Asymptotic Analysis of q-Recursive Sequences

For an integer q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of  q . In this article, q -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q -recursive sequen...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 84; no. 9; pp. 2480 - 2532
Main Authors: Heuberger, Clemens, Krenn, Daniel, Lipnik, Gabriel F.
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2022
Springer Nature B.V
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For an integer q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of  q . In this article, q -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q -recursive sequence is q -regular in the sense of Allouche and Shallit and that a q -linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q -recursive sequences are then obtained based on a general result on the asymptotic analysis of q -regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of Stern’s diatomic sequence, the number of non-zero elements in some generalized Pascal’s triangle and the number of unbordered factors in the Thue–Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.
AbstractList For an integer q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of  q . In this article, q -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q -recursive sequence is q -regular in the sense of Allouche and Shallit and that a q -linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q -recursive sequences are then obtained based on a general result on the asymptotic analysis of q -regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of Stern’s diatomic sequence, the number of non-zero elements in some generalized Pascal’s triangle and the number of unbordered factors in the Thue–Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.
For an integer , a -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of  . In this article, -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every -recursive sequence is -regular in the sense of Allouche and Shallit and that a -linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for -recursive sequences are then obtained based on a general result on the asymptotic analysis of -regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern's diatomic sequence,the number of non-zero elements in some generalized Pascal's triangle andthe number of unbordered factors in the Thue-Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.
For an integer $$q\ge 2$$ q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of  q . In this article, q -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q -recursive sequence is q -regular in the sense of Allouche and Shallit and that a q -linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q -recursive sequences are then obtained based on a general result on the asymptotic analysis of q -regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of Stern’s diatomic sequence, the number of non-zero elements in some generalized Pascal’s triangle and the number of unbordered factors in the Thue–Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.
For an integer q≥2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences.Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern’s diatomic sequence,the number of non-zero elements in some generalized Pascal’s triangle andthe number of unbordered factors in the Thue–Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.
For an integer $$q\ge 2$$ q≥2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern’s diatomic sequence,the number of non-zero elements in some generalized Pascal’s triangle andthe number of unbordered factors in the Thue–Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.
For an integer q ≥ 2 , a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern's diatomic sequence,the number of non-zero elements in some generalized Pascal's triangle andthe number of unbordered factors in the Thue-Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.For an integer q ≥ 2 , a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every q-recursive sequence is q-regular in the sense of Allouche and Shallit and that a q-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for q-recursive sequences are then obtained based on a general result on the asymptotic analysis of q-regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern's diatomic sequence,the number of non-zero elements in some generalized Pascal's triangle andthe number of unbordered factors in the Thue-Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.
Author Lipnik, Gabriel F.
Heuberger, Clemens
Krenn, Daniel
Author_xml – sequence: 1
  givenname: Clemens
  orcidid: 0000-0003-0082-7334
  surname: Heuberger
  fullname: Heuberger, Clemens
  organization: Alpen-Adria-Universität Klagenfurt
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0001-8076-8535
  surname: Krenn
  fullname: Krenn, Daniel
  email: math@danielkrenn.at
  organization: Paris Lodron University of Salzburg
– sequence: 3
  givenname: Gabriel F.
  orcidid: 0000-0002-4362-429X
  surname: Lipnik
  fullname: Lipnik, Gabriel F.
  organization: Graz University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35974975$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rGzEQxUVJiJ00_0APxdBLDt1m9LVaXQomtEnAEEjbs5C1s67CeuVIu4H97yvHzkdzyGkY5vcej3nH5KALHRLyicI3CqDOE4CQvADGCgAtoRg_kCkVPK9S0AMyBaqqQpRUTchxSncAlCldHpEJl1oJreSUfJ2ncb3pQ-_dbN7Zdkw-zUIzuy9u0Q0x-Qec_cL7ATuH6SM5bGyb8HQ_T8ifnz9-X1wVi5vL64v5onBCib7gNchsD6VdMusUCi6Z0422ldK2FhZowxFt2Qgm1VKIfHSsEVhXy0ZIXfMT8n3nuxmWa6wddn20rdlEv7ZxNMF68_-l83_NKjwYzZUopcwGZ3uDGHL21Ju1Tw7b1nYYhmSYAi5opTnN6Jc36F0YYv7EI0WlZKrcGn5-neg5ytMjM1DtABdDShEb43xvex-2AX1rKJhtZ2bXmcmdmcfOzJil7I30yf1dEd-JUoa7FcaX2O-o_gGrc6lB
CitedBy_id crossref_primary_10_1016_j_jsc_2023_102295
Cites_doi 10.1017/CBO9780511550447
10.1017/CBO9780511566097
10.1016/j.aam.2016.04.006
10.4169/000298910X496714
10.2307/2304500
10.1142/S0129054112400448
10.1016/j.disc.2017.01.003
10.1016/S0304-3975(03)00090-2
10.1016/0304-3975(92)90001-V
10.1051/ita:2008006
10.1142/S0129054113400182
10.1007/s00453-019-00631-3
10.1145/3127585
10.1016/j.disc.2011.07.029
10.1016/j.laa.2012.10.013
10.1142/S0129054114400267
10.1016/j.ejc.2004.04.009
10.1017/CBO9780511546563
10.1016/j.aam.2004.11.004
10.1007/978-3-540-95980-9
10.1016/S1385-7258(60)50046-1
10.1515/crll.1858.55.193
10.1017/CBO9781107326019
10.37236/6581
10.1080/00150517.2003.12428593
10.4230/LIPIcs.AofA.2018.27
10.1007/978-3-642-37064-9_27
10.1007/978-3-319-69152-7_2
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022.
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022.
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1007/s00453-022-00950-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
ProQuest Computer Science Collection

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2532
ExternalDocumentID PMC9374655
35974975
10_1007_s00453_022_00950_y
Genre Journal Article
GrantInformation_xml – fundername: Austrian Science Fund
  grantid: P28466-N35
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: Austrian Science Fund
  grantid: P28466-N35; W1230
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: Austrian Science Fund FWF
  grantid: P 28466
– fundername: ;
  grantid: P28466-N35; W1230
– fundername: ;
  grantid: P28466-N35
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c474t-3d0574906ab2ac7e4352c9f9a879ad4a01f3eea6f4257b442c9c2f4ed8bf459d3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790691300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Tue Nov 04 01:57:52 EST 2025
Thu Oct 02 11:12:35 EDT 2025
Sun Nov 09 08:18:01 EST 2025
Mon Jul 21 06:07:53 EDT 2025
Sat Nov 29 02:20:33 EST 2025
Tue Nov 18 21:43:31 EST 2025
Fri Feb 21 02:45:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 68Q45
Pascal’s triangle
Recurrence relation
30B50
68R05
Summatory function
Stern’s diatomic sequence
68R15
Thue–Morse sequence
11B37
Regular sequence
Digital function
11A63
Dirichlet series
Asymptotic analysis
05A16
Language English
License The Author(s) 2022.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-3d0574906ab2ac7e4352c9f9a879ad4a01f3eea6f4257b442c9c2f4ed8bf459d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4362-429X
0000-0003-0082-7334
0000-0001-8076-8535
OpenAccessLink https://link.springer.com/10.1007/s00453-022-00950-y
PMID 35974975
PQID 2701552765
PQPubID 2043795
PageCount 53
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9374655
proquest_miscellaneous_2703418931
proquest_journals_2701552765
pubmed_primary_35974975
crossref_citationtrail_10_1007_s00453_022_00950_y
crossref_primary_10_1007_s00453_022_00950_y
springer_journals_10_1007_s00453_022_00950_y
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationTitleAlternate Algorithmica
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Allouche, Shallit (CR2) 2003
Hwang, Janson, Tsai (CR24) 2017; 13
Heuberger, Krenn (CR20) 2020; 82
CR17
Allouche, Shallit (CR1) 1992; 98
Goč, Henshall, Shallit (CR16) 2013; 24
CR37
Graham, Knuth, Patashnik (CR19) 1994
CR36
Jungers (CR25) 2009
Berstel, Reutenauer (CR5) 2011
CR11
Finch (CR14) 2003
Bell (CR4) 2005; 34
Stern (CR35) 1858; 55
Fine (CR15) 1947; 54
Northshield (CR33) 2010; 117
Rota, Strang (CR34) 1960; 22
Lothaire (CR32) 2002
Coons, Shallit (CR10) 2011; 311
Goč, Rampersad, Rigo, Salimov (CR18) 2014; 25
CR7
Leroy, Rigo, Stipulanti (CR30) 2018; 18A
Currie, Saari (CR12) 2009; 43
CR26
CR22
Lothaire (CR31) 1997
CR21
Leroy, Rigo, Stipulanti (CR29) 2017; 340
Allouche, Shallit (CR3) 2003; 307
Hinz, Klavžar, Milutinovic, Parisse, Petr (CR23) 2005; 26
Leroy, Rigo, Stipulanti (CR28) 2017; 24
Leroy, Rigo, Stipulanti (CR27) 2016; 80
Carlitz (CR8) 1964; 5
Charlier, Rampersad, Shallit (CR9) 2012; 23
Dumas (CR13) 2013; 438
Bicknell-Johnson (CR6) 2003; 41
M Lothaire (950_CR31) 1997
JP Bell (950_CR4) 2005; 34
M Coons (950_CR10) 2011; 311
RL Graham (950_CR19) 1994
G-C Rota (950_CR34) 1960; 22
J Berstel (950_CR5) 2011
950_CR11
D Goč (950_CR16) 2013; 24
J-P Allouche (950_CR2) 2003
950_CR36
D Goč (950_CR18) 2014; 25
950_CR37
L Carlitz (950_CR8) 1964; 5
É Charlier (950_CR9) 2012; 23
R Jungers (950_CR25) 2009
J Leroy (950_CR29) 2017; 340
M Lothaire (950_CR32) 2002
AM Hinz (950_CR23) 2005; 26
NJ Fine (950_CR15) 1947; 54
JD Currie (950_CR12) 2009; 43
J-P Allouche (950_CR1) 1992; 98
J-P Allouche (950_CR3) 2003; 307
M Bicknell-Johnson (950_CR6) 2003; 41
HK Hwang (950_CR24) 2017; 13
S Northshield (950_CR33) 2010; 117
M Stern (950_CR35) 1858; 55
J Leroy (950_CR30) 2018; 18A
950_CR21
950_CR22
950_CR26
P Dumas (950_CR13) 2013; 438
950_CR17
J Leroy (950_CR28) 2017; 24
SR Finch (950_CR14) 2003
J Leroy (950_CR27) 2016; 80
950_CR7
C Heuberger (950_CR20) 2020; 82
References_xml – year: 2003
  ident: CR14
  publication-title: Mathematical Constants, Encyclopedia of Mathematics and its Applications
  doi: 10.1017/CBO9780511550447
– year: 1997
  ident: CR31
  publication-title: Combinatorics on Words
  doi: 10.1017/CBO9780511566097
– ident: CR22
– year: 2011
  ident: CR5
  publication-title: Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications
– year: 1994
  ident: CR19
  publication-title: Concrete Mathematics
– ident: CR37
– volume: 80
  start-page: 24
  year: 2016
  end-page: 47
  ident: CR27
  article-title: Generalized Pascal triangle for binomial coefficients of words
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2016.04.006
– volume: 117
  start-page: 581
  issue: 7
  year: 2010
  end-page: 598
  ident: CR33
  article-title: Stern’s diatomic sequence
  publication-title: Am. Math. Month.
  doi: 10.4169/000298910X496714
– volume: 41
  start-page: 169
  issue: 2
  year: 2003
  end-page: 180
  ident: CR6
  article-title: Stern’s diatomic array applied to Fibonacci representations
  publication-title: Fibonacci Quart.
– volume: 54
  start-page: 589
  year: 1947
  end-page: 592
  ident: CR15
  article-title: Binomial coefficients modulo a prime
  publication-title: Am. Math. Month.
  doi: 10.2307/2304500
– volume: 23
  start-page: 1035
  issue: 5
  year: 2012
  end-page: 1066
  ident: CR9
  article-title: Enumeration and decidable properties of automatic sequences
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054112400448
– volume: 340
  start-page: 862
  issue: 5
  year: 2017
  end-page: 881
  ident: CR29
  article-title: Counting the number of non-zero coefficients in rows of generalized Pascal triangles
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2017.01.003
– volume: 307
  start-page: 3
  issue: 1
  year: 2003
  end-page: 29
  ident: CR3
  article-title: The ring of -regular sequences, II
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(03)00090-2
– volume: 98
  start-page: 163
  issue: 2
  year: 1992
  end-page: 197
  ident: CR1
  article-title: The ring of -regular sequences
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(92)90001-V
– volume: 43
  start-page: 165
  issue: 1
  year: 2009
  end-page: 178
  ident: CR12
  article-title: Least periods of factors of infinite words
  publication-title: Theor. Inform. Appl.
  doi: 10.1051/ita:2008006
– volume: 24
  start-page: 781
  issue: 6
  year: 2013
  end-page: 798
  ident: CR16
  article-title: Automatic theorem-proving in combinatorics on words
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054113400182
– volume: 18A
  start-page: 32
  year: 2018
  ident: CR30
  article-title: Counting subword occurrences in base- expansions
  publication-title: Integers
– volume: 82
  start-page: 429
  issue: 3
  year: 2020
  end-page: 508
  ident: CR20
  article-title: Asymptotic analysis of regular sequences
  publication-title: Algorithmica
  doi: 10.1007/s00453-019-00631-3
– ident: CR21
– volume: 13
  start-page: 43
  issue: 4
  year: 2017
  ident: CR24
  article-title: Exact and asymptotic solutions of a divide-and-conquer recurrence dividing at half: theory and applications
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3127585
– volume: 5
  start-page: 61
  year: 1964
  end-page: 75
  ident: CR8
  article-title: A problem in partitions related to the Stirling numbers
  publication-title: Riv. Mat. Univ. Parma
– volume: 311
  start-page: 2630
  issue: 22
  year: 2011
  end-page: 2633
  ident: CR10
  article-title: A pattern sequence approach to Stern’s sequence
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2011.07.029
– volume: 438
  start-page: 2107
  issue: 5
  year: 2013
  end-page: 2126
  ident: CR13
  article-title: Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2012.10.013
– volume: 25
  start-page: 1097
  issue: 8
  year: 2014
  end-page: 1110
  ident: CR18
  article-title: On the number of abelian bordered words (with an example of automatic theorem-proving)
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054114400267
– volume: 26
  start-page: 693
  issue: 5
  year: 2005
  end-page: 708
  ident: CR23
  article-title: Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence
  publication-title: Eur. J. Combin.
  doi: 10.1016/j.ejc.2004.04.009
– year: 2003
  ident: CR2
  publication-title: Automatic Sequences: Theory, Applications, Generalizations
  doi: 10.1017/CBO9780511546563
– ident: CR17
– volume: 34
  start-page: 634
  issue: 3
  year: 2005
  end-page: 643
  ident: CR4
  article-title: On the values attained by a -regular sequence
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2004.11.004
– ident: CR11
– year: 2009
  ident: CR25
  publication-title: The Joint Spectral Radius. Theory and Applications
  doi: 10.1007/978-3-540-95980-9
– volume: 22
  start-page: 379
  year: 1960
  end-page: 381
  ident: CR34
  article-title: A note on the joint spectral radius
  publication-title: Indag. Math.
  doi: 10.1016/S1385-7258(60)50046-1
– volume: 55
  start-page: 193
  year: 1858
  end-page: 220
  ident: CR35
  article-title: Ueber eine zahlentheoretische Funktion
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1858.55.193
– ident: CR36
– ident: CR7
– ident: CR26
– year: 2002
  ident: CR32
  publication-title: Algebraic Combinatorics on Words
  doi: 10.1017/CBO9781107326019
– volume: 24
  start-page: 36
  issue: 1
  year: 2017
  ident: CR28
  article-title: Behavior of digital sequences through exotic numeration systems
  publication-title: Electron. J. Combin.
  doi: 10.37236/6581
– volume: 98
  start-page: 163
  issue: 2
  year: 1992
  ident: 950_CR1
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(92)90001-V
– ident: 950_CR21
– volume: 34
  start-page: 634
  issue: 3
  year: 2005
  ident: 950_CR4
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2004.11.004
– volume: 438
  start-page: 2107
  issue: 5
  year: 2013
  ident: 950_CR13
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2012.10.013
– volume-title: The Joint Spectral Radius. Theory and Applications
  year: 2009
  ident: 950_CR25
  doi: 10.1007/978-3-540-95980-9
– volume-title: Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications
  year: 2011
  ident: 950_CR5
– volume-title: Combinatorics on Words
  year: 1997
  ident: 950_CR31
  doi: 10.1017/CBO9780511566097
– volume: 82
  start-page: 429
  issue: 3
  year: 2020
  ident: 950_CR20
  publication-title: Algorithmica
  doi: 10.1007/s00453-019-00631-3
– volume: 307
  start-page: 3
  issue: 1
  year: 2003
  ident: 950_CR3
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(03)00090-2
– volume: 22
  start-page: 379
  year: 1960
  ident: 950_CR34
  publication-title: Indag. Math.
  doi: 10.1016/S1385-7258(60)50046-1
– ident: 950_CR36
– volume: 54
  start-page: 589
  year: 1947
  ident: 950_CR15
  publication-title: Am. Math. Month.
  doi: 10.2307/2304500
– volume: 18A
  start-page: 32
  year: 2018
  ident: 950_CR30
  publication-title: Integers
– volume: 41
  start-page: 169
  issue: 2
  year: 2003
  ident: 950_CR6
  publication-title: Fibonacci Quart.
  doi: 10.1080/00150517.2003.12428593
– ident: 950_CR7
– volume: 43
  start-page: 165
  issue: 1
  year: 2009
  ident: 950_CR12
  publication-title: Theor. Inform. Appl.
  doi: 10.1051/ita:2008006
– volume-title: Automatic Sequences: Theory, Applications, Generalizations
  year: 2003
  ident: 950_CR2
  doi: 10.1017/CBO9780511546563
– volume: 23
  start-page: 1035
  issue: 5
  year: 2012
  ident: 950_CR9
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054112400448
– volume: 24
  start-page: 36
  issue: 1
  year: 2017
  ident: 950_CR28
  publication-title: Electron. J. Combin.
  doi: 10.37236/6581
– volume: 117
  start-page: 581
  issue: 7
  year: 2010
  ident: 950_CR33
  publication-title: Am. Math. Month.
  doi: 10.4169/000298910X496714
– volume: 55
  start-page: 193
  year: 1858
  ident: 950_CR35
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1858.55.193
– ident: 950_CR37
– volume: 311
  start-page: 2630
  issue: 22
  year: 2011
  ident: 950_CR10
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2011.07.029
– ident: 950_CR22
  doi: 10.4230/LIPIcs.AofA.2018.27
– volume: 80
  start-page: 24
  year: 2016
  ident: 950_CR27
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2016.04.006
– ident: 950_CR17
  doi: 10.1007/978-3-642-37064-9_27
– volume-title: Concrete Mathematics
  year: 1994
  ident: 950_CR19
– volume: 26
  start-page: 693
  issue: 5
  year: 2005
  ident: 950_CR23
  publication-title: Eur. J. Combin.
  doi: 10.1016/j.ejc.2004.04.009
– volume: 5
  start-page: 61
  year: 1964
  ident: 950_CR8
  publication-title: Riv. Mat. Univ. Parma
– volume-title: Mathematical Constants, Encyclopedia of Mathematics and its Applications
  year: 2003
  ident: 950_CR14
  doi: 10.1017/CBO9780511550447
– volume: 13
  start-page: 43
  issue: 4
  year: 2017
  ident: 950_CR24
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3127585
– volume-title: Algebraic Combinatorics on Words
  year: 2002
  ident: 950_CR32
  doi: 10.1017/CBO9781107326019
– ident: 950_CR26
– volume: 25
  start-page: 1097
  issue: 8
  year: 2014
  ident: 950_CR18
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054114400267
– volume: 24
  start-page: 781
  issue: 6
  year: 2013
  ident: 950_CR16
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054113400182
– volume: 340
  start-page: 862
  issue: 5
  year: 2017
  ident: 950_CR29
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2017.01.003
– ident: 950_CR11
  doi: 10.1007/978-3-319-69152-7_2
SSID ssj0012796
Score 2.3840425
Snippet For an integer q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of  q . In this article, q...
For an integer $$q\ge 2$$ q ≥ 2 , a q -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of  q . In this...
For an integer , a -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of  . In this article, -recursive...
For an integer q≥2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article, q-recursive...
For an integer q ≥ 2 , a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article,...
For an integer $$q\ge 2$$ q≥2, a q-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of q. In this article,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2480
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Asymptotic properties
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematics of Computing
Theory of Computation
Title Asymptotic Analysis of q-Recursive Sequences
URI https://link.springer.com/article/10.1007/s00453-022-00950-y
https://www.ncbi.nlm.nih.gov/pubmed/35974975
https://www.proquest.com/docview/2701552765
https://www.proquest.com/docview/2703418931
https://pubmed.ncbi.nlm.nih.gov/PMC9374655
Volume 84
WOSCitedRecordID wos000790691300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL89vqHBV8c4EuTZfmcYjDBxmy6dhbSdIUB9rOfQj7702ytjKngj6WXPpxl-v92rv8DuBKSOYr4QmUBEohIhlDggl96AUqiEUgPNuHbHBPu91wOGQP-aawaVHtXqQk7Zu63Oxm0IfJOWJkcIGHFpuwpcNdaBo29PqDMneAqe3KZfrOI6IDdL5V5vtzrIajNYy5Xir5JV9qw1Cn-r8H2IPdHHa67eU62YcNlR5AtWjp4OYefgiN9nTxOp5lWswt-ErcLHHfUM_8mDe17m6_qL4-gqfO7ePNHcobKiBJKJkhP9bojDCvxQXmkioNlbBkCeMhZTwm3GsmvlK8lRhHFoToQYkTouJQJCRgsX8MlTRL1Sm4WHIslelYxhJC41h4vggFMTy3kutV4UCz0Gskc7Zx0_TiJSp5kq06Iq2OyKojWjhwXc4ZL7k2fpWuFeaKcr-bRpguOeVagQOX5bD2GJMG4anK5lZGh26N05oOnCytW17ON99XjOrZdMXupYBh414dSUfPlpVb4zzDRedAo7D-5239_BRnfxM_hx1sF5ApcqtBZTaZqwvYlu-z0XRSh006DOvWGz4A5mAE3Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwED90CvrF-bY6tYLfNNCl6bJ8HOKYOIfMB_tWkjTFgbZzD2H_vUnWVuYL9GPJpY-7XO_X3uV3AKdCMl8JT6A4UAoRyRgSTOhDL1BBJALh2T5kj23a6dR7PXabbQob5dXueUrSvqmLzW4GfZicI0YGF3houghLREcsw5jfvXsscgeY2q5cpu88IjpAZ1tlvj_HfDj6gjG_lkp-ypfaMNQs_-8B1mEtg51uY7ZONmBBJZtQzls6uJmHb8F5YzR9GYxTLebmfCVuGruvqGt-zJtad_cur77ehofm5f1FC2UNFZAklIyRH2l0RphX4wJzSZWGSliymPE6ZTwi3KvGvlK8FhtHFoToQYljoqK6iEnAIn8HSkmaqD1wseRYKtOxjMWERpHwfFEXxPDcSq5XhQPVXK-hzNjGTdOL57DgSbbqCLU6QquOcOrAWTFnMOPa-FW6kpsrzPxuFGI645SrBQ6cFMPaY0wahCcqnVgZHbo1Tqs6sDuzbnE533xfMapn0zm7FwKGjXt-JOk_WVZujfMMF50D57n1P27r56fY_5v4May07m_aYfuqc30Aq9guJlPwVoHSeDhRh7As38b90fDI-sQ7Ap0G2Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NNk17AcbGFj5GkPa2WqSOU8ePCFZtGqqqsaG-RbZjCyRIOhqQ-t_jcz6g6zZp4jHyOYnPd7pfcuffAXxUWsRGRYrYxBjCtBBECeUuo8QkuUpU5PuQnZ_y0SidTMT40Sl-X-3epiTrMw3I0lRUh9PcHnYH3xCJYP6REsQIEZmvwHOGhfT4vX523uURKPcdurAHPWEuWDfHZv58j8XQtIQ3l8smf8ud-pA0XH_6YjZgrYGj4VFtP6_hmSk2Yb1t9RA2nv8Gekez-fW0Kp1Y2PKYhKUNf5Hv-MMea-DDs7Yq-y38HH7-cfyFNI0WiGacVSTOHWpjIhpIRaXmxkEoqoUVMuVC5kxGfRsbIwcWHVwx5gY1tczkqbIsEXm8BatFWZj3EFItqTbYyUxYxvNcRbFKFUP-Wy2dtQTQb3Wc6YaFHJthXGUdf7JXR-bUkXl1ZPMAPnVzpjUHxz-ld9utyxp_nGWU11xzgySAg27YeRKmR2Rhylsv40K6w2_9AN7VO909LsbvLsHdbL5gA50AsnQvjhSXF56t2-E_5KgLoNdawsNr_X0V2_8nvg8vxyfD7PTr6NsOvKLelrAObhdWq5tbswcv9F11Obv54N3jHkAfD70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+Analysis+of+q+-Recursive+Sequences&rft.jtitle=Algorithmica&rft.au=Heuberger%2C+Clemens&rft.au=Krenn%2C+Daniel&rft.au=Lipnik%2C+Gabriel+F&rft.date=2022-09-01&rft.issn=0178-4617&rft.volume=84&rft.issue=9&rft.spage=2480&rft_id=info:doi/10.1007%2Fs00453-022-00950-y&rft_id=info%3Apmid%2F35974975&rft.externalDocID=35974975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon