Hybrid-based framework for COVID-19 prediction via federated machine learning models

The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of supercomputing Ročník 78; číslo 5; s. 7078 - 7105
Hlavní autori: Kallel, Ameni, Rekik, Molka, Khemakhem, Mahdi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2022
Springer Nature B.V
Predmet:
ISSN:0920-8542, 1573-0484
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog, and Internet of Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring and prognosis system. The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a service (federated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud environment for a long-term decision-making, and (ii) the distributed stream MLaaS, which is installed into a hybrid fog-cloud environment for a short-term decision-making. The stream MLaaS uses a shared federated prediction model stored into the cloud, whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and stream ML algorithms from the Python’s libraries. The evaluation considers both the quantitative (i.e., performance in terms of accuracy, precision, root mean squared error, and F 1 score) and qualitative (i.e., quality of service in terms of server latency, response time, and network latency) metrics to assess these algorithms. This evaluation shows that the stream ML algorithms have the potential to be integrated into the COVID-19 prognosis allowing the early predictions of the suspected COVID-19 cases.
AbstractList The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog, and Internet of Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring and prognosis system. The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a service (federated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud environment for a long-term decision-making, and (ii) the distributed stream MLaaS, which is installed into a hybrid fog-cloud environment for a short-term decision-making. The stream MLaaS uses a shared federated prediction model stored into the cloud, whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and stream ML algorithms from the Python’s libraries. The evaluation considers both the quantitative (i.e., performance in terms of accuracy, precision, root mean squared error, and F 1 score) and qualitative (i.e., quality of service in terms of server latency, response time, and network latency) metrics to assess these algorithms. This evaluation shows that the stream ML algorithms have the potential to be integrated into the COVID-19 prognosis allowing the early predictions of the suspected COVID-19 cases.
The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog, and Internet of Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring and prognosis system. The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a service (federated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud environment for a long-term decision-making, and (ii) the distributed stream MLaaS, which is installed into a hybrid fog-cloud environment for a short-term decision-making. The stream MLaaS uses a shared federated prediction model stored into the cloud, whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and stream ML algorithms from the Python's libraries. The evaluation considers both the quantitative (i.e., performance in terms of accuracy, precision, root mean squared error, and 1 score) and qualitative (i.e., quality of service in terms of server latency, response time, and network latency) metrics to assess these algorithms. This evaluation shows that the stream ML algorithms have the potential to be integrated into the COVID-19 prognosis allowing the early predictions of the suspected COVID-19 cases.
The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog, and Internet of Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring and prognosis system. The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a service (federated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud environment for a long-term decision-making, and (ii) the distributed stream MLaaS, which is installed into a hybrid fog-cloud environment for a short-term decision-making. The stream MLaaS uses a shared federated prediction model stored into the cloud, whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and stream ML algorithms from the Python's libraries. The evaluation considers both the quantitative (i.e., performance in terms of accuracy, precision, root mean squared error, and F1 score) and qualitative (i.e., quality of service in terms of server latency, response time, and network latency) metrics to assess these algorithms. This evaluation shows that the stream ML algorithms have the potential to be integrated into the COVID-19 prognosis allowing the early predictions of the suspected COVID-19 cases.The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog, and Internet of Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring and prognosis system. The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a service (federated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud environment for a long-term decision-making, and (ii) the distributed stream MLaaS, which is installed into a hybrid fog-cloud environment for a short-term decision-making. The stream MLaaS uses a shared federated prediction model stored into the cloud, whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and stream ML algorithms from the Python's libraries. The evaluation considers both the quantitative (i.e., performance in terms of accuracy, precision, root mean squared error, and F1 score) and qualitative (i.e., quality of service in terms of server latency, response time, and network latency) metrics to assess these algorithms. This evaluation shows that the stream ML algorithms have the potential to be integrated into the COVID-19 prognosis allowing the early predictions of the suspected COVID-19 cases.
The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog, and Internet of Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring and prognosis system. The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a service (federated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud environment for a long-term decision-making, and (ii) the distributed stream MLaaS, which is installed into a hybrid fog-cloud environment for a short-term decision-making. The stream MLaaS uses a shared federated prediction model stored into the cloud, whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and stream ML algorithms from the Python’s libraries. The evaluation considers both the quantitative (i.e., performance in terms of accuracy, precision, root mean squared error, and F1 score) and qualitative (i.e., quality of service in terms of server latency, response time, and network latency) metrics to assess these algorithms. This evaluation shows that the stream ML algorithms have the potential to be integrated into the COVID-19 prognosis allowing the early predictions of the suspected COVID-19 cases.
Author Khemakhem, Mahdi
Rekik, Molka
Kallel, Ameni
Author_xml – sequence: 1
  givenname: Ameni
  orcidid: 0000-0002-7354-1276
  surname: Kallel
  fullname: Kallel, Ameni
  email: kallel.ameni@gmail.com
  organization: Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Département Technologies de l’Informatique, Higher Institute of Technological Studies (ISET)
– sequence: 2
  givenname: Molka
  surname: Rekik
  fullname: Rekik, Molka
  organization: Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax
– sequence: 3
  givenname: Mahdi
  surname: Khemakhem
  fullname: Khemakhem, Mahdi
  organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34754141$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URNPCH2CBRmLDxuDneLxBQuHRSpW6idhajn2duszYwZ606r_HIaVAF11Zlr9zfO49J-go5QQIvabkPSVEfaiUMqYwYRQTQfse62doQaXi7TqII7QgmhE8SMGO0Umt14QQwRV_gY65UFJQQRdodXa3LtHjta3gu1DsBLe5_OhCLt3y8vv5Z0x1ty3go5tjTt1NtF0AD8XOjZ-su4oJuhFsSTFtuil7GOtL9DzYscKr-_MUrb5-WS3P8MXlt_PlpwvshBIz5jwQYa0PXAQvAudMW2m9ZH1vJVNKKyIcUx4GTh1366AV414w7bmnwPkp-niw3e7WE3gHaS52NNsSJ1vuTLbR_P-S4pXZ5BszSEWYEM3g3b1ByT93UGczxepgHG2CvKuGSd0Tyrnco28fodd5V1KbzrBeEDmQYVCNevNvoocof_bdAHYAXMm1FggPCCVmX6o5lGpaqeZ3qUY30fBI5OJs93W0qeL4tJQfpLX9kzZQ_sZ-QvULrBC1Pg
CitedBy_id crossref_primary_10_3390_electronics11111800
crossref_primary_10_1007_s11277_023_10535_9
crossref_primary_10_1371_journal_pone_0294289
crossref_primary_10_3389_fpubh_2022_912099
crossref_primary_10_1016_j_engappai_2024_109745
crossref_primary_10_1109_JIOT_2023_3329061
crossref_primary_10_1186_s12913_023_10047_z
crossref_primary_10_1016_j_bspc_2024_107104
crossref_primary_10_1007_s44155_025_00221_5
crossref_primary_10_2196_58936
crossref_primary_10_3390_electronics11172777
crossref_primary_10_1109_TAI_2021_3139058
crossref_primary_10_1016_j_imu_2024_101453
crossref_primary_10_1007_s11517_024_03058_3
crossref_primary_10_3389_frai_2022_1034732
crossref_primary_10_1109_ACCESS_2022_3175219
crossref_primary_10_3390_bioengineering10080965
crossref_primary_10_3390_healthcare10101874
Cites_doi 10.1016/j.future.2019.10.043
10.1016/j.compbiomed.2020.103792
10.1002/spe.3011
10.3390/ijerph17186933
10.3390/s19112451
10.1002/spe.2924
10.7861/futurehosp.6-2-94
10.1016/j.irbm.2020.05.003
10.1001/jamainternmed.2020.0994
10.1023/A:1010933404324
10.1016/j.measurement.2020.108288
10.1109/21.97458
10.18280/ts.370313
10.1007/978-3-642-34156-4_29
10.1109/MNET.011.2000458
10.1109/CVPRW50498.2020.00118
10.1016/S0140-6736(20)30183-5
10.1007/978-3-642-40160-2_5
10.3390/electronics9091439
10.1016/j.future.2020.08.046
10.1109/ATNAC.2014.7020884
10.1016/j.procs.2019.11.087
10.3928/19382359-20200219-01
10.3892/etm.2020.8797
10.1016/j.jss.2019.04.050
10.1016/j.bspc.2020.102149
10.1016/S0893-6080(98)00031-8
10.3390/s20185236
10.1109/ASCC.2015.7244654
10.1214/aos/1013203451
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1007/s11227-021-04166-9
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 7105
ExternalDocumentID PMC8570244
34754141
10_1007_s11227_021_04166_9
Genre Journal Article
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c474t-33f04aadf34fd4f3329a5ad5266a52779704c27de831c3cbf9723d429d3d1e33
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714898800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Tue Nov 04 01:50:51 EST 2025
Sun Nov 09 10:58:23 EST 2025
Thu Sep 25 00:55:45 EDT 2025
Thu Apr 03 06:58:36 EDT 2025
Tue Nov 18 21:34:56 EST 2025
Sat Nov 29 04:27:41 EST 2025
Fri Feb 21 02:47:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Decision-making
Quantitative and qualitative evaluation
COVID-19 pandemic
Batch/streaming data
Hybrid fog-cloud federation
Machine learning
Real-time prediction
IoT devices
Federated MLaaS
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-33f04aadf34fd4f3329a5ad5266a52779704c27de831c3cbf9723d429d3d1e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7354-1276
OpenAccessLink http://dx.doi.org/10.1007/s11227-021-04166-9
PMID 34754141
PQID 2640580887
PQPubID 2043774
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8570244
proquest_miscellaneous_2596013354
proquest_journals_2640580887
pubmed_primary_34754141
crossref_primary_10_1007_s11227_021_04166_9
crossref_citationtrail_10_1007_s11227_021_04166_9
springer_journals_10_1007_s11227_021_04166_9
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationTitleAlternate J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References OzturkTTaloMYildirimEABalogluUBYildirimOAcharyaURAutomated detection of covid-19 cases using deep neural networks with x-ray imagesComput Biol Med202012110379210.1016/j.compbiomed.2020.103792
Singh A, Kaur A, Dhillon A, Ahuja S, Vohra H (2021) Software system to predict the infection in covid-19 patients using deep learning and web of things. Softw Pract Exp https://doi.org/10.1002/spe.3011
Anguita D, Ghelardoni L, Ghio A, Oneto L, Ridella S (2012) The ’k’ in k-fold cross validation. In: ESANN
Montiel J, Halford M, Mastelini SM, Bolmier G, Sourty R, Vaysse R, Zouitine A, Gomes HM, Read J, Abdessalem T et al (2020) River: machine learning for streaming data in python. arXiv preprint arXiv:2012.04740
BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
Pathak Y, Shukla PK, Tiwari A, Stalin S, Singh S, Shukla PK (2020) Deep transfer learning based classification model for covid-19 disease. IRBM
Read J, Bifet A, Pfahringer B, Holmes G (2012) Batch-incremental versus instance-incremental learning in dynamic and evolving data. In: International symposium on intelligent data analysis. Springer, pp 313–323
Zwattendorfer B, Stranacher K, Tauber A (2013) Towards a federated identity as a service model. In: International conference on electronic government and the information systems perspective. Springer, pp 43–57
MunirMSiddiquiSAChatthaMADengelAAhmedSFusead: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning modelsSensors20191911245110.3390/s19112451
Mitchell TM et al (1997) Machine learning. McGraw-Hill, New York, Tech. Rep.
KumarASharmaKSinghHNaugriyaSGGillSSBuyyaRA drone-based networked system and methods for combating coronavirus disease (covid-19) pandemicFuture Gener Comput Syst202011511910.1016/j.future.2020.08.046
OtoomMOtoumNAlzubaidiMAEtoomYBanihaniRAn IoT-based framework for early identification and monitoring of covid-19 casesBiomed Signal Process Control20206210214910.1016/j.bspc.2020.102149
SafavianSRLandgrebeDA survey of decision tree classifier methodologyIEEE Trans Syst Man Cybern1991213660674113073110.1109/21.97458
Gia TN, Jiang M, Sarker VK, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2017) Low-cost fog-assisted health-care IoT system with energy-efficient sensor nodes. In: 2017 13th international wireless communications and mobile computing conference (IWCMC). IEEE, pp 1765–1770
Stojmenovic I (2014) Fog computing: A cloud to the ground support for smart things and machine-to-machine networks. In: 2014 Australasian telecommunication networks and applications conference (ATNAC). IEEE, pp 117–122
Egmont-PetersenMTalmonJLHasmanAAmbergenAWAssessing the importance of features for multi-layer perceptronsNeural Netw199811462363510.1016/S0893-6080(98)00031-8
DavenportTKalakotaRThe potential for artificial intelligence in healthcareFuture Healthc J2019629410.7861/futurehosp.6-2-94
Nematzadeh Z, Ibrahim R, Selamat A (2015) Comparative studies on breast cancer classifications with k-fold cross validations using machine learning techniques. In: 2015 10th Asian Control Conference (ASCC). IEEE, pp 1–6
HuangCWangYLiXRenLZhaoJHuYZhangLFanGXuJGuXClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet20203951022349750610.1016/S0140-6736(20)30183-5
Chowdary GJ, Punn NS, Sonbhadra SK, Agarwal S (2020) Face mask detection using transfer learning of inceptionv3. arXiv preprint arXiv:2009.08369
DebaucheOMahmoudiSMannebackPAssilaAFog IoT for health: a new architecture for patients and elderly monitoringProcedia Comput Sci201916028929710.1016/j.procs.2019.11.087
KallelARekikMKhemakhemMIoT-fog-cloud based architecture for smart systems: prototypes of autism and covid-19 monitoring systemsSoftw Pract Exp20205119111610.1002/spe.2924
TuliSMahmudRTuliSBuyyaRFogbus: a blockchain-based lightweight framework for edge and fog computingJ Syst Softw2019154223610.1016/j.jss.2019.04.050
TsiknakisNTrivizakisEVassalouEEPapadakisGZSpandidosDATsatsakisASánchez-GarcíaJLópez-GonzálezRPapanikolaouNKarantanasAHInterpretable artificial intelligence framework for covid-19 screening on chest X-raysExp Ther Med202020272773510.3892/etm.2020.8797
Rojas R et al (2009) Adaboost and the super bowl of classifiers a tutorial introduction to adaptive boosting, Freie University, Berlin, Tech. Rep
Jagirdar NM (2018) Online machine learning algorithms review and comparison in healthcare, Ph.D. dissertation, University of Tennessee, The address of the publisher, 12, an optional note
HagemanJRThe coronavirus disease 2019 (covid-19)Pediatr Ann2020493e99e100405959510.3928/19382359-20200219-01
El-RashidyNEl-SappaghSIslamSEl-BakryHMAbdelrazekSEnd-to-end deep learning framework for coronavirus (covid-19) detection and monitoringElectronics202099143910.3390/electronics9091439
Tartaglione E, Barbano CA, Berzovini C, Calandri M, Grangetto M (2020) Unveiling covid-19 from chest X-ray with deep learning: a hurdles race with small data. arXiv preprint arXiv:2004.05405
LoeyMManogaranGTahaMHNKhalifaNEMA hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the covid-19 pandemicMeasurement202016710828810.1016/j.measurement.2020.108288
MurphyKPNaive bayes classifiersUniv B C20061860
YasserITwakolAEl-KhalekASamrahASalamaACovid-x: novel health-fog framework based on neutrosophic classifier for confrontation covid-19Neutrosophic Sets Syst20203511
Tang Y (2013) Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239
Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y et al (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med
HossainMSMuhammadGGuizaniNExplainable AI and mass surveillance system-based healthcare framework to combat covid-i9 like pandemicsIEEE Netw202034412613210.1109/MNET.011.2000458
Hayes TL, Kanan C (2020) Lifelong machine learning with deep streaming linear discriminant analysis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 220–221
TuliSBasumataryNGillSSKahaniMAryaRCWanderGSBuyyaRHealthfog: an ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environmentsFutur Gener Comput Syst202010418720010.1016/j.future.2019.10.043
Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (covid-19) classification using CT images by machine learning methods. arXiv preprint arXiv:2003.09424
FriedmanJHGreedy function approximation: a gradient boosting machineAnn Stat20012911891232187332810.1214/aos/1013203451
QinBLiDIdentifying facemask-wearing condition using image super-resolution with classification network to prevent covid-19Res Sensors20202018523610.3390/s20185236
YildirimMCinarAA deep learning based hybrid approach for covid-19 disease detectionsTraitement du Signal202037346146810.18280/ts.370313
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: machine learning in pythonJ Mach Learn Res2011122825283028543481280.68189
4166_CR32
4166_CR33
4166_CR12
4166_CR34
4166_CR35
S Tuli (4166_CR7) 2020; 104
4166_CR15
4166_CR16
N El-Rashidy (4166_CR13) 2020; 9
T Davenport (4166_CR5) 2019; 6
T Ozturk (4166_CR14) 2020; 121
MS Hossain (4166_CR19) 2020; 34
C Huang (4166_CR31) 2020; 395
L Breiman (4166_CR37) 2001; 45
M Loey (4166_CR10) 2020; 167
B Qin (4166_CR11) 2020; 20
4166_CR21
M Munir (4166_CR8) 2019; 19
4166_CR24
S Tuli (4166_CR2) 2019; 154
4166_CR25
4166_CR26
M Egmont-Petersen (4166_CR40) 1998; 11
A Kallel (4166_CR22) 2020; 51
4166_CR27
M Yildirim (4166_CR41) 2020; 37
4166_CR28
4166_CR29
A Kumar (4166_CR20) 2020; 115
I Yasser (4166_CR30) 2020; 35
N Tsiknakis (4166_CR17) 2020; 20
KP Murphy (4166_CR38) 2006; 18
O Debauche (4166_CR4) 2019; 160
JR Hageman (4166_CR9) 2020; 49
M Otoom (4166_CR18) 2020; 62
SR Safavian (4166_CR36) 1991; 21
F Pedregosa (4166_CR23) 2011; 12
4166_CR1
4166_CR3
4166_CR6
JH Friedman (4166_CR39) 2001; 29
4166_CR42
References_xml – reference: YasserITwakolAEl-KhalekASamrahASalamaACovid-x: novel health-fog framework based on neutrosophic classifier for confrontation covid-19Neutrosophic Sets Syst20203511
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: machine learning in pythonJ Mach Learn Res2011122825283028543481280.68189
– reference: OzturkTTaloMYildirimEABalogluUBYildirimOAcharyaURAutomated detection of covid-19 cases using deep neural networks with x-ray imagesComput Biol Med202012110379210.1016/j.compbiomed.2020.103792
– reference: Montiel J, Halford M, Mastelini SM, Bolmier G, Sourty R, Vaysse R, Zouitine A, Gomes HM, Read J, Abdessalem T et al (2020) River: machine learning for streaming data in python. arXiv preprint arXiv:2012.04740
– reference: TuliSBasumataryNGillSSKahaniMAryaRCWanderGSBuyyaRHealthfog: an ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environmentsFutur Gener Comput Syst202010418720010.1016/j.future.2019.10.043
– reference: KumarASharmaKSinghHNaugriyaSGGillSSBuyyaRA drone-based networked system and methods for combating coronavirus disease (covid-19) pandemicFuture Gener Comput Syst202011511910.1016/j.future.2020.08.046
– reference: Chowdary GJ, Punn NS, Sonbhadra SK, Agarwal S (2020) Face mask detection using transfer learning of inceptionv3. arXiv preprint arXiv:2009.08369
– reference: Tartaglione E, Barbano CA, Berzovini C, Calandri M, Grangetto M (2020) Unveiling covid-19 from chest X-ray with deep learning: a hurdles race with small data. arXiv preprint arXiv:2004.05405
– reference: El-RashidyNEl-SappaghSIslamSEl-BakryHMAbdelrazekSEnd-to-end deep learning framework for coronavirus (covid-19) detection and monitoringElectronics202099143910.3390/electronics9091439
– reference: Nematzadeh Z, Ibrahim R, Selamat A (2015) Comparative studies on breast cancer classifications with k-fold cross validations using machine learning techniques. In: 2015 10th Asian Control Conference (ASCC). IEEE, pp 1–6
– reference: Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (covid-19) classification using CT images by machine learning methods. arXiv preprint arXiv:2003.09424
– reference: Read J, Bifet A, Pfahringer B, Holmes G (2012) Batch-incremental versus instance-incremental learning in dynamic and evolving data. In: International symposium on intelligent data analysis. Springer, pp 313–323
– reference: DebaucheOMahmoudiSMannebackPAssilaAFog IoT for health: a new architecture for patients and elderly monitoringProcedia Comput Sci201916028929710.1016/j.procs.2019.11.087
– reference: HuangCWangYLiXRenLZhaoJHuYZhangLFanGXuJGuXClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet20203951022349750610.1016/S0140-6736(20)30183-5
– reference: DavenportTKalakotaRThe potential for artificial intelligence in healthcareFuture Healthc J2019629410.7861/futurehosp.6-2-94
– reference: TsiknakisNTrivizakisEVassalouEEPapadakisGZSpandidosDATsatsakisASánchez-GarcíaJLópez-GonzálezRPapanikolaouNKarantanasAHInterpretable artificial intelligence framework for covid-19 screening on chest X-raysExp Ther Med202020272773510.3892/etm.2020.8797
– reference: Hayes TL, Kanan C (2020) Lifelong machine learning with deep streaming linear discriminant analysis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 220–221
– reference: Rojas R et al (2009) Adaboost and the super bowl of classifiers a tutorial introduction to adaptive boosting, Freie University, Berlin, Tech. Rep
– reference: Pathak Y, Shukla PK, Tiwari A, Stalin S, Singh S, Shukla PK (2020) Deep transfer learning based classification model for covid-19 disease. IRBM
– reference: Gia TN, Jiang M, Sarker VK, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2017) Low-cost fog-assisted health-care IoT system with energy-efficient sensor nodes. In: 2017 13th international wireless communications and mobile computing conference (IWCMC). IEEE, pp 1765–1770
– reference: Tang Y (2013) Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239
– reference: Jagirdar NM (2018) Online machine learning algorithms review and comparison in healthcare, Ph.D. dissertation, University of Tennessee, The address of the publisher, 12, an optional note
– reference: FriedmanJHGreedy function approximation: a gradient boosting machineAnn Stat20012911891232187332810.1214/aos/1013203451
– reference: HagemanJRThe coronavirus disease 2019 (covid-19)Pediatr Ann2020493e99e100405959510.3928/19382359-20200219-01
– reference: SafavianSRLandgrebeDA survey of decision tree classifier methodologyIEEE Trans Syst Man Cybern1991213660674113073110.1109/21.97458
– reference: YildirimMCinarAA deep learning based hybrid approach for covid-19 disease detectionsTraitement du Signal202037346146810.18280/ts.370313
– reference: MunirMSiddiquiSAChatthaMADengelAAhmedSFusead: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning modelsSensors20191911245110.3390/s19112451
– reference: Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y et al (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med
– reference: MurphyKPNaive bayes classifiersUniv B C20061860
– reference: TuliSMahmudRTuliSBuyyaRFogbus: a blockchain-based lightweight framework for edge and fog computingJ Syst Softw2019154223610.1016/j.jss.2019.04.050
– reference: QinBLiDIdentifying facemask-wearing condition using image super-resolution with classification network to prevent covid-19Res Sensors20202018523610.3390/s20185236
– reference: Stojmenovic I (2014) Fog computing: A cloud to the ground support for smart things and machine-to-machine networks. In: 2014 Australasian telecommunication networks and applications conference (ATNAC). IEEE, pp 117–122
– reference: LoeyMManogaranGTahaMHNKhalifaNEMA hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the covid-19 pandemicMeasurement202016710828810.1016/j.measurement.2020.108288
– reference: HossainMSMuhammadGGuizaniNExplainable AI and mass surveillance system-based healthcare framework to combat covid-i9 like pandemicsIEEE Netw202034412613210.1109/MNET.011.2000458
– reference: Zwattendorfer B, Stranacher K, Tauber A (2013) Towards a federated identity as a service model. In: International conference on electronic government and the information systems perspective. Springer, pp 43–57
– reference: Singh A, Kaur A, Dhillon A, Ahuja S, Vohra H (2021) Software system to predict the infection in covid-19 patients using deep learning and web of things. Softw Pract Exp https://doi.org/10.1002/spe.3011
– reference: OtoomMOtoumNAlzubaidiMAEtoomYBanihaniRAn IoT-based framework for early identification and monitoring of covid-19 casesBiomed Signal Process Control20206210214910.1016/j.bspc.2020.102149
– reference: Anguita D, Ghelardoni L, Ghio A, Oneto L, Ridella S (2012) The ’k’ in k-fold cross validation. In: ESANN
– reference: BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
– reference: Mitchell TM et al (1997) Machine learning. McGraw-Hill, New York, Tech. Rep.
– reference: Egmont-PetersenMTalmonJLHasmanAAmbergenAWAssessing the importance of features for multi-layer perceptronsNeural Netw199811462363510.1016/S0893-6080(98)00031-8
– reference: KallelARekikMKhemakhemMIoT-fog-cloud based architecture for smart systems: prototypes of autism and covid-19 monitoring systemsSoftw Pract Exp20205119111610.1002/spe.2924
– volume: 35
  start-page: 1
  issue: 1
  year: 2020
  ident: 4166_CR30
  publication-title: Neutrosophic Sets Syst
– volume: 104
  start-page: 187
  year: 2020
  ident: 4166_CR7
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.10.043
– volume: 121
  start-page: 103792
  year: 2020
  ident: 4166_CR14
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103792
– ident: 4166_CR25
  doi: 10.1002/spe.3011
– ident: 4166_CR29
  doi: 10.3390/ijerph17186933
– ident: 4166_CR26
– ident: 4166_CR24
– volume: 19
  start-page: 2451
  issue: 11
  year: 2019
  ident: 4166_CR8
  publication-title: Sensors
  doi: 10.3390/s19112451
– volume: 51
  start-page: 91
  issue: 1
  year: 2020
  ident: 4166_CR22
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.2924
– volume: 6
  start-page: 94
  issue: 2
  year: 2019
  ident: 4166_CR5
  publication-title: Future Healthc J
  doi: 10.7861/futurehosp.6-2-94
– ident: 4166_CR16
  doi: 10.1016/j.irbm.2020.05.003
– ident: 4166_CR32
  doi: 10.1001/jamainternmed.2020.0994
– ident: 4166_CR34
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 4166_CR37
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 167
  start-page: 108288
  year: 2020
  ident: 4166_CR10
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108288
– volume: 21
  start-page: 660
  issue: 3
  year: 1991
  ident: 4166_CR36
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.97458
– volume: 37
  start-page: 461
  issue: 3
  year: 2020
  ident: 4166_CR41
  publication-title: Traitement du Signal
  doi: 10.18280/ts.370313
– volume: 18
  start-page: 60
  year: 2006
  ident: 4166_CR38
  publication-title: Univ B C
– ident: 4166_CR3
– ident: 4166_CR15
– ident: 4166_CR21
  doi: 10.1007/978-3-642-34156-4_29
– volume: 34
  start-page: 126
  issue: 4
  year: 2020
  ident: 4166_CR19
  publication-title: IEEE Netw
  doi: 10.1109/MNET.011.2000458
– ident: 4166_CR27
– ident: 4166_CR28
  doi: 10.1109/CVPRW50498.2020.00118
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  ident: 4166_CR31
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– ident: 4166_CR33
  doi: 10.1007/978-3-642-40160-2_5
– volume: 9
  start-page: 1439
  issue: 9
  year: 2020
  ident: 4166_CR13
  publication-title: Electronics
  doi: 10.3390/electronics9091439
– volume: 115
  start-page: 1
  year: 2020
  ident: 4166_CR20
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.08.046
– ident: 4166_CR1
  doi: 10.1109/ATNAC.2014.7020884
– volume: 160
  start-page: 289
  year: 2019
  ident: 4166_CR4
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2019.11.087
– volume: 49
  start-page: e99
  issue: 3
  year: 2020
  ident: 4166_CR9
  publication-title: Pediatr Ann
  doi: 10.3928/19382359-20200219-01
– volume: 12
  start-page: 2825
  year: 2011
  ident: 4166_CR23
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 727
  issue: 2
  year: 2020
  ident: 4166_CR17
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2020.8797
– ident: 4166_CR42
– volume: 154
  start-page: 22
  year: 2019
  ident: 4166_CR2
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2019.04.050
– volume: 62
  start-page: 102149
  year: 2020
  ident: 4166_CR18
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102149
– volume: 11
  start-page: 623
  issue: 4
  year: 1998
  ident: 4166_CR40
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00031-8
– volume: 20
  start-page: 5236
  issue: 18
  year: 2020
  ident: 4166_CR11
  publication-title: Res Sensors
  doi: 10.3390/s20185236
– ident: 4166_CR12
– ident: 4166_CR6
  doi: 10.1109/ASCC.2015.7244654
– ident: 4166_CR35
– volume: 29
  start-page: 1189
  year: 2001
  ident: 4166_CR39
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
SSID ssj0004373
Score 2.4182377
Snippet The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7078
SubjectTerms Algorithms
Compilers
Computer Science
Coronaviruses
COVID-19
Data processing
Decision making
Electronic devices
Internet of Things
Interpreters
Machine learning
Network latency
Pandemics
Prediction models
Processor Architectures
Prognosis
Programming Languages
Quality of service architectures
Response time (computers)
Viral diseases
Title Hybrid-based framework for COVID-19 prediction via federated machine learning models
URI https://link.springer.com/article/10.1007/s11227-021-04166-9
https://www.ncbi.nlm.nih.gov/pubmed/34754141
https://www.proquest.com/docview/2640580887
https://www.proquest.com/docview/2596013354
https://pubmed.ncbi.nlm.nih.gov/PMC8570244
Volume 78
WOSCitedRecordID wos000714898800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6VlEMvhEJblpdciRustOtHvD4iHqIXWqkRym3lrO02El1QEpD498w4u4nCSypnzz48nvHMaB4fwEEWbBAhE2nhPQYoufCoUjZglOK0rNDA9fgwgk3oy8tiMDC_mqawSVvt3qYk4029aHbLOdcplRRk6EX0UrMCHxVNm6EY_ffVohtSzPLKBgOjQknetMq8_I5lc_TMx3xeKvkkXxrN0Hn3fRtYh7XG7WTHMzn5DB98vQHdFtKBNRq-Cf2LB2rhSsm4ORbayi2Gri07-Xn14zTNDbsdU3aHTpTdjywLNI8CXVbH_sXKTM8aKIo_LOLsTL5A__ysf3KRNsALaSW1nKYCT09a64KQwckgBDdWWafQmFvFtTY6kxXXzhcir0Q1DARd5tCyOeFyL8RX6NQ3td8C5rjLnfc9Y4dGZsPMKhrQxqm91XihbAJ5y_6yaoaSEzbGdbkYp0xcK5FrZeRaaRI4nD9zOxvJ8Sb1bnuqZaOekxK9wEwVdMEm8H2-jIpF2RJb-5s7pFEY3GEEr2QC32ZCMP-ckJrg0_ME9JJ4zAloaPfySj36G4d3E6AAulQJHLVCsvit13ex_X_kO_CJU5tGrDDahc50fOf3YLW6n44m431Y0YNiPyrNI-OXDmw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tMGm8DDY2CIPhSXvbIiX-qOPHCYaKBh0SFeItcmMbKo2A2oK0_547N2lV2JDYsy8fPt_57nQfP4AvWbBBhEykhfcYoOTCo0rZgFGK07JCA9fhgwg2oXu94vzcnDRNYeO22r1NScabet7slnOuUyopyNCL6KTmJSxLgtmhGP30bN4NKaZ5ZYOBUaEkb1pl_v6ORXP0yMd8XCr5IF8azdDB6v9tYA3eNG4n-z6Vk7fwwtfvYLWFdGCNhq9Dv_uHWrhSMm6OhbZyi6Fry_Z-nR3up7lhNyPK7tCJsruhZYHmUaDL6thVrMz0rIGiuGARZ2f8HvoHP_p73bQBXkgrqeUkFXh60loXhAxOBiG4sco6hcbcKq610ZmsuHa-EHklqkEg6DKHls0Jl3shPsBSfV37TWCOu9x53zF2YGQ2yKyiAW2c2luNF8omkLfsL6tmKDlhY_wu5-OUiWslcq2MXCtNAl9nz9xMR3I8Sb3dnmrZqOe4RC8wUwVdsAl8ni2jYlG2xNb--hZpFAZ3GMErmcDGVAhmnxNSE3x6noBeEI8ZAQ3tXlyph5dxeDcBCqBLlcC3Vkjmv_XvXWw9j3wXXnf7x0fl0WHv50dY4dSyEauNtmFpMrr1O_CqupsMx6NPUXXuATiAEGg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BNiFe2BgwwgYYaW8jWuKPOn6cNqpNoDJBNe0tcmMbKrGsartJ_PfcOUlLGSAhnu18-e5yd7r73Q9gPws2iJCJtPAeE5RceDQpGzBLcVpW6OB6fBTJJvRgUFxemvOfUPyx270rSTaYBprSVM8PJy4cLoFvOec6pfaCDCOKXmruw7rETIaauj59vlgiI0VTYzaYJBVK8hY28_t7rLqmO_Hm3bbJX2qn0SX1N___Y7bgURuOsqNGfx7DPV9vw2ZH9cBay38Cw9PvBO1Kyek5FrqOLoYhLzv-eHF2kuaGTaZU9SFJs9uxZYHmVGAo69hV7Nj0rKWo-MIi_87sKQz774bHp2lLyJBWUst5KlCq0loXhAxOBiG4sco6hU7eKq610ZmsuHa-EHklqlEgSjOHHs8Jl3shnsFafV3758Acd7nzvmfsyMhslFlFg9s4wV6NF8omkHeiKKt2WDlxZnwrl2OW6dRKPLUynlppEjhYXDNpRnX8dfdeJ-GyNdtZidFhpgr68SbwZrGMBkdVFFv76xvcozDpw8xeyQR2GoVYPE5ITbTqeQJ6RVUWG2iY9-pKPf4ah3oT0QCGWgm87RRm-Vp__ooX_7b9NTw4P-mXH84G73fhISckR2xC2oO1-fTGv4SN6nY-nk1fRSv6Abe1GUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid-based+framework+for+COVID-19+prediction+via+federated+machine+learning+models&rft.jtitle=The+Journal+of+supercomputing&rft.au=Kallel%2C+Ameni&rft.au=Rekik%2C+Molka&rft.au=Khemakhem%2C+Mahdi&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=5&rft.spage=7078&rft.epage=7105&rft_id=info:doi/10.1007%2Fs11227-021-04166-9&rft.externalDocID=10_1007_s11227_021_04166_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon