Asymptotic Analysis of q-Recursive Sequences
For an integer q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q . In this article, q -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q -recursive sequen...
Saved in:
| Published in: | Algorithmica Vol. 84; no. 9; pp. 2480 - 2532 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.09.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | For an integer
q
≥
2
, a
q
-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of
q
. In this article,
q
-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every
q
-recursive sequence is
q
-regular in the sense of Allouche and Shallit and that a
q
-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for
q
-recursive sequences are then obtained based on a general result on the asymptotic analysis of
q
-regular sequences.
Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of
Stern’s diatomic sequence,
the number of non-zero elements in some generalized Pascal’s triangle and
the number of unbordered factors in the Thue–Morse sequence.
For the first two sequences, our analysis even leads to precise formulæ without error terms. |
|---|---|
| AbstractList | For an integer
q
≥
2
, a
q
-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of
q
. In this article,
q
-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every
q
-recursive sequence is
q
-regular in the sense of Allouche and Shallit and that a
q
-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for
q
-recursive sequences are then obtained based on a general result on the asymptotic analysis of
q
-regular sequences.
Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of
Stern’s diatomic sequence,
the number of non-zero elements in some generalized Pascal’s triangle and
the number of unbordered factors in the Thue–Morse sequence.
For the first two sequences, our analysis even leads to precise formulæ without error terms. For an integer , a -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of . In this article, -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every -recursive sequence is -regular in the sense of Allouche and Shallit and that a -linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for -recursive sequences are then obtained based on a general result on the asymptotic analysis of -regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern's diatomic sequence,the number of non-zero elements in some generalized Pascal's triangle andthe number of unbordered factors in the Thue-Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms. For an integer $$q\ge 2$$ q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q . In this article, q -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q -recursive sequence is q -regular in the sense of Allouche and Shallit and that a q -linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q -recursive sequences are then obtained based on a general result on the asymptotic analysis of q -regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of Stern’s diatomic sequence, the number of non-zero elements in some generalized Pascal’s triangle and the number of unbordered factors in the Thue–Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms. For an integer q≥2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences.Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern’s diatomic sequence,the number of non-zero elements in some generalized Pascal’s triangle andthe number of unbordered factors in the Thue–Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms. For an integer $$q\ge 2$$ q≥2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern’s diatomic sequence,the number of non-zero elements in some generalized Pascal’s triangle andthe number of unbordered factors in the Thue–Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms. For an integer q ≥ 2 , a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern's diatomic sequence,the number of non-zero elements in some generalized Pascal's triangle andthe number of unbordered factors in the Thue-Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.For an integer q ≥ 2 , a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern's diatomic sequence,the number of non-zero elements in some generalized Pascal's triangle andthe number of unbordered factors in the Thue-Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms. |
| Author | Lipnik, Gabriel F. Heuberger, Clemens Krenn, Daniel |
| Author_xml | – sequence: 1 givenname: Clemens orcidid: 0000-0003-0082-7334 surname: Heuberger fullname: Heuberger, Clemens organization: Alpen-Adria-Universität Klagenfurt – sequence: 2 givenname: Daniel orcidid: 0000-0001-8076-8535 surname: Krenn fullname: Krenn, Daniel email: math@danielkrenn.at organization: Paris Lodron University of Salzburg – sequence: 3 givenname: Gabriel F. orcidid: 0000-0002-4362-429X surname: Lipnik fullname: Lipnik, Gabriel F. organization: Graz University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35974975$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1rGzEQxUVJiJ00_0APxdBLDt1m9LVaXQomtEnAEEjbs5C1s67CeuVIu4H97yvHzkdzyGkY5vcej3nH5KALHRLyicI3CqDOE4CQvADGCgAtoRg_kCkVPK9S0AMyBaqqQpRUTchxSncAlCldHpEJl1oJreSUfJ2ncb3pQ-_dbN7Zdkw-zUIzuy9u0Q0x-Qec_cL7ATuH6SM5bGyb8HQ_T8ifnz9-X1wVi5vL64v5onBCib7gNchsD6VdMusUCi6Z0422ldK2FhZowxFt2Qgm1VKIfHSsEVhXy0ZIXfMT8n3nuxmWa6wddn20rdlEv7ZxNMF68_-l83_NKjwYzZUopcwGZ3uDGHL21Ju1Tw7b1nYYhmSYAi5opTnN6Jc36F0YYv7EI0WlZKrcGn5-neg5ytMjM1DtABdDShEb43xvex-2AX1rKJhtZ2bXmcmdmcfOzJil7I30yf1dEd-JUoa7FcaX2O-o_gGrc6lB |
| CitedBy_id | crossref_primary_10_1016_j_jsc_2023_102295 |
| Cites_doi | 10.1017/CBO9780511550447 10.1017/CBO9780511566097 10.1016/j.aam.2016.04.006 10.4169/000298910X496714 10.2307/2304500 10.1142/S0129054112400448 10.1016/j.disc.2017.01.003 10.1016/S0304-3975(03)00090-2 10.1016/0304-3975(92)90001-V 10.1051/ita:2008006 10.1142/S0129054113400182 10.1007/s00453-019-00631-3 10.1145/3127585 10.1016/j.disc.2011.07.029 10.1016/j.laa.2012.10.013 10.1142/S0129054114400267 10.1016/j.ejc.2004.04.009 10.1017/CBO9780511546563 10.1016/j.aam.2004.11.004 10.1007/978-3-540-95980-9 10.1016/S1385-7258(60)50046-1 10.1515/crll.1858.55.193 10.1017/CBO9781107326019 10.37236/6581 10.1080/00150517.2003.12428593 10.4230/LIPIcs.AofA.2018.27 10.1007/978-3-642-37064-9_27 10.1007/978-3-319-69152-7_2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1007/s00453-022-00950-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 2532 |
| ExternalDocumentID | PMC9374655 35974975 10_1007_s00453_022_00950_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Austrian Science Fund grantid: P28466-N35 funderid: http://dx.doi.org/10.13039/501100002428 – fundername: Austrian Science Fund grantid: P28466-N35; W1230 funderid: http://dx.doi.org/10.13039/501100002428 – fundername: Austrian Science Fund FWF grantid: P 28466 – fundername: ; grantid: P28466-N35; W1230 – fundername: ; grantid: P28466-N35 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-3d0574906ab2ac7e4352c9f9a879ad4a01f3eea6f4257b442c9c2f4ed8bf459d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790691300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Tue Nov 04 01:57:52 EST 2025 Thu Oct 02 11:12:35 EDT 2025 Sun Nov 09 08:18:01 EST 2025 Mon Jul 21 06:07:53 EDT 2025 Sat Nov 29 02:20:33 EST 2025 Tue Nov 18 21:43:31 EST 2025 Fri Feb 21 02:45:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | 68Q45 Pascal’s triangle Recurrence relation 30B50 68R05 Summatory function Stern’s diatomic sequence 68R15 Thue–Morse sequence 11B37 Regular sequence Digital function 11A63 Dirichlet series Asymptotic analysis 05A16 |
| Language | English |
| License | The Author(s) 2022. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-3d0574906ab2ac7e4352c9f9a879ad4a01f3eea6f4257b442c9c2f4ed8bf459d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4362-429X 0000-0003-0082-7334 0000-0001-8076-8535 |
| OpenAccessLink | https://link.springer.com/10.1007/s00453-022-00950-y |
| PMID | 35974975 |
| PQID | 2701552765 |
| PQPubID | 2043795 |
| PageCount | 53 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9374655 proquest_miscellaneous_2703418931 proquest_journals_2701552765 pubmed_primary_35974975 crossref_citationtrail_10_1007_s00453_022_00950_y crossref_primary_10_1007_s00453_022_00950_y springer_journals_10_1007_s00453_022_00950_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationTitleAlternate | Algorithmica |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Allouche, Shallit (CR2) 2003 Hwang, Janson, Tsai (CR24) 2017; 13 Heuberger, Krenn (CR20) 2020; 82 CR17 Allouche, Shallit (CR1) 1992; 98 Goč, Henshall, Shallit (CR16) 2013; 24 CR37 Graham, Knuth, Patashnik (CR19) 1994 CR36 Jungers (CR25) 2009 Berstel, Reutenauer (CR5) 2011 CR11 Finch (CR14) 2003 Bell (CR4) 2005; 34 Stern (CR35) 1858; 55 Fine (CR15) 1947; 54 Northshield (CR33) 2010; 117 Rota, Strang (CR34) 1960; 22 Lothaire (CR32) 2002 Coons, Shallit (CR10) 2011; 311 Goč, Rampersad, Rigo, Salimov (CR18) 2014; 25 CR7 Leroy, Rigo, Stipulanti (CR30) 2018; 18A Currie, Saari (CR12) 2009; 43 CR26 CR22 Lothaire (CR31) 1997 CR21 Leroy, Rigo, Stipulanti (CR29) 2017; 340 Allouche, Shallit (CR3) 2003; 307 Hinz, Klavžar, Milutinovic, Parisse, Petr (CR23) 2005; 26 Leroy, Rigo, Stipulanti (CR28) 2017; 24 Leroy, Rigo, Stipulanti (CR27) 2016; 80 Carlitz (CR8) 1964; 5 Charlier, Rampersad, Shallit (CR9) 2012; 23 Dumas (CR13) 2013; 438 Bicknell-Johnson (CR6) 2003; 41 M Lothaire (950_CR31) 1997 JP Bell (950_CR4) 2005; 34 M Coons (950_CR10) 2011; 311 RL Graham (950_CR19) 1994 G-C Rota (950_CR34) 1960; 22 J Berstel (950_CR5) 2011 950_CR11 D Goč (950_CR16) 2013; 24 J-P Allouche (950_CR2) 2003 950_CR36 D Goč (950_CR18) 2014; 25 950_CR37 L Carlitz (950_CR8) 1964; 5 É Charlier (950_CR9) 2012; 23 R Jungers (950_CR25) 2009 J Leroy (950_CR29) 2017; 340 M Lothaire (950_CR32) 2002 AM Hinz (950_CR23) 2005; 26 NJ Fine (950_CR15) 1947; 54 JD Currie (950_CR12) 2009; 43 J-P Allouche (950_CR1) 1992; 98 J-P Allouche (950_CR3) 2003; 307 M Bicknell-Johnson (950_CR6) 2003; 41 HK Hwang (950_CR24) 2017; 13 S Northshield (950_CR33) 2010; 117 M Stern (950_CR35) 1858; 55 J Leroy (950_CR30) 2018; 18A 950_CR21 950_CR22 950_CR26 P Dumas (950_CR13) 2013; 438 950_CR17 J Leroy (950_CR28) 2017; 24 SR Finch (950_CR14) 2003 J Leroy (950_CR27) 2016; 80 950_CR7 C Heuberger (950_CR20) 2020; 82 |
| References_xml | – year: 2003 ident: CR14 publication-title: Mathematical Constants, Encyclopedia of Mathematics and its Applications doi: 10.1017/CBO9780511550447 – year: 1997 ident: CR31 publication-title: Combinatorics on Words doi: 10.1017/CBO9780511566097 – ident: CR22 – year: 2011 ident: CR5 publication-title: Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications – year: 1994 ident: CR19 publication-title: Concrete Mathematics – ident: CR37 – volume: 80 start-page: 24 year: 2016 end-page: 47 ident: CR27 article-title: Generalized Pascal triangle for binomial coefficients of words publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2016.04.006 – volume: 117 start-page: 581 issue: 7 year: 2010 end-page: 598 ident: CR33 article-title: Stern’s diatomic sequence publication-title: Am. Math. Month. doi: 10.4169/000298910X496714 – volume: 41 start-page: 169 issue: 2 year: 2003 end-page: 180 ident: CR6 article-title: Stern’s diatomic array applied to Fibonacci representations publication-title: Fibonacci Quart. – volume: 54 start-page: 589 year: 1947 end-page: 592 ident: CR15 article-title: Binomial coefficients modulo a prime publication-title: Am. Math. Month. doi: 10.2307/2304500 – volume: 23 start-page: 1035 issue: 5 year: 2012 end-page: 1066 ident: CR9 article-title: Enumeration and decidable properties of automatic sequences publication-title: Int. J. Found. Comput. Sci. doi: 10.1142/S0129054112400448 – volume: 340 start-page: 862 issue: 5 year: 2017 end-page: 881 ident: CR29 article-title: Counting the number of non-zero coefficients in rows of generalized Pascal triangles publication-title: Discrete Math. doi: 10.1016/j.disc.2017.01.003 – volume: 307 start-page: 3 issue: 1 year: 2003 end-page: 29 ident: CR3 article-title: The ring of -regular sequences, II publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(03)00090-2 – volume: 98 start-page: 163 issue: 2 year: 1992 end-page: 197 ident: CR1 article-title: The ring of -regular sequences publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(92)90001-V – volume: 43 start-page: 165 issue: 1 year: 2009 end-page: 178 ident: CR12 article-title: Least periods of factors of infinite words publication-title: Theor. Inform. Appl. doi: 10.1051/ita:2008006 – volume: 24 start-page: 781 issue: 6 year: 2013 end-page: 798 ident: CR16 article-title: Automatic theorem-proving in combinatorics on words publication-title: Int. J. Found. Comput. Sci. doi: 10.1142/S0129054113400182 – volume: 18A start-page: 32 year: 2018 ident: CR30 article-title: Counting subword occurrences in base- expansions publication-title: Integers – volume: 82 start-page: 429 issue: 3 year: 2020 end-page: 508 ident: CR20 article-title: Asymptotic analysis of regular sequences publication-title: Algorithmica doi: 10.1007/s00453-019-00631-3 – ident: CR21 – volume: 13 start-page: 43 issue: 4 year: 2017 ident: CR24 article-title: Exact and asymptotic solutions of a divide-and-conquer recurrence dividing at half: theory and applications publication-title: ACM Trans. Algorithms doi: 10.1145/3127585 – volume: 5 start-page: 61 year: 1964 end-page: 75 ident: CR8 article-title: A problem in partitions related to the Stirling numbers publication-title: Riv. Mat. Univ. Parma – volume: 311 start-page: 2630 issue: 22 year: 2011 end-page: 2633 ident: CR10 article-title: A pattern sequence approach to Stern’s sequence publication-title: Discrete Math. doi: 10.1016/j.disc.2011.07.029 – volume: 438 start-page: 2107 issue: 5 year: 2013 end-page: 2126 ident: CR13 article-title: Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2012.10.013 – volume: 25 start-page: 1097 issue: 8 year: 2014 end-page: 1110 ident: CR18 article-title: On the number of abelian bordered words (with an example of automatic theorem-proving) publication-title: Int. J. Found. Comput. Sci. doi: 10.1142/S0129054114400267 – volume: 26 start-page: 693 issue: 5 year: 2005 end-page: 708 ident: CR23 article-title: Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence publication-title: Eur. J. Combin. doi: 10.1016/j.ejc.2004.04.009 – year: 2003 ident: CR2 publication-title: Automatic Sequences: Theory, Applications, Generalizations doi: 10.1017/CBO9780511546563 – ident: CR17 – volume: 34 start-page: 634 issue: 3 year: 2005 end-page: 643 ident: CR4 article-title: On the values attained by a -regular sequence publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2004.11.004 – ident: CR11 – year: 2009 ident: CR25 publication-title: The Joint Spectral Radius. Theory and Applications doi: 10.1007/978-3-540-95980-9 – volume: 22 start-page: 379 year: 1960 end-page: 381 ident: CR34 article-title: A note on the joint spectral radius publication-title: Indag. Math. doi: 10.1016/S1385-7258(60)50046-1 – volume: 55 start-page: 193 year: 1858 end-page: 220 ident: CR35 article-title: Ueber eine zahlentheoretische Funktion publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1858.55.193 – ident: CR36 – ident: CR7 – ident: CR26 – year: 2002 ident: CR32 publication-title: Algebraic Combinatorics on Words doi: 10.1017/CBO9781107326019 – volume: 24 start-page: 36 issue: 1 year: 2017 ident: CR28 article-title: Behavior of digital sequences through exotic numeration systems publication-title: Electron. J. Combin. doi: 10.37236/6581 – volume: 98 start-page: 163 issue: 2 year: 1992 ident: 950_CR1 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(92)90001-V – ident: 950_CR21 – volume: 34 start-page: 634 issue: 3 year: 2005 ident: 950_CR4 publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2004.11.004 – volume: 438 start-page: 2107 issue: 5 year: 2013 ident: 950_CR13 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2012.10.013 – volume-title: The Joint Spectral Radius. Theory and Applications year: 2009 ident: 950_CR25 doi: 10.1007/978-3-540-95980-9 – volume-title: Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications year: 2011 ident: 950_CR5 – volume-title: Combinatorics on Words year: 1997 ident: 950_CR31 doi: 10.1017/CBO9780511566097 – volume: 82 start-page: 429 issue: 3 year: 2020 ident: 950_CR20 publication-title: Algorithmica doi: 10.1007/s00453-019-00631-3 – volume: 307 start-page: 3 issue: 1 year: 2003 ident: 950_CR3 publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(03)00090-2 – volume: 22 start-page: 379 year: 1960 ident: 950_CR34 publication-title: Indag. Math. doi: 10.1016/S1385-7258(60)50046-1 – ident: 950_CR36 – volume: 54 start-page: 589 year: 1947 ident: 950_CR15 publication-title: Am. Math. Month. doi: 10.2307/2304500 – volume: 18A start-page: 32 year: 2018 ident: 950_CR30 publication-title: Integers – volume: 41 start-page: 169 issue: 2 year: 2003 ident: 950_CR6 publication-title: Fibonacci Quart. doi: 10.1080/00150517.2003.12428593 – ident: 950_CR7 – volume: 43 start-page: 165 issue: 1 year: 2009 ident: 950_CR12 publication-title: Theor. Inform. Appl. doi: 10.1051/ita:2008006 – volume-title: Automatic Sequences: Theory, Applications, Generalizations year: 2003 ident: 950_CR2 doi: 10.1017/CBO9780511546563 – volume: 23 start-page: 1035 issue: 5 year: 2012 ident: 950_CR9 publication-title: Int. J. Found. Comput. Sci. doi: 10.1142/S0129054112400448 – volume: 24 start-page: 36 issue: 1 year: 2017 ident: 950_CR28 publication-title: Electron. J. Combin. doi: 10.37236/6581 – volume: 117 start-page: 581 issue: 7 year: 2010 ident: 950_CR33 publication-title: Am. Math. Month. doi: 10.4169/000298910X496714 – volume: 55 start-page: 193 year: 1858 ident: 950_CR35 publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1858.55.193 – ident: 950_CR37 – volume: 311 start-page: 2630 issue: 22 year: 2011 ident: 950_CR10 publication-title: Discrete Math. doi: 10.1016/j.disc.2011.07.029 – ident: 950_CR22 doi: 10.4230/LIPIcs.AofA.2018.27 – volume: 80 start-page: 24 year: 2016 ident: 950_CR27 publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2016.04.006 – ident: 950_CR17 doi: 10.1007/978-3-642-37064-9_27 – volume-title: Concrete Mathematics year: 1994 ident: 950_CR19 – volume: 26 start-page: 693 issue: 5 year: 2005 ident: 950_CR23 publication-title: Eur. J. Combin. doi: 10.1016/j.ejc.2004.04.009 – volume: 5 start-page: 61 year: 1964 ident: 950_CR8 publication-title: Riv. Mat. Univ. Parma – volume-title: Mathematical Constants, Encyclopedia of Mathematics and its Applications year: 2003 ident: 950_CR14 doi: 10.1017/CBO9780511550447 – volume: 13 start-page: 43 issue: 4 year: 2017 ident: 950_CR24 publication-title: ACM Trans. Algorithms doi: 10.1145/3127585 – volume-title: Algebraic Combinatorics on Words year: 2002 ident: 950_CR32 doi: 10.1017/CBO9781107326019 – ident: 950_CR26 – volume: 25 start-page: 1097 issue: 8 year: 2014 ident: 950_CR18 publication-title: Int. J. Found. Comput. Sci. doi: 10.1142/S0129054114400267 – volume: 24 start-page: 781 issue: 6 year: 2013 ident: 950_CR16 publication-title: Int. J. Found. Comput. Sci. doi: 10.1142/S0129054113400182 – volume: 340 start-page: 862 issue: 5 year: 2017 ident: 950_CR29 publication-title: Discrete Math. doi: 10.1016/j.disc.2017.01.003 – ident: 950_CR11 doi: 10.1007/978-3-319-69152-7_2 |
| SSID | ssj0012796 |
| Score | 2.3840425 |
| Snippet | For an integer
q
≥
2
, a
q
-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of
q
. In this article,
q... For an integer $$q\ge 2$$ q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q . In this... For an integer , a -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of . In this article, -recursive... For an integer q≥2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive... For an integer q ≥ 2 , a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article,... For an integer $$q\ge 2$$ q≥2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article,... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2480 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Asymptotic properties Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Mathematics of Computing Theory of Computation |
| Title | Asymptotic Analysis of q-Recursive Sequences |
| URI | https://link.springer.com/article/10.1007/s00453-022-00950-y https://www.ncbi.nlm.nih.gov/pubmed/35974975 https://www.proquest.com/docview/2701552765 https://www.proquest.com/docview/2703418931 https://pubmed.ncbi.nlm.nih.gov/PMC9374655 |
| Volume | 84 |
| WOSCitedRecordID | wos000790691300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL89vqHBV8c4EuTZfmcYjDBxmy6dhbSdIUB9rOfQj7702ytjKngj6WXPpxl-v92rv8DuBKSOYr4QmUBEohIhlDggl96AUqiEUgPNuHbHBPu91wOGQP-aawaVHtXqQk7Zu63Oxm0IfJOWJkcIGHFpuwpcNdaBo29PqDMneAqe3KZfrOI6IDdL5V5vtzrIajNYy5Xir5JV9qw1Cn-r8H2IPdHHa67eU62YcNlR5AtWjp4OYefgiN9nTxOp5lWswt-ErcLHHfUM_8mDe17m6_qL4-gqfO7ePNHcobKiBJKJkhP9bojDCvxQXmkioNlbBkCeMhZTwm3GsmvlK8lRhHFoToQYkTouJQJCRgsX8MlTRL1Sm4WHIslelYxhJC41h4vggFMTy3kutV4UCz0Gskc7Zx0_TiJSp5kq06Iq2OyKojWjhwXc4ZL7k2fpWuFeaKcr-bRpguOeVagQOX5bD2GJMG4anK5lZGh26N05oOnCytW17ON99XjOrZdMXupYBh414dSUfPlpVb4zzDRedAo7D-5239_BRnfxM_hx1sF5ApcqtBZTaZqwvYlu-z0XRSh006DOvWGz4A5mAE3Q |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwED90CvrF-bY6tYLfNNCl6bJ8HOKYOIfMB_tWkjTFgbZzD2H_vUnWVuYL9GPJpY-7XO_X3uV3AKdCMl8JT6A4UAoRyRgSTOhDL1BBJALh2T5kj23a6dR7PXabbQob5dXueUrSvqmLzW4GfZicI0YGF3houghLREcsw5jfvXsscgeY2q5cpu88IjpAZ1tlvj_HfDj6gjG_lkp-ypfaMNQs_-8B1mEtg51uY7ZONmBBJZtQzls6uJmHb8F5YzR9GYxTLebmfCVuGruvqGt-zJtad_cur77ehofm5f1FC2UNFZAklIyRH2l0RphX4wJzSZWGSliymPE6ZTwi3KvGvlK8FhtHFoToQYljoqK6iEnAIn8HSkmaqD1wseRYKtOxjMWERpHwfFEXxPDcSq5XhQPVXK-hzNjGTdOL57DgSbbqCLU6QquOcOrAWTFnMOPa-FW6kpsrzPxuFGI645SrBQ6cFMPaY0wahCcqnVgZHbo1Tqs6sDuzbnE533xfMapn0zm7FwKGjXt-JOk_WVZujfMMF50D57n1P27r56fY_5v4May07m_aYfuqc30Aq9guJlPwVoHSeDhRh7As38b90fDI-sQ7Ap0G2Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NNk17AcbGFj5GkPa2WqSOU8ePCFZtGqqqsaG-RbZjCyRIOhqQ-t_jcz6g6zZp4jHyOYnPd7pfcuffAXxUWsRGRYrYxBjCtBBECeUuo8QkuUpU5PuQnZ_y0SidTMT40Sl-X-3epiTrMw3I0lRUh9PcHnYH3xCJYP6REsQIEZmvwHOGhfT4vX523uURKPcdurAHPWEuWDfHZv58j8XQtIQ3l8smf8ud-pA0XH_6YjZgrYGj4VFtP6_hmSk2Yb1t9RA2nv8Gekez-fW0Kp1Y2PKYhKUNf5Hv-MMea-DDs7Yq-y38HH7-cfyFNI0WiGacVSTOHWpjIhpIRaXmxkEoqoUVMuVC5kxGfRsbIwcWHVwx5gY1tczkqbIsEXm8BatFWZj3EFItqTbYyUxYxvNcRbFKFUP-Wy2dtQTQb3Wc6YaFHJthXGUdf7JXR-bUkXl1ZPMAPnVzpjUHxz-ld9utyxp_nGWU11xzgySAg27YeRKmR2Rhylsv40K6w2_9AN7VO909LsbvLsHdbL5gA50AsnQvjhSXF56t2-E_5KgLoNdawsNr_X0V2_8nvg8vxyfD7PTr6NsOvKLelrAObhdWq5tbswcv9F11Obv54N3jHkAfD70 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+Analysis+of+q+-Recursive+Sequences&rft.jtitle=Algorithmica&rft.au=Heuberger%2C+Clemens&rft.au=Krenn%2C+Daniel&rft.au=Lipnik%2C+Gabriel+F&rft.date=2022-09-01&rft.issn=0178-4617&rft.volume=84&rft.issue=9&rft.spage=2480&rft_id=info:doi/10.1007%2Fs00453-022-00950-y&rft_id=info%3Apmid%2F35974975&rft.externalDocID=35974975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |