgharibshah2017@fau.edu organization: Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University – sequence: 2 givenname: Xingquan surname: Zhu fullname: Zhu, Xingquan organization: Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University – sequence: 3 givenname: Arthur surname: Hainline fullname: Hainline, Arthur organization: Bidtellect Inc – sequence: 4 givenname: Michael surname: Conway fullname: Conway, Michael organization: Bidtellect Inc |
| BookMark | eNp9UcFu3CAQtaJUSprmB3ri2oMTsMHAcZW0zUorpUq7ZzTGg8XKgRU4Vffvy66bQ3qI0Ihh9N6bYd7H6jzEgFX1mdEbRqm8zZxRputTUMZEfTirLpu24zUTnJ2_5kyJi-o65x2ltCkvzrvLanuPuCcbhBR8GImLiWwzJrIOMybMM4EwkCfM-xgykh8JB29nHwPxgTyGyQck9z7vJziQ1fAb0-xz0flUfXAwZbz-d19V229ff9091JvH7-u71aa2XPK55mV6LLPxBiQTbeM0hcYxBxoFaiut6lpmlYaeKqd71wMi7VTrJHUWSnJVrRfdIcLO7JN_hnQwEbw5FWIaDZSR7ITGCSFd02nZy46DVKpXlDmmhWRskP1R62bRGqHAfXBxTmDLGfDZ27Jx50t91bHSVzS6LYQvbwgFM-OfeYSXnM3659NbrFqwNsWcEzpj_QzHRZYmfjKMmqOVZrHSnOJopTkUavMf9fWf75LahZQLOIyYzC6-pFC8eI_1FzyDscE |
| CitedBy_id | crossref_primary_10_1007_s00778_023_00808_x crossref_primary_10_1007_s10618_020_00706_8 crossref_primary_10_1002_asmb_2671 crossref_primary_10_1108_IJCS_03_2021_0011 crossref_primary_10_1007_s00778_021_00685_2 crossref_primary_10_1093_comjnl_bxae117 crossref_primary_10_1108_YC_09_2024_2214 crossref_primary_10_1016_j_peva_2023_102351 crossref_primary_10_1016_j_elerap_2023_101319 crossref_primary_10_3390_electronics14183734 crossref_primary_10_1155_2021_9940232 crossref_primary_10_4018_JOEUC_342092 crossref_primary_10_1049_ccs2_12022 crossref_primary_10_1109_TKDE_2020_3038109 crossref_primary_10_1007_s13278_021_00799_z crossref_primary_10_1007_s00778_021_00714_0 crossref_primary_10_1016_j_ins_2021_06_072 crossref_primary_10_1109_ACCESS_2023_3282453 crossref_primary_10_1007_s11042_023_14806_2 crossref_primary_10_14778_3750601_3750602 crossref_primary_10_1016_j_eswa_2024_125587 crossref_primary_10_1016_j_is_2023_102207 crossref_primary_10_1016_j_asoc_2021_107777 crossref_primary_10_1007_s11042_022_12457_3 crossref_primary_10_14710_vol15iss2pp237_250 crossref_primary_10_1007_s10618_025_01123_5 crossref_primary_10_1007_s12008_024_01858_3 crossref_primary_10_3390_info12110480 crossref_primary_10_1007_s41019_020_00151_z crossref_primary_10_1016_j_heliyon_2021_e07761 crossref_primary_10_1145_3544107 crossref_primary_10_3390_s21010199 crossref_primary_10_1007_s11063_024_11687_w crossref_primary_10_1145_3412364 crossref_primary_10_1007_s00778_025_00908_w crossref_primary_10_1016_j_ipm_2021_102853 crossref_primary_10_1057_s41270_025_00419_1 crossref_primary_10_1109_TKDE_2020_2994641 crossref_primary_10_1002_cpe_6349 crossref_primary_10_1038_s41598_025_03208_z crossref_primary_10_1080_10447318_2022_2049081 crossref_primary_10_3390_bdcc9060150 |
| Cites_doi | 10.1145/1835804.1835834 10.24963/ijcai.2019/334 10.1109/IRI.2017.55 10.1145/2532128 10.1609/aaai.v33i01.33015941 10.1109/ICDM.2010.127 10.1609/aaai.v30i1.9971 10.1609/aaai.v28i1.8917 10.1002/widm.1253 10.24963/ijcai.2017/239 10.1109/ICDM.2016.0151 10.1145/2806416.2806603 10.1007/978-3-319-56793-8 10.1145/1242572.1242643 10.1145/3209978.3210071 10.1145/2783258.2788582 10.3115/v1/D14-1181 10.24963/ijcai.2019/319 10.1145/3159652.3159714 10.1007/978-3-030-26072-9_14 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 Springer |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Springer |
| DBID | C6C AAYXX CITATION ISR DOA |
| DOI | 10.1007/s41019-019-00115-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Computer Science |
| EISSN | 2364-1541 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_f557f2697b764a788b801f195711d7b8 A616835293 10_1007_s41019_019_00115_y |
| GeographicLocations | New York Taiwan |
| GeographicLocations_xml | – name: New York – name: Taiwan |
| GrantInformation_xml | – fundername: National Science Foundation (US) grantid: CNS-1828181 |
| GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX ABJCF AFFHD ARAPS BGLVJ CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS ADMLS ARCSS |
| ID | FETCH-LOGICAL-c474t-4007e36442a71532f90a2f1fa9e5e9c7c8631c89ab08f9bfbaee0683f70fca683 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657155000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2364-1185 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Sat Mar 08 18:37:51 EST 2025 Wed Mar 05 05:04:41 EST 2025 Sat Nov 29 06:46:06 EST 2025 Tue Nov 18 21:28:24 EST 2025 Fri Feb 21 02:32:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Click prediction Display advertising Campaign LSTM network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-4007e36442a71532f90a2f1fa9e5e9c7c8631c89ab08f9bfbaee0683f70fca683 |
| OpenAccessLink | https://link.springer.com/10.1007/s41019-019-00115-y |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f557f2697b764a788b801f195711d7b8 gale_infotracacademiconefile_A616835293 gale_incontextgauss_ISR_A616835293 crossref_citationtrail_10_1007_s41019_019_00115_y crossref_primary_10_1007_s41019_019_00115_y springer_journals_10_1007_s41019_019_00115_y |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Data Science and Engineering |
| PublicationTitleAbbrev | Data Sci. Eng |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: SpringerOpen |
| References | ChapelleOlivierManavogluErenRosalesRomerSimple and Scalable Response Prediction for Display AdvertisingACM Transactions on Intelligent Systems and Technology20145413410.1145/2532128 Su N, He J, Liu Y, Zhang M, Ma S (2018) User intent, behaviour, and perceived satisfaction in product search. In: Proceedings of the eleventh ACM international conference on web search and data mining (WSDM). ACM, New York, NY, USA pp 547–555 Guo H, Tang R, Ye Y, Li Z, He X (2017) DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th international joint conference on artificial intelligence, Melbourne, Australia, August 19–25 Sheil H, Rana O, Reilly R (2018) Predicting purchasing intent: automatic feature learning using recurrent neural networks. arXiv:1807.08207 Deng W, Ling X, Qi Y, Tan T, Manavoglu E, Zhang Q (2018) Ad click prediction in sequence with long short-term memory networks: an externality-aware model. In: The 41st international ACM SIGIR conference on research and development in information retrieval (SIGIR ’18). ACM, New York, NY, USA, pp 1065–1068 Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Doha, Qatar, pp 1746–1751 Guo T, Zhu X, Wang Y, Chen F (2019) Discriminative sample generation for deep imbalanced learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 2406–2412 Li C, Lu Y, Mei Q, Wang D, Pandey S (2015) Click-through prediction for advertising in twitter timeline. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (KDD). ACM, New York, NY, USA, pp 1959–1968 Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv:1506.00019 Liu H, Zhu X, Kalish K, Kayne J (2017) ULTR-CTR: fast page grouping using URL truncation for real-time click through rate estimation. In: Proceedings of the of the IEEE international conference on information reuse and integration (IRI), pp 444–451 Zhu X, Tao H, Wu Z, Cao J, Kalish K, Kayne J (2017) Fraud prevention in online digital advertising. Springer briefs in computer science. ISBN 978-3-319-56792-1, pp 1–51 Liu Q, Wu S, Wang L, Tan T (2016) Predicting the next location: a recurrent model with spatial and temporal contexts. In: Proceedings of the thirtieth AAAI conference on artificial intelligence (AAAI). AAAI Press, pp 194–200 Zhang Y, Dai H, Xu C, Feng J, Wang T, Bian J, Wang B, Liu T-Y (2014) Sequential click prediction for sponsored search with recurrent neural networks. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence (AAAI). AAAI Press, pp 1369–1375 Richardson M, Dominowska E, Ragno R (2007) Predicting clicks: estimating the click-through rate for new ads. In: Proceedings of the 16th international conference on world wide web, ACM, New York, NY, USA, pp 521–530 WangXLiWCuiYZhangRMaoJHuaXSClick-through rate estimation for rare events in online advertisingOnline multimedia advertising: techniques and technologies2010HersheyIGI Global112 Feng Y, Lv F, Shen W, Wang M, Sun F, Zhu Y, Yang K (2019) Deep session interest network for click-through rate prediction. In: Sarit Kraus (ed) Proceedings of the 28th international joint conference on artificial intelligence (IJCAI’19). AAAI Press, pp 2301–2307 ZhangDLiYFanJGaoLShenFShenHTProcessing long queries against short text: top-k advertisement matching in news stream applicationsACM TOIS201735328:128:27 IAB (2016) POpenRTB API specification version 2.5. https://www.iab.com/guidelines/real-time-bidding-rtb-project. Accessed 15 Mar 2019 Agarwal D, Agrawal R, Khanna R, Kota N (2010) Estimating rates of rare events with multiple hierarchies through scalable log-linear models. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD). ACM, New York, NY, USA, pp 213–222 Zhou G, Mou N, Fan Y, Pi Q, Bian W, Zhou C, Zhu X, Gai K (2019) Deep interest evolution network for click-through rate prediction. In: Proceedings of the AAAI conference on artificial intelligence, vol 33(01) Ormandi R, Yang H, Lu Q (2015) Scalable multidimensional hierarchical Bayesian modeling on spark. In: Wei F, Albert B, Qiang Y, Philip SY (eds) Proceedings of the 4th international conference on big data, streams and heterogeneous source mining: algorithms, systems, programming models and applications (BIGMINE’15), vol 41. JMLR.org, pp 33–48 AvilaCPVijayaMSClick through rate prediction for display advertisementInt J Comput Appl20161361521530 European Commission (2018) 2018 reform EU data protection rules. https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en. Accessed 15 Mar 2019 Rendle S (2010) Factorization machines. In: Proceedings of the 2010 IEEE international conference on data mining (ICDM), December 13–17, pp 995–1000 ZhangDongxiangGuoLongNieLiqiangShaoJieWuSaiShenHeng TaoTargeted Advertising in Public Transportation Systems with Quantitative EvaluationACM Transactions on Information Systems2017353129 Qu Y, Cai H, Ren K, Zhang W, Yu Y, Wen Y, Wang J (2016) Product based neural networks for user response prediction. In: IEEE 16th international conference on data mining (ICDM), pp 1149–1154 GharibshahZhabizZhuXingquanHainlineArthurConwayMichaelDeep Learning for Online Display Advertising User Clicks and Interests PredictionWeb and Big Data2019ChamSpringer International Publishing19620410.1007/978-3-030-26072-9_14 Liu Q, Yu F, Wu S, Wang L (2015) A convolutional click prediction model. In: Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM). ACM, New York, NY, USA, pp 1743–1746 Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide and deep learning for recommender systems. In: Proceedings of the 1st workshop on deep learning for recommender systems (DLRS 2016). ACM, New York, NY, USA, pp 7–10 IAB (2017) Iab tech lab content taxonomy. https://www.iab.com/guidelines/iab-quality-assurance-guidelines-qag-taxonomy/. Accessed 15 Mar 2019 ZhangLWangSLiuBDeep learning for sentiment analysis : a surveyWiley Interdiscip Rev Data Min Knowl Discov20188e125310.1002/widm.1253 115_CR30 115_CR31 X Wang (115_CR10) 2010 L Zhang (115_CR27) 2018; 8 115_CR14 Olivier Chapelle (115_CR15) 2014; 5 115_CR12 115_CR13 115_CR11 115_CR29 115_CR20 Zhabiz Gharibshah (115_CR7) 2019 115_CR28 115_CR25 115_CR26 115_CR23 115_CR24 115_CR21 115_CR22 Dongxiang Zhang (115_CR16) 2017; 35 115_CR18 115_CR19 115_CR6 115_CR5 115_CR8 D Zhang (115_CR17) 2017; 35 115_CR2 115_CR1 115_CR4 CP Avila (115_CR9) 2016; 136 115_CR3 |
| References_xml | – reference: IAB (2017) Iab tech lab content taxonomy. https://www.iab.com/guidelines/iab-quality-assurance-guidelines-qag-taxonomy/. Accessed 15 Mar 2019 – reference: Li C, Lu Y, Mei Q, Wang D, Pandey S (2015) Click-through prediction for advertising in twitter timeline. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (KDD). ACM, New York, NY, USA, pp 1959–1968 – reference: Richardson M, Dominowska E, Ragno R (2007) Predicting clicks: estimating the click-through rate for new ads. In: Proceedings of the 16th international conference on world wide web, ACM, New York, NY, USA, pp 521–530 – reference: Agarwal D, Agrawal R, Khanna R, Kota N (2010) Estimating rates of rare events with multiple hierarchies through scalable log-linear models. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD). ACM, New York, NY, USA, pp 213–222 – reference: Liu H, Zhu X, Kalish K, Kayne J (2017) ULTR-CTR: fast page grouping using URL truncation for real-time click through rate estimation. In: Proceedings of the of the IEEE international conference on information reuse and integration (IRI), pp 444–451 – reference: Zhang Y, Dai H, Xu C, Feng J, Wang T, Bian J, Wang B, Liu T-Y (2014) Sequential click prediction for sponsored search with recurrent neural networks. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence (AAAI). AAAI Press, pp 1369–1375 – reference: European Commission (2018) 2018 reform EU data protection rules. https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en. Accessed 15 Mar 2019 – reference: GharibshahZhabizZhuXingquanHainlineArthurConwayMichaelDeep Learning for Online Display Advertising User Clicks and Interests PredictionWeb and Big Data2019ChamSpringer International Publishing19620410.1007/978-3-030-26072-9_14 – reference: Liu Q, Wu S, Wang L, Tan T (2016) Predicting the next location: a recurrent model with spatial and temporal contexts. In: Proceedings of the thirtieth AAAI conference on artificial intelligence (AAAI). AAAI Press, pp 194–200 – reference: Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Doha, Qatar, pp 1746–1751 – reference: ZhangLWangSLiuBDeep learning for sentiment analysis : a surveyWiley Interdiscip Rev Data Min Knowl Discov20188e125310.1002/widm.1253 – reference: Rendle S (2010) Factorization machines. In: Proceedings of the 2010 IEEE international conference on data mining (ICDM), December 13–17, pp 995–1000 – reference: Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide and deep learning for recommender systems. In: Proceedings of the 1st workshop on deep learning for recommender systems (DLRS 2016). ACM, New York, NY, USA, pp 7–10 – reference: Qu Y, Cai H, Ren K, Zhang W, Yu Y, Wen Y, Wang J (2016) Product based neural networks for user response prediction. In: IEEE 16th international conference on data mining (ICDM), pp 1149–1154 – reference: Guo H, Tang R, Ye Y, Li Z, He X (2017) DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th international joint conference on artificial intelligence, Melbourne, Australia, August 19–25 – reference: IAB (2016) POpenRTB API specification version 2.5. https://www.iab.com/guidelines/real-time-bidding-rtb-project. Accessed 15 Mar 2019 – reference: AvilaCPVijayaMSClick through rate prediction for display advertisementInt J Comput Appl20161361521530 – reference: ZhangDongxiangGuoLongNieLiqiangShaoJieWuSaiShenHeng TaoTargeted Advertising in Public Transportation Systems with Quantitative EvaluationACM Transactions on Information Systems2017353129 – reference: Zhou G, Mou N, Fan Y, Pi Q, Bian W, Zhou C, Zhu X, Gai K (2019) Deep interest evolution network for click-through rate prediction. In: Proceedings of the AAAI conference on artificial intelligence, vol 33(01) – reference: ZhangDLiYFanJGaoLShenFShenHTProcessing long queries against short text: top-k advertisement matching in news stream applicationsACM TOIS201735328:128:27 – reference: WangXLiWCuiYZhangRMaoJHuaXSClick-through rate estimation for rare events in online advertisingOnline multimedia advertising: techniques and technologies2010HersheyIGI Global112 – reference: Deng W, Ling X, Qi Y, Tan T, Manavoglu E, Zhang Q (2018) Ad click prediction in sequence with long short-term memory networks: an externality-aware model. In: The 41st international ACM SIGIR conference on research and development in information retrieval (SIGIR ’18). ACM, New York, NY, USA, pp 1065–1068 – reference: Guo T, Zhu X, Wang Y, Chen F (2019) Discriminative sample generation for deep imbalanced learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 2406–2412 – reference: Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv:1506.00019 – reference: ChapelleOlivierManavogluErenRosalesRomerSimple and Scalable Response Prediction for Display AdvertisingACM Transactions on Intelligent Systems and Technology20145413410.1145/2532128 – reference: Su N, He J, Liu Y, Zhang M, Ma S (2018) User intent, behaviour, and perceived satisfaction in product search. In: Proceedings of the eleventh ACM international conference on web search and data mining (WSDM). ACM, New York, NY, USA pp 547–555 – reference: Sheil H, Rana O, Reilly R (2018) Predicting purchasing intent: automatic feature learning using recurrent neural networks. arXiv:1807.08207 – reference: Zhu X, Tao H, Wu Z, Cao J, Kalish K, Kayne J (2017) Fraud prevention in online digital advertising. Springer briefs in computer science. ISBN 978-3-319-56792-1, pp 1–51 – reference: Liu Q, Yu F, Wu S, Wang L (2015) A convolutional click prediction model. In: Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM). ACM, New York, NY, USA, pp 1743–1746 – reference: Ormandi R, Yang H, Lu Q (2015) Scalable multidimensional hierarchical Bayesian modeling on spark. In: Wei F, Albert B, Qiang Y, Philip SY (eds) Proceedings of the 4th international conference on big data, streams and heterogeneous source mining: algorithms, systems, programming models and applications (BIGMINE’15), vol 41. JMLR.org, pp 33–48 – reference: Feng Y, Lv F, Shen W, Wang M, Sun F, Zhu Y, Yang K (2019) Deep session interest network for click-through rate prediction. In: Sarit Kraus (ed) Proceedings of the 28th international joint conference on artificial intelligence (IJCAI’19). AAAI Press, pp 2301–2307 – ident: 115_CR25 doi: 10.1145/1835804.1835834 – ident: 115_CR28 doi: 10.24963/ijcai.2019/334 – ident: 115_CR3 doi: 10.1109/IRI.2017.55 – volume: 5 start-page: 1 issue: 4 year: 2014 ident: 115_CR15 publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/2532128 – ident: 115_CR22 doi: 10.1609/aaai.v33i01.33015941 – ident: 115_CR11 doi: 10.1109/ICDM.2010.127 – ident: 115_CR26 – ident: 115_CR24 – ident: 115_CR21 doi: 10.1609/aaai.v30i1.9971 – ident: 115_CR31 doi: 10.1609/aaai.v28i1.8917 – ident: 115_CR4 – ident: 115_CR2 – volume: 8 start-page: e1253 year: 2018 ident: 115_CR27 publication-title: Wiley Interdiscip Rev Data Min Knowl Discov doi: 10.1002/widm.1253 – ident: 115_CR6 doi: 10.24963/ijcai.2017/239 – start-page: 1 volume-title: Online multimedia advertising: techniques and technologies year: 2010 ident: 115_CR10 – ident: 115_CR12 doi: 10.1109/ICDM.2016.0151 – volume: 136 start-page: 521 issue: 1 year: 2016 ident: 115_CR9 publication-title: Int J Comput Appl – ident: 115_CR13 doi: 10.1145/2806416.2806603 – ident: 115_CR1 doi: 10.1007/978-3-319-56793-8 – ident: 115_CR8 doi: 10.1145/1242572.1242643 – ident: 115_CR14 doi: 10.1145/3209978.3210071 – ident: 115_CR20 – ident: 115_CR5 doi: 10.1145/2783258.2788582 – ident: 115_CR30 doi: 10.3115/v1/D14-1181 – ident: 115_CR29 – volume: 35 start-page: 1 issue: 3 year: 2017 ident: 115_CR16 publication-title: ACM Transactions on Information Systems – ident: 115_CR18 – ident: 115_CR23 doi: 10.24963/ijcai.2019/319 – ident: 115_CR19 doi: 10.1145/3159652.3159714 – volume: 35 start-page: 28:1 issue: 3 year: 2017 ident: 115_CR17 publication-title: ACM TOIS – start-page: 196 volume-title: Web and Big Data year: 2019 ident: 115_CR7 doi: 10.1007/978-3-030-26072-9_14 |
| SSID | ssj0002118446 ssib044734210 ssib048876940 |
| Score | 2.4564674 |
| Snippet | User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response and... Abstract User interest and behavior modeling is a critical step in online digital advertising. On the one hand, user interests directly impact their response... |
| SourceID | doaj gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12 |
| SubjectTerms | Advertising campaigns Advertising executives Algorithm Analysis and Problem Complexity Analysis Artificial Intelligence Campaign Chemistry and Earth Sciences Click prediction Computer Science Data Mining and Knowledge Discovery Database Management Deep learning Display advertising Email marketing LSTM network Machine learning Physics Statistics for Engineering Systems and Data Security |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA4iPvhS6o_Sa6sEEbTo0t1sNtk82qroi4jtwb2FJJscB7Iet1q4_74z2dyd92JffFjYXbILM_kymUkm3xBy7GRTOfB8M8-DgwDFVlkNoW0WbAMjSxhbViYWm5B3d_VopO5flfrCnLCeHrhX3I9QVTIwoaSVghsI2CzY1FCoShZFI2085ptL9SqYAiRxLkvOVhMboFSKBVEc2mgIe2rO-8pzgmfwVKUTNfFcHQegYhoRXOgyZfO1WSuS-69M-PoGapyXrj-SD8mhpBe9IDtkw7e7ZCcN2Y6eJl7p73tkeOn9lCZC1TEFb5UOAYA0LgrC5EBN29CHPmfW0_sZbuFgt9FJS3tGUno56aaPZk4XZZzhP_tkeH3159dNlqoqZI5L_pxhIXQPQnNmJJg7FlRuWCiCUb7yyklXi7JwtTI2r4OywRrvc1GXQebBGbj5RDbbp9Z_JhRCH5WzwJjJGy5rYaGDeMObBvwCK5kZkGKhNe0S5ThWvnjUS7LkqGkdL9S0ng_I2fKbaU-48Wbrn9gZy5ZIlh1fAIR0gpD-H4QG5Ai7UiMdRov5NmPz0nX69veDvhCFQB9VlQNykhqFJ5DBmXR8ATSBDFprLc8XkNDJIHRviPDlPUT4SrYZLgTE5LhvZPN59uIPyJb7C1CYHcax8Q8aDQdZ priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep Learning for User Interest and Response Prediction in Online Display Advertising |
| URI | https://link.springer.com/article/10.1007/s41019-019-00115-y https://doaj.org/article/f557f2697b764a788b801f195711d7b8 |
| Volume | 5 |
| WOSCitedRecordID | wos000657155000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734210 issn: 2364-1185 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: K7- dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: M7S dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: C24 dateStart: 20160301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB-0Kvhi7Wnx_ChBBBVd2M1l8_FY-4E-WEr1oG8hySZHoewdt61wL_7tTrLZOw6koA-77IbZjySTmUky8xuAd040tUPLt_AsOJyg2LqQOLUtgm1wZHFjJ7VJySbE2Zm8vFTnOSisG7zdhy3JJKnXwW4MuSf69uAR7ZhidR8e1JVU0ZHvaIM5zpiYMLpRasihgg8gcVE-45RHMtZnneOswLs6R9P8_TNbGisB-2_E9_bmadJJp7v_V5un8CTboOSwZ5o9uOfbEewO-R1IHu4jeJTcQ103gr1c1pEPGaf64zOYHnu_IBmgdUbQ-iVTZGiSFhlR2RDTNuSi98H15HwZt4QiG5CrlvQIp-T4qltcmxUZ0kLje57D9PTk59HXImdpKBwT7KaIidU9NiSjRqD4pEGVhoYqGOVrr5xwkk8qJ5WxpQzKBmu8L7mcBFEGZ_BiH3baeetfAMGplCppoNSUDROSW2YEa1jToJ1hBTVjqIae0C5DmMdMGtd6Db6cmlWnIzarXo3h0_qZRQ_gcSf1l9jBa8oIvp0K5suZzmNZh7oWgXIlrOD4h1JaVPOhUrWoqkZYOYa3kT10hNdoo__OzNx2nf7240If8opHm1dNxvA-E4U51sGZHA6BLRERubYoPw8spLOA6e6owst_I38Fj2lcQkhuda9h52Z569_AQ_cLO315kEbWQVqowPP33yd_AJTFGBw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB-0KvaLtafi-QwiqOjC7l42j4-1tbRYj1J70G8hySZHoewdt23h_nsn2ewdB1LQD4HdMPtIMplHMvkNwEfL68qi5Zs56i06KKbKBLq2mTc1ziymzajSMdkEH4_FxYU8TYfC2j7avd-SjJJ6ddiNIveE2B4swY7JlvfhQYBeCYF8-2vMcUr5iJZrpYYcylkPEhfkM7o8gtIu6xyjGd5V6TTN3z-zobEisP9afG9unkaddLjzf615Ck-SDUr2OqbZhXuuGcBOn9-BpOk-gEcxPNS2A9hNdS35nHCqvzyDyYFzc5IAWqcErV8yQYYmcZERlQ3RTU3OuhhcR04XYUsosAG5bEiHcEoOLtv5lV6SPi00vuc5TA5_nO8fZSlLQ2Ypp9dZSKzusCNpqTmKz9LLXJe-8Fq6yknLrWCjwgqpTS68NN5o53ImRp7n3mq8eAFbzaxxL4GgKyXz0pelzmvKBTNUc1rTukY7w_BSD6HoR0LZBGEeMmlcqRX4cuxWFUvoVrUcwtfVM_MOwONO6u9hgFeUAXw7VswWU5XmsvJVxX3JJDec4R8KYVDN-0JWvChqbsQQPgT2UAFeownxO1N907bq-PeZ2mMFCzavHA3hUyLyM2yD1ek4BPZEQOTaoPzWs5BKAqa9owmv_o38PTw-Ov91ok6Oxz9fw3YZlhNiiN0b2Lpe3Li38NDeIgMs3sVZ9geU-xjb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-27oO-rGu20exTjME2OlNbkS35sWsWVjZC6Bbom5BkKRSKE-J0kP9-J1lOFhiFsQeBLc4fkk53J-nudwDvDK9yg5ZvYpkzuEDReSJwaZs4XeHMKpQe5Cokm-Djsbi8LCd_RPEHb_fuSLKNafAoTfXqZFG5k03gG0NO8n4-WLxNk6zvwj1_IuV5_GyLP84YHzC6VXDIrbzoAOO8rMblj2CszUBXsATv8hhZ8_fP7GivAPK_FeW7B6lBP40O_r9lj-FRtE3JactMh3DH1j046PI-kCgGevAguI2apgeHsa4hHyJ-9ccnMB1auyARuHVG0ComU2R0EjYfUQkRVVfkovXNtWSy9EdFnj3IVU1a5FMyvGoW12pNunTR-J6nMB19-Xn2NYnZGxLDOFslPuG6xU5lVHEUq9SVqaIuc6q0uS0NN6IYZEaUSqfCldppZW1aiIHjqTMKL57BXj2v7REQXGKVKXWUqrRiOMiaKc4qVlVof2hOVR-yblSkidDmPsPGtdyAModulaH4bpXrPhxvnlm0wB63Un_2g72h9KDcoWK-nMk4x6XLc-5oUXLNC_xDITSqf5eVOc-yimvRh7eeVaSH3ai9X89M3TSNPP9xIU-LrPC2cDnow_tI5ObYBqNimAT2hEfq2qH81LGTjIKnuaUJz_-N_A08nAxH8vv5-NsL2Kd-lyF43r2EvdXyxr6C--YXjv_ydZhwvwFeLyG_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+User+Interest+and+Response+Prediction+in+Online+Display+Advertising&rft.jtitle=Data+science+and+engineering&rft.au=Gharibshah%2C+Zhabiz&rft.au=Zhu%2C+Xingquan&rft.au=Hainline%2C+Arthur&rft.au=Conway%2C+Michael&rft.date=2020-03-01&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=5&rft.issue=1&rft.spage=12&rft.epage=26&rft_id=info:doi/10.1007%2Fs41019-019-00115-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41019_019_00115_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |