Flower pollination algorithm parameters tuning

The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is inspired by the pollination process of flowering species. FPA is characterised by simplicity in its formulation and high computational performance. Previous studies on FPA assume fixed parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 25; H. 22; S. 14429 - 14447
Hauptverfasser: Mergos, Panagiotis E., Yang, Xin-She
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is inspired by the pollination process of flowering species. FPA is characterised by simplicity in its formulation and high computational performance. Previous studies on FPA assume fixed parameter values based on empirical observations or experimental comparisons of limited scale and scope. In this study, a comprehensive effort is made to identify appropriate values of the FPA parameters that maximize its computational performance. To serve this goal, a simple non-iterative, single-stage sampling tuning method is employed, oriented towards practical applications of FPA. The tuning method is applied to the set of 28 functions specified in IEEE-CEC’13 for real-parameter single-objective optimization problems. It is found that the optimal FPA parameters depend significantly on the objective functions, the problem dimensions and affordable computational cost. Furthermore, it is found that the FPA parameters that minimize mean prediction errors do not always offer the most robust predictions. At the end of this study, recommendations are made for setting the optimal FPA parameters as a function of problem dimensions and affordable computational cost.
AbstractList The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is inspired by the pollination process of flowering species. FPA is characterised by simplicity in its formulation and high computational performance. Previous studies on FPA assume fixed parameter values based on empirical observations or experimental comparisons of limited scale and scope. In this study, a comprehensive effort is made to identify appropriate values of the FPA parameters that maximize its computational performance. To serve this goal, a simple non-iterative, single-stage sampling tuning method is employed, oriented towards practical applications of FPA. The tuning method is applied to the set of 28 functions specified in IEEE-CEC’13 for real-parameter single-objective optimization problems. It is found that the optimal FPA parameters depend significantly on the objective functions, the problem dimensions and affordable computational cost. Furthermore, it is found that the FPA parameters that minimize mean prediction errors do not always offer the most robust predictions. At the end of this study, recommendations are made for setting the optimal FPA parameters as a function of problem dimensions and affordable computational cost.
The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is inspired by the pollination process of flowering species. FPA is characterised by simplicity in its formulation and high computational performance. Previous studies on FPA assume fixed parameter values based on empirical observations or experimental comparisons of limited scale and scope. In this study, a comprehensive effort is made to identify appropriate values of the FPA parameters that maximize its computational performance. To serve this goal, a simple non-iterative, single-stage sampling tuning method is employed, oriented towards practical applications of FPA. The tuning method is applied to the set of 28 functions specified in IEEE-CEC'13 for real-parameter single-objective optimization problems. It is found that the optimal FPA parameters depend significantly on the objective functions, the problem dimensions and affordable computational cost. Furthermore, it is found that the FPA parameters that minimize mean prediction errors do not always offer the most robust predictions. At the end of this study, recommendations are made for setting the optimal FPA parameters as a function of problem dimensions and affordable computational cost.The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is inspired by the pollination process of flowering species. FPA is characterised by simplicity in its formulation and high computational performance. Previous studies on FPA assume fixed parameter values based on empirical observations or experimental comparisons of limited scale and scope. In this study, a comprehensive effort is made to identify appropriate values of the FPA parameters that maximize its computational performance. To serve this goal, a simple non-iterative, single-stage sampling tuning method is employed, oriented towards practical applications of FPA. The tuning method is applied to the set of 28 functions specified in IEEE-CEC'13 for real-parameter single-objective optimization problems. It is found that the optimal FPA parameters depend significantly on the objective functions, the problem dimensions and affordable computational cost. Furthermore, it is found that the FPA parameters that minimize mean prediction errors do not always offer the most robust predictions. At the end of this study, recommendations are made for setting the optimal FPA parameters as a function of problem dimensions and affordable computational cost.
Author Yang, Xin-She
Mergos, Panagiotis E.
Author_xml – sequence: 1
  givenname: Panagiotis E.
  orcidid: 0000-0003-3817-9520
  surname: Mergos
  fullname: Mergos, Panagiotis E.
  email: panagiotis.mergos.1@city.ac.uk
  organization: Department of Civil Engineering, City, University of London, Structural Engineering, Research Centre for Civil Engineering Structures, City, University of London
– sequence: 2
  givenname: Xin-She
  surname: Yang
  fullname: Yang, Xin-She
  organization: Design Engineering and Mathematics, Middlesex University London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34539232$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMoPkb_gAsZcOOmepObNulGkMEXCG50HTKddIykyZi0iv_eOON7IVkkkO8czr1nh6z74A0h-xSOKYA4SQAlQAGMFlAxhIKukW3KEQvBRb2-fLNCVBy3yE5Kj5BJUeIm2UJeYs2QbZPjCxdeTBwvgnPW694GP9ZuHqLtH7rxQkfdmd7ENO4Hb_18l2y02iWz93GPyP3F-d3kqri5vbyenN0UDRe8L5DX2JYoBBghGJclGKkbhrLBVtNKczOdNihlrYUGJjnkQ4HPUGiGrahxRE5Xvoth2plZY3wftVOLaDsdX1XQVv3-8fZBzcOzkhxLBJoNjj4MYngaTOpVZ1NjnNPehCEpVuYdoeSsyujhH_QxDNHn8RTSGmqopBCZOviZ6CvK5yozIFdAE0NK0bSqsf1yoTmgdYqCem9NrVpTuQu1bE29h2V_pJ_u_4pwJUoZ9nMTv2P_o3oDIBinsQ
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3347393
crossref_primary_10_3390_su17125285
crossref_primary_10_1371_journal_pone_0326035
crossref_primary_10_1108_MMMS_04_2023_0122
crossref_primary_10_1016_j_jobe_2024_109554
crossref_primary_10_1016_j_jobe_2024_109884
crossref_primary_10_1016_j_engappai_2024_108544
crossref_primary_10_1155_2024_5568922
crossref_primary_10_3390_app14072732
crossref_primary_10_1016_j_enbuild_2023_113429
crossref_primary_10_1109_ACCESS_2021_3130340
crossref_primary_10_1016_j_jobe_2025_111887
crossref_primary_10_3390_app13179676
crossref_primary_10_1007_s00024_025_03799_8
crossref_primary_10_1093_comjnl_bxae088
crossref_primary_10_1038_s41598_025_97648_2
crossref_primary_10_1155_2022_5876874
crossref_primary_10_1007_s11356_021_17364_y
crossref_primary_10_1016_j_suscom_2023_100949
crossref_primary_10_1155_2022_5443160
crossref_primary_10_3390_en15103653
crossref_primary_10_1007_s10115_022_01825_y
crossref_primary_10_1007_s12145_023_01209_y
Cites_doi 10.1007/s00521-013-1498-4
10.5815/ijmecs.2014.03.05
10.1016/j.cie.2021.107250
10.1016/j.renene.2015.04.034
10.1007/s00521-017-3176-4
10.3390/su8030235
10.1016/j.energy.2016.02.041
10.1016/j.jcp.2007.06.008
10.1007/978-0-387-30164-8_630
10.1007/s00366-011-0241-y
10.1007/s00521-016-2524-0
10.1007/s10462-018-9624-4
10.1016/j.ijepes.2015.11.093
10.1007/978-3-319-13826-8_5
10.1007/978-981-10-3728-3_22
10.1007/s00521-020-05296-6
10.1016/j.ipl.2015.08.007
10.18576/isl/050104
10.1007/s11227-019-02776-y
10.1515/aee-2016-0014
10.1007/978-3-319-26245-1_2
10.1007/s00521-017-3313-0
10.1093/acprof:oso/9780198565970.001.0001
10.1109/ICITEED.2016.7863285
10.1016/j.asoc.2015.05.015
10.1080/0305215X.2013.832237
10.1016/j.swevo.2011.02.001
10.1007/s00500-017-2744-y
10.1016/j.asoc.2015.08.037
10.1504/IJBIC.2010.032124
10.1007/s00158-019-02380-x
10.1016/j.neucom.2015.01.110
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright Springer Nature B.V. Nov 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
– notice: Copyright Springer Nature B.V. Nov 2021
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00500-021-06230-1
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 14447
ExternalDocumentID PMC8435301
34539232
10_1007_s00500_021_06230_1
Genre Journal Article
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PHGZT
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
-5B
-5G
-BR
-EM
ADINQ
GQ6
NPM
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-3493f53770e7724850e8ac238c3fa16a4ebbc3889a7a02840404104d37a23f793
IEDL.DBID RSV
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695083500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Tue Nov 04 01:59:05 EST 2025
Fri Sep 05 12:04:43 EDT 2025
Wed Nov 05 07:04:24 EST 2025
Wed Feb 19 02:27:07 EST 2025
Sat Nov 29 08:07:33 EST 2025
Tue Nov 18 21:32:20 EST 2025
Thu Apr 10 07:40:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Parameters tuning
Metaheuristics
Evolutionary
Optimization
Flower pollination algorithm
Language English
License The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-3493f53770e7724850e8ac238c3fa16a4ebbc3889a7a02840404104d37a23f793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3817-9520
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8435301
PMID 34539232
PQID 3190906877
PQPubID 2043697
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8435301
proquest_miscellaneous_2574738426
proquest_journals_3190906877
pubmed_primary_34539232
crossref_citationtrail_10_1007_s00500_021_06230_1
crossref_primary_10_1007_s00500_021_06230_1
springer_journals_10_1007_s00500_021_06230_1
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationTitleAlternate Soft comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References IM Hezam (6230_CR22) 2016; 5
PE Mergos (6230_CR27) 2020; 61
Y Zhou (6230_CR43) 2016; 188
XS Yang (6230_CR37) 2008
JH Holland (6230_CR23) 1975
O Abdel-Raouf (6230_CR6) 2014; 4
XS Yang (6230_CR41) 2014; 46
AE Eiben (6230_CR16) 2011; 1
HM Dubey (6230_CR15) 2015; 83
6230_CR26
A Abdelaziz (6230_CR2) 2016; 101
V Tamilselvan (6230_CR34) 2016; 65
XS Yang (6230_CR38) 2010; 2
O Abdel-Raouf (6230_CR7) 2014; 6
6230_CR29
XS Yang (6230_CR39) 2012; 7445
XS Yang (6230_CR40) 2013; 23
M Abdel-Basset (6230_CR3) 2016; 140
MA Al-Betar (6230_CR10) 2019; 75
A Fouad (6230_CR17) 2019; 31
6230_CR24
A Abdelaziz (6230_CR1) 2016; 80
MA Al-Betar (6230_CR11) 2021; 33
R Wang (6230_CR36) 2016; 116
O Abdel-Raouf (6230_CR8) 2014; 4
Y Zhou (6230_CR42) 2016; 29
M Abdel-Basset (6230_CR5) 2018; 22
J Heng (6230_CR21) 2016; 8
ZAA Alyasseri (6230_CR12) 2018
M Abdel-Basset (6230_CR4) 2018; 52
D Gonidakis (6230_CR20) 2016; 11
AH Gandomi (6230_CR18) 2013; 29
G Bekdas (6230_CR13) 2015; 37
BJ Glover (6230_CR19) 2007
A Draa (6230_CR14) 2016; 34
D Rodrigues (6230_CR32) 2015
J Kennedy (6230_CR25) 2011
I Pavlyukevich (6230_CR30) 2007; 226
6230_CR31
L Abualigah (6230_CR9) 2021; 157
U Singh (6230_CR33) 2016; 2017
6230_CR35
SM Nigdeli (6230_CR28) 2016
Y Zhou (6230_CR44) 2017; 31
References_xml – start-page: 91
  volume-title: Studies in computational intelligence
  year: 2018
  ident: 6230_CR12
– volume: 140
  start-page: 10
  year: 2016
  ident: 6230_CR3
  publication-title: Int J Comput Appl
– volume: 23
  start-page: 2051
  year: 2013
  ident: 6230_CR40
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1498-4
– volume: 6
  start-page: 38
  year: 2014
  ident: 6230_CR7
  publication-title: Int J Mod Educ Comput Sci
  doi: 10.5815/ijmecs.2014.03.05
– volume: 157
  start-page: 107250
  year: 2021
  ident: 6230_CR9
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107250
– volume: 83
  start-page: 188
  year: 2015
  ident: 6230_CR15
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.04.034
– volume: 31
  start-page: 2155
  year: 2017
  ident: 6230_CR44
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3176-4
– volume: 8
  start-page: 235
  year: 2016
  ident: 6230_CR21
  publication-title: Sustainability
  doi: 10.3390/su8030235
– volume: 101
  start-page: 506
  year: 2016
  ident: 6230_CR2
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.041
– volume: 226
  start-page: 1830
  year: 2007
  ident: 6230_CR30
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.06.008
– ident: 6230_CR24
– ident: 6230_CR26
– start-page: 760
  volume-title: Encyclopedia of machine learning
  year: 2011
  ident: 6230_CR25
  doi: 10.1007/978-0-387-30164-8_630
– volume: 29
  start-page: 17
  year: 2013
  ident: 6230_CR18
  publication-title: Eng Comput
  doi: 10.1007/s00366-011-0241-y
– volume: 29
  start-page: 21
  year: 2016
  ident: 6230_CR42
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2524-0
– volume: 52
  start-page: 2533
  year: 2018
  ident: 6230_CR4
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-018-9624-4
– volume: 80
  start-page: 264
  year: 2016
  ident: 6230_CR1
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.11.093
– start-page: 5
  volume-title: An introductory analysis with application to biology, control and artificial intelligence
  year: 1975
  ident: 6230_CR23
– start-page: 85
  volume-title: Recent Advances in Swarm intelligence and evolutionary computation
  year: 2015
  ident: 6230_CR32
  doi: 10.1007/978-3-319-13826-8_5
– ident: 6230_CR35
– volume: 7445
  start-page: 240
  year: 2012
  ident: 6230_CR39
  publication-title: Unconven Comput Nat Comput
– ident: 6230_CR29
  doi: 10.1007/978-981-10-3728-3_22
– volume: 33
  start-page: 5011
  year: 2021
  ident: 6230_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05296-6
– volume: 116
  start-page: 1
  year: 2016
  ident: 6230_CR36
  publication-title: Inf Proc Lett
  doi: 10.1016/j.ipl.2015.08.007
– volume: 5
  start-page: 29
  year: 2016
  ident: 6230_CR22
  publication-title: Inf Sci Lett
  doi: 10.18576/isl/050104
– volume: 75
  start-page: 5280
  year: 2019
  ident: 6230_CR10
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02776-y
– volume: 65
  start-page: 203
  year: 2016
  ident: 6230_CR34
  publication-title: Arch Electr Eng
  doi: 10.1515/aee-2016-0014
– start-page: 25
  volume-title: Metaheuristics and optimization in civil engineering
  year: 2016
  ident: 6230_CR28
  doi: 10.1007/978-3-319-26245-1_2
– volume: 31
  start-page: 3875
  year: 2019
  ident: 6230_CR17
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3313-0
– volume-title: Understanding flowers and flowering: An integrated approach
  year: 2007
  ident: 6230_CR19
  doi: 10.1093/acprof:oso/9780198565970.001.0001
– ident: 6230_CR31
  doi: 10.1109/ICITEED.2016.7863285
– volume: 34
  start-page: 349
  year: 2016
  ident: 6230_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.05.015
– volume: 46
  start-page: 1222
  year: 2014
  ident: 6230_CR41
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2013.832237
– volume: 11
  start-page: 213
  year: 2016
  ident: 6230_CR20
  publication-title: Int J Manag Sci Eng Manag
– volume: 1
  start-page: 19
  year: 2011
  ident: 6230_CR16
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.001
– volume: 22
  start-page: 4221
  year: 2018
  ident: 6230_CR5
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2744-y
– volume: 37
  start-page: 322
  year: 2015
  ident: 6230_CR13
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.08.037
– volume: 2
  start-page: 78
  year: 2010
  ident: 6230_CR38
  publication-title: Int J Bio-Inspir Com
  doi: 10.1504/IJBIC.2010.032124
– volume-title: Nature-inspired metaheuristic algorithms
  year: 2008
  ident: 6230_CR37
– volume: 2017
  start-page: 1
  year: 2016
  ident: 6230_CR33
  publication-title: Neural Comput Appl
– volume: 61
  start-page: 575
  year: 2020
  ident: 6230_CR27
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02380-x
– volume: 4
  start-page: 1
  year: 2014
  ident: 6230_CR6
  publication-title: Int J Appl Oper Res-an Open Access J
– volume: 4
  start-page: 1
  year: 2014
  ident: 6230_CR8
  publication-title: Int J Educ Manag Eng
– volume: 188
  start-page: 294
  year: 2016
  ident: 6230_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.110
SSID ssj0021753
Score 2.4110901
Snippet The flower pollination algorithm (FPA) is a highly efficient metaheuristic optimization algorithm that is inspired by the pollination process of flowering...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14429
SubjectTerms Algorithms
Artificial Intelligence
Computational Intelligence
Computing costs
Control
Engineering
Genetic algorithms
Heuristic methods
Mathematical Logic and Foundations
Mechatronics
Optimization
Optimization algorithms
Parameter identification
Pollinators
Robotics
Traveling salesman problem
Tuning
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CwsDC-xEoKEhsYEhit04mhBAVE2IAiS1yHIcilbSQlO_nXtcJKggWtkhJ2vi-fPw6B-AkN1mupRCMF7xgAiE_U3kRMRK6RTgiJb5oxSbk3V389JTcuwm3ym2rbGqiLdT5WNMc-QWGSpAE_VjKy8kbI9UoWl11EhqLsBRGWIRpUVaydsDlWCgREiCKxK7XHZqxR-eI-CRgtEEhQAQQsHC-Y_qBNn9umvy2cmo7pMHaf5uyDqsOivpXs9jZgAVTbsJaI_Pgu6zfgvPBiKTU_Inl77ae9NXoGX-xHr76xB3-SntqKr-e0iTLNjwObh6ub5mTWWBaSFEzLhJe9LiUgUGoLeJeYGKlsSvXvFBhXwmTZZrHcaKkQjQiMO0FDuJyLlXEC8zvHeiU49LsgW80mhpHQKRgglcmS_KiIIHKWOQJV5kHYWPjVDsOcpLCGKUte7L1S4p-Sa1f0tCD0_adyYyB48-nu43NU5eNVfplcA-O29uYR7Q4okoznlYpli4heYyAxYPdmafbv-OihzCSRx7IuRhoHyCO7vk75cvQcnWjGXpYQz04a6Ll67N-b8X-3604gJWIItceiexCp36fmkNY1h_1S_V-ZHPgE7JKCf4
  priority: 102
  providerName: ProQuest
Title Flower pollination algorithm parameters tuning
URI https://link.springer.com/article/10.1007/s00500-021-06230-1
https://www.ncbi.nlm.nih.gov/pubmed/34539232
https://www.proquest.com/docview/3190906877
https://www.proquest.com/docview/2574738426
https://pubmed.ncbi.nlm.nih.gov/PMC8435301
Volume 25
WOSCitedRecordID wos000695083500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9EEfvMxbdY4KvmmkW1KTPqpsCMIY3hi-lLRN3WDrZO38_Z5kbXXeQF9KS9JLTnJyvtPkfAfgOFJBFHLGCI1pTBhCfiKjuEl0oluEI5zjjSbZBO90RK_ndfOgsLTY7V4sSZqZugx201QlDtFbChy02Q5Bn2fJ1Wwz2ke_eyzdrJx7EoEAYkc0uHmozPfPmDdHXzDm162Sn9ZLjRlqr_-vARuwlsNO-2I2TjZhQSVVWC9SOti5hldh9QM_4RactYc6iZr9Ypi7TR_acvg8ngyy_sjWrOEjvZsmtbOp_r2yDQ_t1v3VNckTLJCQcZYRyjwau5RzRyHIZsJ1lJAhGvGQxrJxLpkKgpAK4UkuEYcwVHiG7ltEuWzSGDV7ByrJOFF7YKsQxY2-j85dgmcq8KI41qkpBYs8KgMLGoWc_TBnH9dJMIZ-yZtsxOOjeHwjHr9hwUl5z8uMe-PX2rWi-_xcD1MfJxjHc84F5xYclcWoQXpZRCZqPE19nLQYpwKhigW7s94uX0eZiwCSNi3gc-OgrKDZuedLkkHfsHSjGFycPS04LUbD-2f93Ir9v1U_gJWmHlAmOLIGlWwyVYewHL5mg3RSh0XeE3VYumx1urd4dcMJHrvuU91ozBvECQjD
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH6aBhJcNthgBDYWpHECb2nszMkBTQhWreqodhjSxMU4jkMrtWm3pCD-FL-R99wkU5nYbYfdIiVR4rzP732O7e8D2MtsmhkpBOM5z5lAys90loeMjG6RjkiJNzqzCTkYxBcXydkK_Gn2wtCyyiYnukSdTQ39Iz9AqARJcBhLeTS7ZOQaRbOrjYXGAhZ9-_sXDtnKD73PGN-3Ydg9Pv90wmpXAWaEFBXjIuF5xKUMLDJLEUeBjbXBymV4rjuHWtg0NTyOEy01Fl-BKBc4Zsm41CHPJYkvYcp_IEQYkGPCWfStHeDVqpdIQZC1YqmvN-m4rXoktBIwWhARIOMIWGe5EN5gtzcXaf4zU-sKYHf9vn26J7BWU23_46JvPIUVW2zAemNj4ddZbRP2u2OyivNnTp_cIdXX4x_Ygmo48UkbfUJrhkq_mtNPpGfw9U7e-jmsFtPCvgDfGgwtjvDIoQWPbJpkeU4GnLHIEq5TDzpNTJWpNdbJ6mOsWnVohwOFOFAOB6rjwbv2ntlCYeTWq7ebGKs625TqOsAevGlPY56gyR9d2Om8VJiaheQxEjIPthbIah_HRYQ0mYceyCXMtReQBvnymWI0dFrk-BkirBEevG_Qef1a_2_Fy9tbsQuPTs6_nKrT3qD_Ch6H1Gvc9s9tWK2u5nYHHpqf1ai8eu36nw_f7xq1fwEhvWOb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9ERfTB74_6WcE3jeuWzLSPog5FGeIXewtpm7jB1o2t8-_3krXVORXEt0KTtrnkcr9r7n4HcBSrMI44Y4RqqglDyE9krCvEFLpFOMI5drTFJni97jcawf2nLH4b7Z4fSY5yGgxLU5KWerEuFYlvhrbEIya8wEP77RH0f2YYejImqOvh8aVwuTIeSgQFiCPR-GZpM98_Y9w0TeDNybDJL2en1iTVlv4_mGVYzOCoez5aPyswpZJVWMpLPbiZ5q_CwifewjU4rbVNcTW3Zxm97dy6sv3a7bfSZsc1bOIdE2UzcNOh-e2yDs-1q6eLa5IVXiAR4ywllAVUVynnnkLwzfyqp3wZoXGPqJblM8lUGEbU9wPJJeIThhsBCp_FlMsK1ajxGzCddBO1Ba6KUPToE5maJnilwiDW2pSs9FkcUBk6UM5lLqKMldwUx2iLgk_ZikegeIQVjyg7cFz06Y04OX5tvZtPpcj0cyBw4_EC78zn3IHD4jZqljkukYnqDgcCNzPGqY8QxoHN0cwXr6OsisCSVhzgY2uiaGBYu8fvJK2mZe9GMVRxV3XgJF8ZH5_18yi2_9b8AObuL2vi7qZ-uwPzFbO2bP7kLkyn_aHag9noLW0N-vtWXd4BD5gQOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flower+pollination+algorithm+parameters+tuning&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Mergos%2C+Panagiotis+E.&rft.au=Yang%2C+Xin-She&rft.date=2021-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=22&rft.spage=14429&rft.epage=14447&rft_id=info:doi/10.1007%2Fs00500-021-06230-1&rft_id=info%3Apmid%2F34539232&rft.externalDocID=PMC8435301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon