Cluster-based stability evaluation in time series data sets
In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clu...
Gespeichert in:
| Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Jg. 53; H. 13; S. 16606 - 16629 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0924-669X, 1573-7497, 1573-7497 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call
Cl
uster
O
ver-Time
S
tability
E
valuation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS (
F
uzzy
C
lustering
S
tability
E
valuation of
T
ime
S
eries). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set. |
|---|---|
| AbstractList | In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cluster Over-Time Stability Evaluation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS (Fuzzy Clustering Stability Evaluation of Time Series). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set. In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cluster Over-Time Stability Evaluation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS (Fuzzy Clustering Stability Evaluation of Time Series). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set.In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cluster Over-Time Stability Evaluation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS (Fuzzy Clustering Stability Evaluation of Time Series). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set. In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cl uster O ver-Time S tability E valuation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS ( F uzzy C lustering S tability E valuation of T ime S eries). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set. In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call uster ver-Time tability valuation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS ( uzzy lustering tability valuation of ime eries). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set. |
| Author | Conrad, Stefan Tatusch, Martha Klassen, Gerhard |
| Author_xml | – sequence: 1 givenname: Gerhard orcidid: 0000-0002-1458-6546 surname: Klassen fullname: Klassen, Gerhard email: gerhard.klassen@hhu.de organization: Heinrich-Heine-University Düsseldorf – sequence: 2 givenname: Martha orcidid: 0000-0001-6302-6070 surname: Tatusch fullname: Tatusch, Martha organization: Heinrich-Heine-University Düsseldorf – sequence: 3 givenname: Stefan orcidid: 0000-0003-2788-3854 surname: Conrad fullname: Conrad, Stefan organization: Heinrich-Heine-University Düsseldorf |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36531973$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9LHTEUxUOx1KftF3BRBrpxE3vzf4JQkEdbC0I3FdyFzMwdG5mX0SQj-O1NfdZaF64SuL9zcm7OHtmJc0RCDhgcMQDzOTOQraXAOQXJBaPmDVkxZQQ10podsgLLJdXaXuySvZyvAEAIYO_IrtBKMGvEihyvpyUXTLTzGYcmF9-FKZS7Bm_9tPgS5tiE2JSwwSZjCpibwRdf7yW_J29HP2X88Hjuk_NvX3-tT-nZz-8_1idntJdGFsrHvgczMM9920En1cA7JUfU2ljrpZIaEa0fW9AarBBCeiW71jLU2HvRiX3yZet7vXQbHHqMJfnJXaew8enOzT64_ycx_HaX862zRmpleTU4fDRI882CubhNyD1Ok484L9lxo1QLEnhb0U8v0Kt5SbGu5-qUtVZYqSr18Xmipyh__7UCfAv0ac454fiEMHB_ynPb8lwtzz2U50wVtS9EfSgPFdStwvS6VGylub4TLzH9i_2K6h4BV63u |
| CitedBy_id | crossref_primary_10_1016_j_displa_2024_102775 crossref_primary_10_1007_s11356_023_31110_6 crossref_primary_10_1007_s10489_023_04874_0 |
| Cites_doi | 10.1093/bioinformatics/bti1022 10.1007/s10618-019-00619-1 10.5555/1378245.1378259 10.1088/1742-6596/954/1/012010 10.1080/01969727308546046 10.1145/1631162.1631165 10.1007/978-1-4757-0450-1 10.1016/0377-0427(87)90125-7 10.1145/2949741.2949758 10.1007/s10618-012-0302-x 10.3390/s19112451 10.1007/s10618-020-00685-w 10.1007/978-3-030-59065-9_26 10.1007/11535331_21 10.1609/aaai.v32i1.11632 10.1109/TPAMI.2006.226 10.1016/j.ins.2004.02.006 10.1137/1.9781611972764.9 10.1007/s10115-004-0172-7 10.1007/s10618-021-00747-7 10.1007/978-3-030-50146-4_50 10.1109/TFUZZ.2011.2106216 10.14778/1687627.1687698 10.1007/978-3-319-99807-7_2 10.1145/2983323.2983855 10.1007/978-3-030-65390-3_28 10.1007/s10618-018-0573-y 10.1007/978-3-642-57489-4_13 10.1016/j.engappai.2014.12.015 10.1109/MDM.2018.00029 10.1109/SSCI47803.2020.9308516 10.1111/j.1467-9892.1990.tb00048.x 10.1109/TKDE.2003.1198387 10.1016/j.patcog.2005.01.025 10.1109/TPAMI.1979.4766909 10.1016/j.neunet.2013.01.012 10.1007/978-3-642-14049-5_4 10.1137/1.9781611972795.34 10.1016/j.ins.2016.05.040 10.1109/ICDE.2002.994785 10.1007/3-540-47887-6_47 10.1007/978-981-15-1699-3_8 10.1145/775047.775129 10.1016/j.patrec.2006.01.015 10.1561/2200000008 10.1145/1150402.1150467 10.1109/ICDM.2002.1184037 10.2307/2284239 10.1007/s10618-021-00740-0 10.1109/FUZZY.2007.4295444 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM |
| DOI | 10.1007/s10489-022-04231-7 |
| DatabaseName | Open Access资源_Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Business Collection (Alumni Edition) CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 16629 |
| ExternalDocumentID | PMC9746592 36531973 10_1007_s10489_022_04231_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Heinrich-Heine-Universität Düsseldorf (3102) – fundername: ; |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB NPM 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-2fcc07d1a2a8b0b45d2b54fe66799a4546eee9af8066093334a54b891e6eca3b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000898660400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X 1573-7497 |
| IngestDate | Tue Nov 04 02:07:13 EST 2025 Sun Nov 09 11:19:31 EST 2025 Wed Nov 05 14:52:21 EST 2025 Mon Jul 21 06:07:50 EDT 2025 Sat Nov 29 05:33:34 EST 2025 Tue Nov 18 21:51:59 EST 2025 Fri Feb 21 02:42:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Evolutionary clustering Over-time stability evaluation Time series clustering Anomalous subsequences |
| Language | English |
| License | The Author(s) 2022. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-2fcc07d1a2a8b0b45d2b54fe66799a4546eee9af8066093334a54b891e6eca3b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6302-6070 0000-0003-2788-3854 0000-0002-1458-6546 |
| OpenAccessLink | https://link.springer.com/10.1007/s10489-022-04231-7 |
| PMID | 36531973 |
| PQID | 2831893945 |
| PQPubID | 326365 |
| PageCount | 24 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9746592 proquest_miscellaneous_2755804028 proquest_journals_2831893945 pubmed_primary_36531973 crossref_primary_10_1007_s10489_022_04231_7 crossref_citationtrail_10_1007_s10489_022_04231_7 springer_journals_10_1007_s10489_022_04231_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Netherlands – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationTitleAlternate | Appl Intell (Dordr) |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Xiong Y, Yeung D-Y (2002) Mixtures Of arma models for model-based time series clustering. In: Proceedings - IEEE international conference on data mining, ICDM, pp 717–720. https://doi.org/10.1109/ICDM.2002.1184037 BezdekJCPattern recognition with fuzzy objective function algorithms1981BerlinSpringer10.1007/978-1-4757-0450-10503.68069https://doi.org/10.1007/978-1-4757-0450-1 Sun P, Chawla S, Arunasalam B (2006) Mining for outliers in sequential databases. In: Proceedings of the SIAM international conference on data mining, pp 94–106. https://doi.org/10.1137/1.9781611972764.9 KimM-SHanJA particle-and-density based evolutionary clustering method for dynamic networksProc VLDB Endowment20092162263310.14778/1687627.1687698 RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc19716633684685010.2307/2284239 KeoghELinJClustering of time-series subsequences is meaningless: implications for previous and future researchKnowl Inf Syst20058215417710.1007/s10115-004-0172-7 DunnJCA fuzzy relative of the isodata process and its use in detecting compact well-separated clustersJ Cybern197333325737585710.1080/019697273085460460291.68033 Kieu T, Yang B, Jensen CS (2018) Outlier detection for multidimensional time series using deep neural networks. In: 2018 19th IEEE international conference on mobile data managements, MDM, pp 125–134. https://doi.org/10.1109/MDM.2018.00029 RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math198720536510.1016/0377-0427(87)90125-70636.62059 MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297 Ramoni M, Sebastiani P, Cohen P (2000) Multivariate clustering by dynamics. In: AAAI/IAAI, pp 633–638 Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’06, pp 554–560. https://doi.org/10.1145/1150402.1150467 Tatusch M, Klassen G, Bravidor M, Conrad S (2019) Show me your friends and i’ll tell you who you are. Finding anomalous time series by conspicuous cluster transitions. In: Data Mining. AusDM 2019. Communications in Computer and Information Science, vol 1127, pp 91–103. https://doi.org/10.1007/978-981-15-1699-3_8 Chen JR (2007) Useful clustering outcomes from meaningful time series clustering. In: Proceedings of the sixth Australasian conference on data mining and analytics, vol 70, pp 101–109. https://doi.org/10.5555/1378245.1378259 BouguessaMWangSSunHAn objective approach to cluster validationPattern Recogn Lett2006271419143010.1016/j.patrec.2006.01.015 GuhaSMeyersonAMishraNMotwaniRO’CallaghanLClustering data streams: theory and practiceIEEE Trans Knowl Data Eng200315351552810.1109/TKDE.2003.1198387 Tatusch M, Klassen G, Conrad S (2020) Behave or be detected! Identifying outlier sequences by their group cohesion. In: 22nd international conference on big data analytics and knowledge discovery, DaWaK 2020, pp 333–347. https://doi.org/10.1007/978-3-030-59065-9_26 Zhou Y, Zou H, Arghandeh R, Gu W, Spanos CJ (2018) Non-parametric outliers detection in multiple time series a case study: power grid data analysis. In: Proceedings of the AAAI conference on artificial intelligence, vol 32, pp 4605–4612 Le CapitaineHFrelicotCA cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operatorsIEEE Trans Fuzzy Syst20111958058810.1109/TFUZZ.2011.2106216 Hüllermeier E, Rifqi M (2009) A fuzzy variant of the rand index for comparing clustering structures. In: Proceedings of the joint 2009 international fuzzy systems association world congress and 2009 European society of fuzzy logic and technology conference, pp 1294–1298 Paparrizos J, Gravano L (2015) k-shape: efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, SIGMOD ’15, pp 1855–1870. https://doi.org/10.1145/2949741.2949758 Warren LiaoTClustering of time series data — a surveyPattern Recogn200538111857187410.1016/j.patcog.2005.01.0251077.68803 Ahmar AS, Guritno S, Abdurakhman RA, Awi A, Minggi I, Tiro MA, Aidid MK, Annas S, Sutiksno DU, Ahmar DS, Ahmar KH, Ahmar A, Zaki A, Abdullah D, Rahim R, Nurdiyanto H, Hidayat R, Napitupulu D, Simarmata J, Kurniasih N, Abdillah LA, Pranolo A, Haviluddin AW, Arifin ANM (2018) Modeling data containing outliers using ARIMA additive outlier (ARIMA-AO). J Phys: Conf Ser,:954. https://doi.org/10.1088/1742-6596/954/1/012010 Runkler TA (2010) Comparing partitions by subset similarities. In: Proceedings of the 13th international conference on information processing and management of uncertainty in knowledge-based systems, IPMU, pp 29–38. https://doi.org/10.1007/978-3-642-14049-5_4 Alaee S, Mercer R, Kamgar K, Keogh E (2021) Time series motifs discovery under dtw allows more robust discovery of conserved structure. Data Min Knowl Disc:1–48. https://doi.org/10.1007/s10618-021-00740-0 Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining, pp 226–231 MunirMSiddiquiSAChatthaMADengelAAhmedSFuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning modelsSensors201919112451246510.3390/s19112451 Tatusch M, Klassen G, Conrad S (2020) Loners stand out. Identification of anomalous subsequences based on group performance. In: Advanced data mining and applications, ADMA 2020, pp 360–369. https://doi.org/10.1007/978-3-030-65390-3_28 XuKSKligerMHero IiiAOAdaptive evolutionary clusteringData Min Knowl Disc2014282304336314757110.1007/s10618-012-0302-x1281.68200 KunchevaLIVetrovDPEvaluation of stability of k-means cluster ensembles with respect to random initializationIEEE Trans Pattern Anal Mach Intell200628111798180810.1109/TPAMI.2006.226 KimY-IKimD-WLeeDLeeKA cluster validation index for gk cluster analysis based on relative degree of sharingInf Sci2004168225242211729110.1016/j.ins.2004.02.0061075.62052 LinardiMZhuYPalpanasTKeoghEMatrix profile goes mad: variable-length motif and discord discovery in data seriesData Min Knowl Disc20203410221071411428410.1007/s10618-020-00685-w Roth V, Lange T, Braun M, Buhmann J (2002) A resampling approach to cluster validation. COMPSTAT, pp 123–128. https://doi.org/10.1007/978-3-642-57489-4_13 Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 5 August 2021 LampertTLafabregueBSerretteNForestierGCrémilleuxBVrainCGancarskiPConstrained distance based clustering for time-series: a comparative and experimental studyData Min Knowl Disc201832616631707385316010.1007/s10618-018-0573-y Beringer J, Hüllermeier E (2007) Adaptive optimization of the number of clusters in fuzzy clustering. In: Proceedings of the IEEE international conference on fuzzy systems, pp 1–6. https://doi.org/10.1109/FUZZY.2007.4295444 ErnstJNauGJBar-JosephZClustering short time series gene expression dataBioinformatics200521suppl_1i159i16810.1093/bioinformatics/bti1022 Klassen G, Tatusch M, Conrad S (2020) Clustering of time series regarding their over-time stability. In: Proceedings of the 2020 IEEE symposium series on computational intelligence (SSCI). https://doi.org/10.1109/SSCI47803.2020.9308516 Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. In: Advances in spatial and temporal databases, pp 364–381. https://doi.org/10.1007/11535331_21 Dau HA, Begum N, Keogh E (2016) Semi-supervision dramatically improves time series clustering under dynamic time warping. In: Proceedings of the 25th ACM international on conference on information and knowledge management, CIKM ’16, pp 999–1008. https://doi.org/10.1145/2983323.2983855 Izakian H, Pedrycz W, Jamal I (2015) Fuzzy clustering of time series data using dynamic time warping distance. Eng Appl Artif Intell:39. https://doi.org/10.1016/j.engappai.2014.12.015 von LuxburgUClustering stability: an overviewFound Trend Mach Learn20102323527410.1561/22000000081191.68615 Plasse J, Hoeltgebaum H, Adams NM (2021) Streaming changepoint detection for transition matrices. Data Min Knowl Disc:1–30. https://doi.org/10.1007/s10618-021-00747-7 Kawahara Y, Sugiyama M (2009) Change-point detection in time-series data by direct density-ratio estimation. In: Proceedings of the 2009 SIAM international conference on data mining, pp 389–400. SIAM. https://doi.org/10.1137/1.9781611972795.34 Ben-David S, Von Luxburg U (2008) Relating clustering stability to properties of cluster boundaries. In: 21St annual conference on learning theory (COLT 2008), pp 379–390 Jin X, Lu Y, Shi C (2002) Distribution discovery: Local analysis of temporal rules. In: Chen M-S, Yu PS, Liu B (eds) Advances in knowledge discovery and data mining, pp 469–480. https://doi.org/10.1007/3-540-47887-6_47 Tatusch M, Klassen G, Bravidor M, Conrad S (2020) How is your team spirit? Cluster over-time stability evaluation. In: 16th international conference on machine learning and data mining, machine learning and data mining in pattern recognition, MLDM, pp 155–170 ChiYSongXZhouDHinoKTsengBLOn evolutionary spectral clusteringACM Transactions on Knowledge Discovery from Data (TKDD)20093413010.1145/1631162.1631165 LiuSYamadaMCollierNSugiyamaMChange-point detection in time-series data by relative density-ratio estimationNeural Netw201343728310.1016/j.neunet.2013.01.0121367.62259 PiccoloDA distance measure for classifying arima modelsJ Time Ser Anal20081115316410.1111/j.1467-9892.1990.tb00048.x0691.62083 HuangXYeYXiongLLauRYJiangNWangSTime series k-means: a new k-means type smooth subspace clustering for time series dataInf Sci2016367–36811310.1016/j.ins.2016.05.0401428.62276 Banerjee A, 4231_CR48 Y Chi (4231_CR10) 2009; 3 M Linardi (4231_CR36) 2020; 34 4231_CR49 4231_CR46 4231_CR44 U von Luxburg (4231_CR55) 2010; 2 4231_CR43 JC Dunn (4231_CR14) 1973; 3 D Piccolo (4231_CR42) 2008; 11 X Huang (4231_CR19) 2016; 367–368 M-S Kim (4231_CR27) 2009; 2 H Le Capitaine (4231_CR35) 2011; 19 4231_CR40 4231_CR41 S Liu (4231_CR37) 2013; 43 4231_CR38 M Munir (4231_CR39) 2019; 19 4231_CR1 4231_CR34 4231_CR31 T Warren Liao (4231_CR56) 2005; 38 M Bouguessa (4231_CR7) 2006; 27 S Guha (4231_CR18) 2003; 15 4231_CR30 Y-I Kim (4231_CR28) 2004; 168 4231_CR26 4231_CR24 J Ernst (4231_CR15) 2005; 21 4231_CR22 HI Fawaz (4231_CR17) 2019; 33 4231_CR23 4231_CR20 4231_CR21 4231_CR29 LI Kuncheva (4231_CR32) 2006; 28 4231_CR4 4231_CR5 4231_CR2 KS Xu (4231_CR58) 2014; 28 4231_CR3 4231_CR8 4231_CR9 4231_CR59 JC Bezdek (4231_CR6) 1981 4231_CR16 4231_CR13 4231_CR57 4231_CR11 4231_CR53 4231_CR54 T Lampert (4231_CR33) 2018; 32 E Keogh (4231_CR25) 2005; 8 PJ Rousseeuw (4231_CR47) 1987; 20 WM Rand (4231_CR45) 1971; 66 DL Davies (4231_CR12) 1979; PAMI-1 4231_CR51 4231_CR52 4231_CR50 |
| References_xml | – reference: MunirMSiddiquiSAChatthaMADengelAAhmedSFuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning modelsSensors201919112451246510.3390/s19112451 – reference: PiccoloDA distance measure for classifying arima modelsJ Time Ser Anal20081115316410.1111/j.1467-9892.1990.tb00048.x0691.62083 – reference: Izakian H, Pedrycz W, Jamal I (2015) Fuzzy clustering of time series data using dynamic time warping distance. Eng Appl Artif Intell:39. https://doi.org/10.1016/j.engappai.2014.12.015 – reference: Hüllermeier E, Rifqi M (2009) A fuzzy variant of the rand index for comparing clustering structures. In: Proceedings of the joint 2009 international fuzzy systems association world congress and 2009 European society of fuzzy logic and technology conference, pp 1294–1298 – reference: Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’06, pp 554–560. https://doi.org/10.1145/1150402.1150467 – reference: Kieu T, Yang B, Jensen CS (2018) Outlier detection for multidimensional time series using deep neural networks. In: 2018 19th IEEE international conference on mobile data managements, MDM, pp 125–134. https://doi.org/10.1109/MDM.2018.00029 – reference: XuKSKligerMHero IiiAOAdaptive evolutionary clusteringData Min Knowl Disc2014282304336314757110.1007/s10618-012-0302-x1281.68200 – reference: Ahmar AS, Guritno S, Abdurakhman RA, Awi A, Minggi I, Tiro MA, Aidid MK, Annas S, Sutiksno DU, Ahmar DS, Ahmar KH, Ahmar A, Zaki A, Abdullah D, Rahim R, Nurdiyanto H, Hidayat R, Napitupulu D, Simarmata J, Kurniasih N, Abdillah LA, Pranolo A, Haviluddin AW, Arifin ANM (2018) Modeling data containing outliers using ARIMA additive outlier (ARIMA-AO). J Phys: Conf Ser,:954. https://doi.org/10.1088/1742-6596/954/1/012010 – reference: Tatusch M, Klassen G, Conrad S (2020) Loners stand out. Identification of anomalous subsequences based on group performance. In: Advanced data mining and applications, ADMA 2020, pp 360–369. https://doi.org/10.1007/978-3-030-65390-3_28 – reference: O’Callaghan L, Mishra N, Meyerson A, Guha S, Motwani R (2001) Streaming-data algorithms for high-quality clustering. In: Proceedings of IEEE international conference on data engineering, pp 685–694. https://doi.org/10.1109/ICDE.2002.994785 – reference: Paparrizos J, Gravano L (2015) k-shape: efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, SIGMOD ’15, pp 1855–1870. https://doi.org/10.1145/2949741.2949758 – reference: BezdekJCPattern recognition with fuzzy objective function algorithms1981BerlinSpringer10.1007/978-1-4757-0450-10503.68069https://doi.org/10.1007/978-1-4757-0450-1 – reference: KeoghELinJClustering of time-series subsequences is meaningless: implications for previous and future researchKnowl Inf Syst20058215417710.1007/s10115-004-0172-7 – reference: Le CapitaineHFrelicotCA cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operatorsIEEE Trans Fuzzy Syst20111958058810.1109/TFUZZ.2011.2106216 – reference: Vlachos M, Lin J, Keogh E, Gunopulos D (2003) A wavelet-based anytime algorithm for k-means clustering of time series. In: Proceedings of the workshop on clustering high dimensionality data and its applications – reference: Banerjee A, Ghosh J (2001) Clickstream clustering using weighted longest common subsequences. In: Proceedings of the web mining workshop at the 1st SIAM conference on data mining, pp 33–40 – reference: Runkler TA (2010) Comparing partitions by subset similarities. In: Proceedings of the 13th international conference on information processing and management of uncertainty in knowledge-based systems, IPMU, pp 29–38. https://doi.org/10.1007/978-3-642-14049-5_4 – reference: Tatusch M, Klassen G, Conrad S (2020) Behave or be detected! Identifying outlier sequences by their group cohesion. In: 22nd international conference on big data analytics and knowledge discovery, DaWaK 2020, pp 333–347. https://doi.org/10.1007/978-3-030-59065-9_26 – reference: Kumar M, Patel NR, Woo J (2002) Clustering seasonality patterns in the presence of errors. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’02, pp 557–563. https://doi.org/10.1145/775047.775129 – reference: Landauer M, Wurzenberger M, Skopik F, Settanni G, Filzmoser P (2018) Time series analysis: unsupervised anomaly detection beyond outlier detection. In: ISPEC, pp 19–36. https://doi.org/10.1007/978-3-319-99807-7_2 – reference: DaviesDLBouldinDWA cluster separation measureIEEE transactions on pattern analysis and machine intelligence1979PAMI-1222422710.1109/TPAMI.1979.4766909 – reference: Tatusch M, Klassen G, Bravidor M, Conrad S (2019) Show me your friends and i’ll tell you who you are. Finding anomalous time series by conspicuous cluster transitions. In: Data Mining. AusDM 2019. Communications in Computer and Information Science, vol 1127, pp 91–103. https://doi.org/10.1007/978-981-15-1699-3_8 – reference: RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math198720536510.1016/0377-0427(87)90125-70636.62059 – reference: ErnstJNauGJBar-JosephZClustering short time series gene expression dataBioinformatics200521suppl_1i159i16810.1093/bioinformatics/bti1022 – reference: Sun P, Chawla S, Arunasalam B (2006) Mining for outliers in sequential databases. In: Proceedings of the SIAM international conference on data mining, pp 94–106. https://doi.org/10.1137/1.9781611972764.9 – reference: GuhaSMeyersonAMishraNMotwaniRO’CallaghanLClustering data streams: theory and practiceIEEE Trans Knowl Data Eng200315351552810.1109/TKDE.2003.1198387 – reference: Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 5 August 2021 – reference: Kawahara Y, Sugiyama M (2009) Change-point detection in time-series data by direct density-ratio estimation. In: Proceedings of the 2009 SIAM international conference on data mining, pp 389–400. SIAM. https://doi.org/10.1137/1.9781611972795.34 – reference: Dau HA, Begum N, Keogh E (2016) Semi-supervision dramatically improves time series clustering under dynamic time warping. In: Proceedings of the 25th ACM international on conference on information and knowledge management, CIKM ’16, pp 999–1008. https://doi.org/10.1145/2983323.2983855 – reference: MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297 – reference: DunnJCA fuzzy relative of the isodata process and its use in detecting compact well-separated clustersJ Cybern197333325737585710.1080/019697273085460460291.68033 – reference: FawazHIForestierGWeberJIdoumgharLMullerP-ADeep learning for time series classification: a reviewData Min Knowl Disc2019334917963396203910.1007/s10618-019-00619-11458.68196 – reference: Klassen G, Tatusch M, Conrad S (2020) Clustering of time series regarding their over-time stability. In: Proceedings of the 2020 IEEE symposium series on computational intelligence (SSCI). https://doi.org/10.1109/SSCI47803.2020.9308516 – reference: Warren LiaoTClustering of time series data — a surveyPattern Recogn200538111857187410.1016/j.patcog.2005.01.0251077.68803 – reference: RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc19716633684685010.2307/2284239 – reference: BouguessaMWangSSunHAn objective approach to cluster validationPattern Recogn Lett2006271419143010.1016/j.patrec.2006.01.015 – reference: Beringer J, Hüllermeier E (2007) Adaptive optimization of the number of clusters in fuzzy clustering. In: Proceedings of the IEEE international conference on fuzzy systems, pp 1–6. https://doi.org/10.1109/FUZZY.2007.4295444 – reference: KunchevaLIVetrovDPEvaluation of stability of k-means cluster ensembles with respect to random initializationIEEE Trans Pattern Anal Mach Intell200628111798180810.1109/TPAMI.2006.226 – reference: KimM-SHanJA particle-and-density based evolutionary clustering method for dynamic networksProc VLDB Endowment20092162263310.14778/1687627.1687698 – reference: Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining, pp 226–231 – reference: Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. In: Advances in spatial and temporal databases, pp 364–381. https://doi.org/10.1007/11535331_21 – reference: KimY-IKimD-WLeeDLeeKA cluster validation index for gk cluster analysis based on relative degree of sharingInf Sci2004168225242211729110.1016/j.ins.2004.02.0061075.62052 – reference: LiuSYamadaMCollierNSugiyamaMChange-point detection in time-series data by relative density-ratio estimationNeural Netw201343728310.1016/j.neunet.2013.01.0121367.62259 – reference: Klassen G, Tatusch M, Himmelspach L, Conrad S (2020) Fuzzy clustering stability evaluation of time series. In: 18th international conference on Information processing and management of uncertainty in knowledge-based systems, IPMU 2020, pp 680–692. https://doi.org/10.1007/978-3-030-50146-4_50 – reference: Plasse J, Hoeltgebaum H, Adams NM (2021) Streaming changepoint detection for transition matrices. Data Min Knowl Disc:1–30. https://doi.org/10.1007/s10618-021-00747-7 – reference: LampertTLafabregueBSerretteNForestierGCrémilleuxBVrainCGancarskiPConstrained distance based clustering for time-series: a comparative and experimental studyData Min Knowl Disc201832616631707385316010.1007/s10618-018-0573-y – reference: ChiYSongXZhouDHinoKTsengBLOn evolutionary spectral clusteringACM Transactions on Knowledge Discovery from Data (TKDD)20093413010.1145/1631162.1631165 – reference: Jin X, Lu Y, Shi C (2002) Distribution discovery: Local analysis of temporal rules. In: Chen M-S, Yu PS, Liu B (eds) Advances in knowledge discovery and data mining, pp 469–480. https://doi.org/10.1007/3-540-47887-6_47 – reference: Tatusch M, Klassen G, Bravidor M, Conrad S (2020) How is your team spirit? Cluster over-time stability evaluation. In: 16th international conference on machine learning and data mining, machine learning and data mining in pattern recognition, MLDM, pp 155–170 – reference: Zhou Y, Zou H, Arghandeh R, Gu W, Spanos CJ (2018) Non-parametric outliers detection in multiple time series a case study: power grid data analysis. In: Proceedings of the AAAI conference on artificial intelligence, vol 32, pp 4605–4612 – reference: Ben-David S, Von Luxburg U (2008) Relating clustering stability to properties of cluster boundaries. In: 21St annual conference on learning theory (COLT 2008), pp 379–390 – reference: HuangXYeYXiongLLauRYJiangNWangSTime series k-means: a new k-means type smooth subspace clustering for time series dataInf Sci2016367–36811310.1016/j.ins.2016.05.0401428.62276 – reference: von LuxburgUClustering stability: an overviewFound Trend Mach Learn20102323527410.1561/22000000081191.68615 – reference: Xiong Y, Yeung D-Y (2002) Mixtures Of arma models for model-based time series clustering. In: Proceedings - IEEE international conference on data mining, ICDM, pp 717–720. https://doi.org/10.1109/ICDM.2002.1184037 – reference: Ramoni M, Sebastiani P, Cohen P (2000) Multivariate clustering by dynamics. In: AAAI/IAAI, pp 633–638 – reference: Alaee S, Mercer R, Kamgar K, Keogh E (2021) Time series motifs discovery under dtw allows more robust discovery of conserved structure. Data Min Knowl Disc:1–48. https://doi.org/10.1007/s10618-021-00740-0 – reference: Roth V, Lange T, Braun M, Buhmann J (2002) A resampling approach to cluster validation. COMPSTAT, pp 123–128. https://doi.org/10.1007/978-3-642-57489-4_13 – reference: LinardiMZhuYPalpanasTKeoghEMatrix profile goes mad: variable-length motif and discord discovery in data seriesData Min Knowl Disc20203410221071411428410.1007/s10618-020-00685-w – reference: Chen JR (2007) Useful clustering outcomes from meaningful time series clustering. In: Proceedings of the sixth Australasian conference on data mining and analytics, vol 70, pp 101–109. https://doi.org/10.5555/1378245.1378259 – volume: 21 start-page: i159 issue: suppl_1 year: 2005 ident: 4231_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1022 – volume: 33 start-page: 917 issue: 4 year: 2019 ident: 4231_CR17 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-019-00619-1 – ident: 4231_CR9 doi: 10.5555/1378245.1378259 – ident: 4231_CR1 doi: 10.1088/1742-6596/954/1/012010 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 4231_CR14 publication-title: J Cybern doi: 10.1080/01969727308546046 – volume: 3 start-page: 1 issue: 4 year: 2009 ident: 4231_CR10 publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/1631162.1631165 – volume-title: Pattern recognition with fuzzy objective function algorithms year: 1981 ident: 4231_CR6 doi: 10.1007/978-1-4757-0450-1 – volume: 20 start-page: 53 year: 1987 ident: 4231_CR47 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – ident: 4231_CR41 doi: 10.1145/2949741.2949758 – ident: 4231_CR20 – volume: 28 start-page: 304 issue: 2 year: 2014 ident: 4231_CR58 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-012-0302-x – volume: 19 start-page: 2451 issue: 11 year: 2019 ident: 4231_CR39 publication-title: Sensors doi: 10.3390/s19112451 – volume: 34 start-page: 1022 year: 2020 ident: 4231_CR36 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-020-00685-w – ident: 4231_CR52 doi: 10.1007/978-3-030-59065-9_26 – ident: 4231_CR4 – ident: 4231_CR23 doi: 10.1007/11535331_21 – ident: 4231_CR59 doi: 10.1609/aaai.v32i1.11632 – volume: 28 start-page: 1798 issue: 11 year: 2006 ident: 4231_CR32 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.226 – volume: 168 start-page: 225 year: 2004 ident: 4231_CR28 publication-title: Inf Sci doi: 10.1016/j.ins.2004.02.006 – ident: 4231_CR49 doi: 10.1137/1.9781611972764.9 – volume: 8 start-page: 154 issue: 2 year: 2005 ident: 4231_CR25 publication-title: Knowl Inf Syst doi: 10.1007/s10115-004-0172-7 – ident: 4231_CR51 – ident: 4231_CR13 – ident: 4231_CR43 doi: 10.1007/s10618-021-00747-7 – ident: 4231_CR30 doi: 10.1007/978-3-030-50146-4_50 – volume: 19 start-page: 580 year: 2011 ident: 4231_CR35 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2011.2106216 – volume: 2 start-page: 622 issue: 1 year: 2009 ident: 4231_CR27 publication-title: Proc VLDB Endowment doi: 10.14778/1687627.1687698 – ident: 4231_CR34 doi: 10.1007/978-3-319-99807-7_2 – ident: 4231_CR11 doi: 10.1145/2983323.2983855 – ident: 4231_CR44 – ident: 4231_CR16 – ident: 4231_CR53 doi: 10.1007/978-3-030-65390-3_28 – volume: 32 start-page: 1663 issue: 6 year: 2018 ident: 4231_CR33 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-018-0573-y – ident: 4231_CR46 doi: 10.1007/978-3-642-57489-4_13 – ident: 4231_CR21 doi: 10.1016/j.engappai.2014.12.015 – ident: 4231_CR26 doi: 10.1109/MDM.2018.00029 – ident: 4231_CR29 doi: 10.1109/SSCI47803.2020.9308516 – volume: 11 start-page: 153 year: 2008 ident: 4231_CR42 publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.1990.tb00048.x – ident: 4231_CR54 – volume: 15 start-page: 515 issue: 3 year: 2003 ident: 4231_CR18 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2003.1198387 – volume: 38 start-page: 1857 issue: 11 year: 2005 ident: 4231_CR56 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2005.01.025 – volume: PAMI-1 start-page: 224 issue: 2 year: 1979 ident: 4231_CR12 publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.1979.4766909 – volume: 43 start-page: 72 year: 2013 ident: 4231_CR37 publication-title: Neural Netw doi: 10.1016/j.neunet.2013.01.012 – ident: 4231_CR38 – ident: 4231_CR48 doi: 10.1007/978-3-642-14049-5_4 – ident: 4231_CR24 doi: 10.1137/1.9781611972795.34 – volume: 367–368 start-page: 1 year: 2016 ident: 4231_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2016.05.040 – ident: 4231_CR40 doi: 10.1109/ICDE.2002.994785 – ident: 4231_CR22 doi: 10.1007/3-540-47887-6_47 – ident: 4231_CR50 doi: 10.1007/978-981-15-1699-3_8 – ident: 4231_CR31 doi: 10.1145/775047.775129 – volume: 27 start-page: 1419 year: 2006 ident: 4231_CR7 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2006.01.015 – volume: 2 start-page: 235 issue: 3 year: 2010 ident: 4231_CR55 publication-title: Found Trend Mach Learn doi: 10.1561/2200000008 – ident: 4231_CR8 doi: 10.1145/1150402.1150467 – ident: 4231_CR57 doi: 10.1109/ICDM.2002.1184037 – volume: 66 start-page: 846 issue: 336 year: 1971 ident: 4231_CR45 publication-title: J Am Stat Assoc doi: 10.2307/2284239 – ident: 4231_CR2 doi: 10.1007/s10618-021-00740-0 – ident: 4231_CR3 – ident: 4231_CR5 doi: 10.1109/FUZZY.2007.4295444 |
| SSID | ssj0003301 |
| Score | 2.3494816 |
| Snippet | In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 16606 |
| SubjectTerms | Algorithms Artificial Intelligence Clustering Computer Science Data analysis Datasets Evaluation Evolutionary algorithms Machines Manufacturing Mechanical Engineering Outliers (statistics) Parameters Processes Stability analysis Time dependence Time series Toolkits |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpIdemqZPt2lQobdWdC3rSQ-lhIQeQgj0wd6MpZXpQvCm8W6h_74zWtnLNiSX3gySsaV5az7NALwNpbHO-5Kj3sMARSnF0TkSvLUqeoc8IhJ4_MeZOT-306m7yAdufYZVDjoxKerZItAZ-Qc0gyXaVifVp6tfnLpGUXY1t9C4B3tUJaFM0L2voybGWD11zMMYg2vtpvnSTL46JwkshKEYIUPwX7cN0w1v8yZo8p_MaTJIp_v_u5RH8DC7ouzzmncOYCd2j2F_aPPAstQ_gY_Hlysqp8DJ4s0YupMJUPuHbSqFs3nHqEs9I4aOPSPcKT4v-6fw_fTk2_EXnnsu8CCNXHLRhjAxs7IRjfUTL9VMeCXbqLVxrpFK6hija1qLrgodhlSyUdJbV0YdQ1P56hnsdosuvgBmdduGSvh2YoO0OjoTq2BEjMLrWKlQQDlseB1yQXLqi3FZb0opE5FqJFKdiFSbAt6N71yty3HcOftwIECdRbOvN7tfwJtxGIWKMiVNFxcrnGOUsqjehC3g-Zrs4-cqTWrLVAWYLYYYJ1DB7u2Rbv4zFe7G2I2y2AW8H1hn81u3r-Ll3at4BQ8EOl5rCPEh7C6vV_E13A-_l_P--igJxF_zZBAY priority: 102 providerName: ProQuest |
| Title | Cluster-based stability evaluation in time series data sets |
| URI | https://link.springer.com/article/10.1007/s10489-022-04231-7 https://www.ncbi.nlm.nih.gov/pubmed/36531973 https://www.proquest.com/docview/2831893945 https://www.proquest.com/docview/2755804028 https://pubmed.ncbi.nlm.nih.gov/PMC9746592 |
| Volume | 53 |
| WOSCitedRecordID | wos000898660400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQde2Pgaga0yEm9gqXH8KZ6g2oQEVNUGo_ASxa4jKk0ZWlok_nvu0iRdN0CCFyuRHSe2z3e_y53vAJ6H1FjnfcqR76GCopTiCI4EL62K3iGNiMZ5_Oy9GY_tdOom7aGwuvN270ySDae-cthNknsPKk_ky4G9b8EOijtLCRtOTs96_osaepMnDzULrrWbtkdlft_Hpji6gTFvukpes5c2Yuh49_8GsAd3W9jJXq_o5B7citV92O1SOrB2hz-AV6PzJYVO4CTdZgyhY-M8-5Oto4KzecUoIz0j4o01Ix9TvF7UD-HT8dHH0Vve5lfgQRq54KIMYWhmaSEK64deqpnwSpZRa-NcIZXUMUZXlBZhCf34yGShpLcujTqGIvPZI9iuLqr4GJjVZRky4cuhDdLq6EzMghExCq9jpkICaTfNeWiDj1MOjPN8HTaZZifH2cmb2clNAi_6Z76vQm_8tfVBt3p5uw3rHLFTioDMSZXAs74aNxBZRYoqXiyxjVHKIisTNoH91WL3r8s0sSiTJWA2yKBvQMG5N2uq-bcmSDfqaWSxTuBlRwzrz_rzKJ78W_OncEcg6Fq5Dx_A9uJyGQ_hdvixmNeXA9gyn79QObUD2HlzNJ6c4N07w7H8MBxRaU6xnKivg2YL_QLdDQ0g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyruBAkaCE1hs_LYQQqhQtdplxaGgvYXY64iV2mxpsqD-KX4j4zx2tVT01gO3SHYetj9_M5MZzwA896k21rmUIu-hgSKlpKgcMVoYGZxFjLAmePzrSI_HZjKxnzfgd38WJoZV9pzYEPV07uM_8tcoBlOUrVbIdyc_aKwaFb2rfQmNFhbDcPYLTbbq7cEHXN8XjO19PNzdp11VAeqFFjVlhfcDPU1zlhs3cEJOmZOiCEppa3MhhQoh2LwwKIyjuc9FLoUzNg0q-Jw7js-9AlcFNzruq6GmS-bnvCm3PECbhiplJ90hne6onojBSWj6xUgUnJt1QXhOuz0fpPmXp7YRgHtb_9vU3YKbnapN3rd74zZshPIObPVlLEjHanfhze7RIqaLoFGiTwmqy03A8BlZZUIns5LUs-NA4oYNFYlxtXhdV_fgy6UM4T5slvMybAMxqig8Z64YGC-MClYH7jULgTkVuPQJpP0CZ75LuB7rfhxlq1TRERQZgiJrQJHpBF4u7zlp041c2HunX_Cso54qW612As-WzUga0ROUl2G-wD5aSoP0zUwCD1qYLV_HVaRlzRPQawBcdogJyddbytn3JjE52qbRS5_Aqx6qq8_69ygeXjyKp3B9__DTKBsdjIeP4AZDJbMNl96Bzfp0ER7DNf-znlWnT5rNSODbZUP4D7QYbRI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXypvQAkaCE0Td-G0hVFUtK6pWqz0AWnFJY68jVirZ0mRB_Wv8uo7zWi0VvfXALZKdh-3P88h8ngF47RKljbVJjHIPHRQhRIzGEY1zLbw1iBFak8e_HqnRSE8mZrwGf7qzMIFW2cnEWlBP5y78I99GNZigbjVcbOctLWK8P9w5_RmHClIh0tqV02ggcujPf6P7Vn442Me1fkPp8OPnvU9xW2EgdlzxKqa5cwM1TTKaaTuwXEypFTz3UipjMi649N6bLNeomIPrz3gmuNUm8dK7jFmGz70BNxX6mIFOOBbfei3AWF16eYD-TSylmbQHdtpjezwQldANDKwUnKdVpXjJ0r1M2Pwralsrw-HG_zyN9-Bua4KT3WbP3Ic1XzyAja68BWml3UN4v3eyCGkk4qDppwTN6JpIfE6WGdLJrCDV7IcnYSP7kgS-LV5X5SP4ci1DeAzrxbzwT4FomeeOUZsPtONaeqM8c4p6T630TLgIkm6xU9cmYg_1QE7SZQrpAJAUAZLWAElVBG_7e06bNCRX9t7qFj9tRVKZLlc-gld9MwqTECHKCj9fYB8lhEaxTnUETxrI9a9jMohrxSJQK2DsO4RE5astxex7nbAcfdYQvY_gXQfb5Wf9exTPrh7FS7iNyE2PDkaHm3CHou3ZsKi3YL06W_jncMv9qmbl2Yt6XxI4vm4EXwCI8HY2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster-based+stability+evaluation+in+time+series+data+sets&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Klassen%2C+Gerhard&rft.au=Tatusch%2C+Martha&rft.au=Conrad%2C+Stefan&rft.date=2023-07-01&rft.issn=1573-7497&rft.eissn=1573-7497&rft.spage=1&rft_id=info:doi/10.1007%2Fs10489-022-04231-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |