Cluster-based stability evaluation in time series data sets

In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Jg. 53; H. 13; S. 16606 - 16629
Hauptverfasser: Klassen, Gerhard, Tatusch, Martha, Conrad, Stefan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2023
Springer Nature B.V
Schlagworte:
ISSN:0924-669X, 1573-7497, 1573-7497
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cl uster O ver-Time S tability E valuation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS ( F uzzy C lustering S tability E valuation of T ime S eries). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set.
AbstractList In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cluster Over-Time Stability Evaluation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS (Fuzzy Clustering Stability Evaluation of Time Series). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set.
In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cluster Over-Time Stability Evaluation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS (Fuzzy Clustering Stability Evaluation of Time Series). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set.In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cluster Over-Time Stability Evaluation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS (Fuzzy Clustering Stability Evaluation of Time Series). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set.
In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call Cl uster O ver-Time S tability E valuation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS ( F uzzy C lustering S tability E valuation of T ime S eries). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set.
In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a parameter-free toolkit that we call uster ver-Time tability valuation (CLOSE). In addition to that we present a fuzzy variant which we call FCSETS ( uzzy lustering tability valuation of ime eries). These toolkits enable a number of advanced applications. One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one generated data set.
Author Conrad, Stefan
Tatusch, Martha
Klassen, Gerhard
Author_xml – sequence: 1
  givenname: Gerhard
  orcidid: 0000-0002-1458-6546
  surname: Klassen
  fullname: Klassen, Gerhard
  email: gerhard.klassen@hhu.de
  organization: Heinrich-Heine-University Düsseldorf
– sequence: 2
  givenname: Martha
  orcidid: 0000-0001-6302-6070
  surname: Tatusch
  fullname: Tatusch, Martha
  organization: Heinrich-Heine-University Düsseldorf
– sequence: 3
  givenname: Stefan
  orcidid: 0000-0003-2788-3854
  surname: Conrad
  fullname: Conrad, Stefan
  organization: Heinrich-Heine-University Düsseldorf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36531973$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LHTEUxUOx1KftF3BRBrpxE3vzf4JQkEdbC0I3FdyFzMwdG5mX0SQj-O1NfdZaF64SuL9zcm7OHtmJc0RCDhgcMQDzOTOQraXAOQXJBaPmDVkxZQQ10podsgLLJdXaXuySvZyvAEAIYO_IrtBKMGvEihyvpyUXTLTzGYcmF9-FKZS7Bm_9tPgS5tiE2JSwwSZjCpibwRdf7yW_J29HP2X88Hjuk_NvX3-tT-nZz-8_1idntJdGFsrHvgczMM9920En1cA7JUfU2ljrpZIaEa0fW9AarBBCeiW71jLU2HvRiX3yZet7vXQbHHqMJfnJXaew8enOzT64_ycx_HaX862zRmpleTU4fDRI882CubhNyD1Ok484L9lxo1QLEnhb0U8v0Kt5SbGu5-qUtVZYqSr18Xmipyh__7UCfAv0ac454fiEMHB_ynPb8lwtzz2U50wVtS9EfSgPFdStwvS6VGylub4TLzH9i_2K6h4BV63u
CitedBy_id crossref_primary_10_1016_j_displa_2024_102775
crossref_primary_10_1007_s11356_023_31110_6
crossref_primary_10_1007_s10489_023_04874_0
Cites_doi 10.1093/bioinformatics/bti1022
10.1007/s10618-019-00619-1
10.5555/1378245.1378259
10.1088/1742-6596/954/1/012010
10.1080/01969727308546046
10.1145/1631162.1631165
10.1007/978-1-4757-0450-1
10.1016/0377-0427(87)90125-7
10.1145/2949741.2949758
10.1007/s10618-012-0302-x
10.3390/s19112451
10.1007/s10618-020-00685-w
10.1007/978-3-030-59065-9_26
10.1007/11535331_21
10.1609/aaai.v32i1.11632
10.1109/TPAMI.2006.226
10.1016/j.ins.2004.02.006
10.1137/1.9781611972764.9
10.1007/s10115-004-0172-7
10.1007/s10618-021-00747-7
10.1007/978-3-030-50146-4_50
10.1109/TFUZZ.2011.2106216
10.14778/1687627.1687698
10.1007/978-3-319-99807-7_2
10.1145/2983323.2983855
10.1007/978-3-030-65390-3_28
10.1007/s10618-018-0573-y
10.1007/978-3-642-57489-4_13
10.1016/j.engappai.2014.12.015
10.1109/MDM.2018.00029
10.1109/SSCI47803.2020.9308516
10.1111/j.1467-9892.1990.tb00048.x
10.1109/TKDE.2003.1198387
10.1016/j.patcog.2005.01.025
10.1109/TPAMI.1979.4766909
10.1016/j.neunet.2013.01.012
10.1007/978-3-642-14049-5_4
10.1137/1.9781611972795.34
10.1016/j.ins.2016.05.040
10.1109/ICDE.2002.994785
10.1007/3-540-47887-6_47
10.1007/978-981-15-1699-3_8
10.1145/775047.775129
10.1016/j.patrec.2006.01.015
10.1561/2200000008
10.1145/1150402.1150467
10.1109/ICDM.2002.1184037
10.2307/2284239
10.1007/s10618-021-00740-0
10.1109/FUZZY.2007.4295444
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022.
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022.
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1007/s10489-022-04231-7
DatabaseName Open Access资源_Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
ProQuest Business Collection (Alumni Edition)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 16629
ExternalDocumentID PMC9746592
36531973
10_1007_s10489_022_04231_7
Genre Journal Article
GrantInformation_xml – fundername: Heinrich-Heine-Universität Düsseldorf (3102)
– fundername: ;
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-2fcc07d1a2a8b0b45d2b54fe66799a4546eee9af8066093334a54b891e6eca3b3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000898660400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
1573-7497
IngestDate Tue Nov 04 02:07:13 EST 2025
Sun Nov 09 11:19:31 EST 2025
Wed Nov 05 14:52:21 EST 2025
Mon Jul 21 06:07:50 EDT 2025
Sat Nov 29 05:33:34 EST 2025
Tue Nov 18 21:51:59 EST 2025
Fri Feb 21 02:42:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Evolutionary clustering
Over-time stability evaluation
Time series clustering
Anomalous subsequences
Language English
License The Author(s) 2022.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-2fcc07d1a2a8b0b45d2b54fe66799a4546eee9af8066093334a54b891e6eca3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6302-6070
0000-0003-2788-3854
0000-0002-1458-6546
OpenAccessLink https://link.springer.com/10.1007/s10489-022-04231-7
PMID 36531973
PQID 2831893945
PQPubID 326365
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9746592
proquest_miscellaneous_2755804028
proquest_journals_2831893945
pubmed_primary_36531973
crossref_primary_10_1007_s10489_022_04231_7
crossref_citationtrail_10_1007_s10489_022_04231_7
springer_journals_10_1007_s10489_022_04231_7
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationTitleAlternate Appl Intell (Dordr)
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Xiong Y, Yeung D-Y (2002) Mixtures Of arma models for model-based time series clustering. In: Proceedings - IEEE international conference on data mining, ICDM, pp 717–720. https://doi.org/10.1109/ICDM.2002.1184037
BezdekJCPattern recognition with fuzzy objective function algorithms1981BerlinSpringer10.1007/978-1-4757-0450-10503.68069https://doi.org/10.1007/978-1-4757-0450-1
Sun P, Chawla S, Arunasalam B (2006) Mining for outliers in sequential databases. In: Proceedings of the SIAM international conference on data mining, pp 94–106. https://doi.org/10.1137/1.9781611972764.9
KimM-SHanJA particle-and-density based evolutionary clustering method for dynamic networksProc VLDB Endowment20092162263310.14778/1687627.1687698
RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc19716633684685010.2307/2284239
KeoghELinJClustering of time-series subsequences is meaningless: implications for previous and future researchKnowl Inf Syst20058215417710.1007/s10115-004-0172-7
DunnJCA fuzzy relative of the isodata process and its use in detecting compact well-separated clustersJ Cybern197333325737585710.1080/019697273085460460291.68033
Kieu T, Yang B, Jensen CS (2018) Outlier detection for multidimensional time series using deep neural networks. In: 2018 19th IEEE international conference on mobile data managements, MDM, pp 125–134. https://doi.org/10.1109/MDM.2018.00029
RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math198720536510.1016/0377-0427(87)90125-70636.62059
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297
Ramoni M, Sebastiani P, Cohen P (2000) Multivariate clustering by dynamics. In: AAAI/IAAI, pp 633–638
Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’06, pp 554–560. https://doi.org/10.1145/1150402.1150467
Tatusch M, Klassen G, Bravidor M, Conrad S (2019) Show me your friends and i’ll tell you who you are. Finding anomalous time series by conspicuous cluster transitions. In: Data Mining. AusDM 2019. Communications in Computer and Information Science, vol 1127, pp 91–103. https://doi.org/10.1007/978-981-15-1699-3_8
Chen JR (2007) Useful clustering outcomes from meaningful time series clustering. In: Proceedings of the sixth Australasian conference on data mining and analytics, vol 70, pp 101–109. https://doi.org/10.5555/1378245.1378259
BouguessaMWangSSunHAn objective approach to cluster validationPattern Recogn Lett2006271419143010.1016/j.patrec.2006.01.015
GuhaSMeyersonAMishraNMotwaniRO’CallaghanLClustering data streams: theory and practiceIEEE Trans Knowl Data Eng200315351552810.1109/TKDE.2003.1198387
Tatusch M, Klassen G, Conrad S (2020) Behave or be detected! Identifying outlier sequences by their group cohesion. In: 22nd international conference on big data analytics and knowledge discovery, DaWaK 2020, pp 333–347. https://doi.org/10.1007/978-3-030-59065-9_26
Zhou Y, Zou H, Arghandeh R, Gu W, Spanos CJ (2018) Non-parametric outliers detection in multiple time series a case study: power grid data analysis. In: Proceedings of the AAAI conference on artificial intelligence, vol 32, pp 4605–4612
Le CapitaineHFrelicotCA cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operatorsIEEE Trans Fuzzy Syst20111958058810.1109/TFUZZ.2011.2106216
Hüllermeier E, Rifqi M (2009) A fuzzy variant of the rand index for comparing clustering structures. In: Proceedings of the joint 2009 international fuzzy systems association world congress and 2009 European society of fuzzy logic and technology conference, pp 1294–1298
Paparrizos J, Gravano L (2015) k-shape: efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, SIGMOD ’15, pp 1855–1870. https://doi.org/10.1145/2949741.2949758
Warren LiaoTClustering of time series data — a surveyPattern Recogn200538111857187410.1016/j.patcog.2005.01.0251077.68803
Ahmar AS, Guritno S, Abdurakhman RA, Awi A, Minggi I, Tiro MA, Aidid MK, Annas S, Sutiksno DU, Ahmar DS, Ahmar KH, Ahmar A, Zaki A, Abdullah D, Rahim R, Nurdiyanto H, Hidayat R, Napitupulu D, Simarmata J, Kurniasih N, Abdillah LA, Pranolo A, Haviluddin AW, Arifin ANM (2018) Modeling data containing outliers using ARIMA additive outlier (ARIMA-AO). J Phys: Conf Ser,:954. https://doi.org/10.1088/1742-6596/954/1/012010
Runkler TA (2010) Comparing partitions by subset similarities. In: Proceedings of the 13th international conference on information processing and management of uncertainty in knowledge-based systems, IPMU, pp 29–38. https://doi.org/10.1007/978-3-642-14049-5_4
Alaee S, Mercer R, Kamgar K, Keogh E (2021) Time series motifs discovery under dtw allows more robust discovery of conserved structure. Data Min Knowl Disc:1–48. https://doi.org/10.1007/s10618-021-00740-0
Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining, pp 226–231
MunirMSiddiquiSAChatthaMADengelAAhmedSFuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning modelsSensors201919112451246510.3390/s19112451
Tatusch M, Klassen G, Conrad S (2020) Loners stand out. Identification of anomalous subsequences based on group performance. In: Advanced data mining and applications, ADMA 2020, pp 360–369. https://doi.org/10.1007/978-3-030-65390-3_28
XuKSKligerMHero IiiAOAdaptive evolutionary clusteringData Min Knowl Disc2014282304336314757110.1007/s10618-012-0302-x1281.68200
KunchevaLIVetrovDPEvaluation of stability of k-means cluster ensembles with respect to random initializationIEEE Trans Pattern Anal Mach Intell200628111798180810.1109/TPAMI.2006.226
KimY-IKimD-WLeeDLeeKA cluster validation index for gk cluster analysis based on relative degree of sharingInf Sci2004168225242211729110.1016/j.ins.2004.02.0061075.62052
LinardiMZhuYPalpanasTKeoghEMatrix profile goes mad: variable-length motif and discord discovery in data seriesData Min Knowl Disc20203410221071411428410.1007/s10618-020-00685-w
Roth V, Lange T, Braun M, Buhmann J (2002) A resampling approach to cluster validation. COMPSTAT, pp 123–128. https://doi.org/10.1007/978-3-642-57489-4_13
Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 5 August 2021
LampertTLafabregueBSerretteNForestierGCrémilleuxBVrainCGancarskiPConstrained distance based clustering for time-series: a comparative and experimental studyData Min Knowl Disc201832616631707385316010.1007/s10618-018-0573-y
Beringer J, Hüllermeier E (2007) Adaptive optimization of the number of clusters in fuzzy clustering. In: Proceedings of the IEEE international conference on fuzzy systems, pp 1–6. https://doi.org/10.1109/FUZZY.2007.4295444
ErnstJNauGJBar-JosephZClustering short time series gene expression dataBioinformatics200521suppl_1i159i16810.1093/bioinformatics/bti1022
Klassen G, Tatusch M, Conrad S (2020) Clustering of time series regarding their over-time stability. In: Proceedings of the 2020 IEEE symposium series on computational intelligence (SSCI). https://doi.org/10.1109/SSCI47803.2020.9308516
Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. In: Advances in spatial and temporal databases, pp 364–381. https://doi.org/10.1007/11535331_21
Dau HA, Begum N, Keogh E (2016) Semi-supervision dramatically improves time series clustering under dynamic time warping. In: Proceedings of the 25th ACM international on conference on information and knowledge management, CIKM ’16, pp 999–1008. https://doi.org/10.1145/2983323.2983855
Izakian H, Pedrycz W, Jamal I (2015) Fuzzy clustering of time series data using dynamic time warping distance. Eng Appl Artif Intell:39. https://doi.org/10.1016/j.engappai.2014.12.015
von LuxburgUClustering stability: an overviewFound Trend Mach Learn20102323527410.1561/22000000081191.68615
Plasse J, Hoeltgebaum H, Adams NM (2021) Streaming changepoint detection for transition matrices. Data Min Knowl Disc:1–30. https://doi.org/10.1007/s10618-021-00747-7
Kawahara Y, Sugiyama M (2009) Change-point detection in time-series data by direct density-ratio estimation. In: Proceedings of the 2009 SIAM international conference on data mining, pp 389–400. SIAM. https://doi.org/10.1137/1.9781611972795.34
Ben-David S, Von Luxburg U (2008) Relating clustering stability to properties of cluster boundaries. In: 21St annual conference on learning theory (COLT 2008), pp 379–390
Jin X, Lu Y, Shi C (2002) Distribution discovery: Local analysis of temporal rules. In: Chen M-S, Yu PS, Liu B (eds) Advances in knowledge discovery and data mining, pp 469–480. https://doi.org/10.1007/3-540-47887-6_47
Tatusch M, Klassen G, Bravidor M, Conrad S (2020) How is your team spirit? Cluster over-time stability evaluation. In: 16th international conference on machine learning and data mining, machine learning and data mining in pattern recognition, MLDM, pp 155–170
ChiYSongXZhouDHinoKTsengBLOn evolutionary spectral clusteringACM Transactions on Knowledge Discovery from Data (TKDD)20093413010.1145/1631162.1631165
LiuSYamadaMCollierNSugiyamaMChange-point detection in time-series data by relative density-ratio estimationNeural Netw201343728310.1016/j.neunet.2013.01.0121367.62259
PiccoloDA distance measure for classifying arima modelsJ Time Ser Anal20081115316410.1111/j.1467-9892.1990.tb00048.x0691.62083
HuangXYeYXiongLLauRYJiangNWangSTime series k-means: a new k-means type smooth subspace clustering for time series dataInf Sci2016367–36811310.1016/j.ins.2016.05.0401428.62276
Banerjee A,
4231_CR48
Y Chi (4231_CR10) 2009; 3
M Linardi (4231_CR36) 2020; 34
4231_CR49
4231_CR46
4231_CR44
U von Luxburg (4231_CR55) 2010; 2
4231_CR43
JC Dunn (4231_CR14) 1973; 3
D Piccolo (4231_CR42) 2008; 11
X Huang (4231_CR19) 2016; 367–368
M-S Kim (4231_CR27) 2009; 2
H Le Capitaine (4231_CR35) 2011; 19
4231_CR40
4231_CR41
S Liu (4231_CR37) 2013; 43
4231_CR38
M Munir (4231_CR39) 2019; 19
4231_CR1
4231_CR34
4231_CR31
T Warren Liao (4231_CR56) 2005; 38
M Bouguessa (4231_CR7) 2006; 27
S Guha (4231_CR18) 2003; 15
4231_CR30
Y-I Kim (4231_CR28) 2004; 168
4231_CR26
4231_CR24
J Ernst (4231_CR15) 2005; 21
4231_CR22
HI Fawaz (4231_CR17) 2019; 33
4231_CR23
4231_CR20
4231_CR21
4231_CR29
LI Kuncheva (4231_CR32) 2006; 28
4231_CR4
4231_CR5
4231_CR2
KS Xu (4231_CR58) 2014; 28
4231_CR3
4231_CR8
4231_CR9
4231_CR59
JC Bezdek (4231_CR6) 1981
4231_CR16
4231_CR13
4231_CR57
4231_CR11
4231_CR53
4231_CR54
T Lampert (4231_CR33) 2018; 32
E Keogh (4231_CR25) 2005; 8
PJ Rousseeuw (4231_CR47) 1987; 20
WM Rand (4231_CR45) 1971; 66
DL Davies (4231_CR12) 1979; PAMI-1
4231_CR51
4231_CR52
4231_CR50
References_xml – reference: MunirMSiddiquiSAChatthaMADengelAAhmedSFuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning modelsSensors201919112451246510.3390/s19112451
– reference: PiccoloDA distance measure for classifying arima modelsJ Time Ser Anal20081115316410.1111/j.1467-9892.1990.tb00048.x0691.62083
– reference: Izakian H, Pedrycz W, Jamal I (2015) Fuzzy clustering of time series data using dynamic time warping distance. Eng Appl Artif Intell:39. https://doi.org/10.1016/j.engappai.2014.12.015
– reference: Hüllermeier E, Rifqi M (2009) A fuzzy variant of the rand index for comparing clustering structures. In: Proceedings of the joint 2009 international fuzzy systems association world congress and 2009 European society of fuzzy logic and technology conference, pp 1294–1298
– reference: Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’06, pp 554–560. https://doi.org/10.1145/1150402.1150467
– reference: Kieu T, Yang B, Jensen CS (2018) Outlier detection for multidimensional time series using deep neural networks. In: 2018 19th IEEE international conference on mobile data managements, MDM, pp 125–134. https://doi.org/10.1109/MDM.2018.00029
– reference: XuKSKligerMHero IiiAOAdaptive evolutionary clusteringData Min Knowl Disc2014282304336314757110.1007/s10618-012-0302-x1281.68200
– reference: Ahmar AS, Guritno S, Abdurakhman RA, Awi A, Minggi I, Tiro MA, Aidid MK, Annas S, Sutiksno DU, Ahmar DS, Ahmar KH, Ahmar A, Zaki A, Abdullah D, Rahim R, Nurdiyanto H, Hidayat R, Napitupulu D, Simarmata J, Kurniasih N, Abdillah LA, Pranolo A, Haviluddin AW, Arifin ANM (2018) Modeling data containing outliers using ARIMA additive outlier (ARIMA-AO). J Phys: Conf Ser,:954. https://doi.org/10.1088/1742-6596/954/1/012010
– reference: Tatusch M, Klassen G, Conrad S (2020) Loners stand out. Identification of anomalous subsequences based on group performance. In: Advanced data mining and applications, ADMA 2020, pp 360–369. https://doi.org/10.1007/978-3-030-65390-3_28
– reference: O’Callaghan L, Mishra N, Meyerson A, Guha S, Motwani R (2001) Streaming-data algorithms for high-quality clustering. In: Proceedings of IEEE international conference on data engineering, pp 685–694. https://doi.org/10.1109/ICDE.2002.994785
– reference: Paparrizos J, Gravano L (2015) k-shape: efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, SIGMOD ’15, pp 1855–1870. https://doi.org/10.1145/2949741.2949758
– reference: BezdekJCPattern recognition with fuzzy objective function algorithms1981BerlinSpringer10.1007/978-1-4757-0450-10503.68069https://doi.org/10.1007/978-1-4757-0450-1
– reference: KeoghELinJClustering of time-series subsequences is meaningless: implications for previous and future researchKnowl Inf Syst20058215417710.1007/s10115-004-0172-7
– reference: Le CapitaineHFrelicotCA cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operatorsIEEE Trans Fuzzy Syst20111958058810.1109/TFUZZ.2011.2106216
– reference: Vlachos M, Lin J, Keogh E, Gunopulos D (2003) A wavelet-based anytime algorithm for k-means clustering of time series. In: Proceedings of the workshop on clustering high dimensionality data and its applications
– reference: Banerjee A, Ghosh J (2001) Clickstream clustering using weighted longest common subsequences. In: Proceedings of the web mining workshop at the 1st SIAM conference on data mining, pp 33–40
– reference: Runkler TA (2010) Comparing partitions by subset similarities. In: Proceedings of the 13th international conference on information processing and management of uncertainty in knowledge-based systems, IPMU, pp 29–38. https://doi.org/10.1007/978-3-642-14049-5_4
– reference: Tatusch M, Klassen G, Conrad S (2020) Behave or be detected! Identifying outlier sequences by their group cohesion. In: 22nd international conference on big data analytics and knowledge discovery, DaWaK 2020, pp 333–347. https://doi.org/10.1007/978-3-030-59065-9_26
– reference: Kumar M, Patel NR, Woo J (2002) Clustering seasonality patterns in the presence of errors. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’02, pp 557–563. https://doi.org/10.1145/775047.775129
– reference: Landauer M, Wurzenberger M, Skopik F, Settanni G, Filzmoser P (2018) Time series analysis: unsupervised anomaly detection beyond outlier detection. In: ISPEC, pp 19–36. https://doi.org/10.1007/978-3-319-99807-7_2
– reference: DaviesDLBouldinDWA cluster separation measureIEEE transactions on pattern analysis and machine intelligence1979PAMI-1222422710.1109/TPAMI.1979.4766909
– reference: Tatusch M, Klassen G, Bravidor M, Conrad S (2019) Show me your friends and i’ll tell you who you are. Finding anomalous time series by conspicuous cluster transitions. In: Data Mining. AusDM 2019. Communications in Computer and Information Science, vol 1127, pp 91–103. https://doi.org/10.1007/978-981-15-1699-3_8
– reference: RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math198720536510.1016/0377-0427(87)90125-70636.62059
– reference: ErnstJNauGJBar-JosephZClustering short time series gene expression dataBioinformatics200521suppl_1i159i16810.1093/bioinformatics/bti1022
– reference: Sun P, Chawla S, Arunasalam B (2006) Mining for outliers in sequential databases. In: Proceedings of the SIAM international conference on data mining, pp 94–106. https://doi.org/10.1137/1.9781611972764.9
– reference: GuhaSMeyersonAMishraNMotwaniRO’CallaghanLClustering data streams: theory and practiceIEEE Trans Knowl Data Eng200315351552810.1109/TKDE.2003.1198387
– reference: Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 5 August 2021
– reference: Kawahara Y, Sugiyama M (2009) Change-point detection in time-series data by direct density-ratio estimation. In: Proceedings of the 2009 SIAM international conference on data mining, pp 389–400. SIAM. https://doi.org/10.1137/1.9781611972795.34
– reference: Dau HA, Begum N, Keogh E (2016) Semi-supervision dramatically improves time series clustering under dynamic time warping. In: Proceedings of the 25th ACM international on conference on information and knowledge management, CIKM ’16, pp 999–1008. https://doi.org/10.1145/2983323.2983855
– reference: MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297
– reference: DunnJCA fuzzy relative of the isodata process and its use in detecting compact well-separated clustersJ Cybern197333325737585710.1080/019697273085460460291.68033
– reference: FawazHIForestierGWeberJIdoumgharLMullerP-ADeep learning for time series classification: a reviewData Min Knowl Disc2019334917963396203910.1007/s10618-019-00619-11458.68196
– reference: Klassen G, Tatusch M, Conrad S (2020) Clustering of time series regarding their over-time stability. In: Proceedings of the 2020 IEEE symposium series on computational intelligence (SSCI). https://doi.org/10.1109/SSCI47803.2020.9308516
– reference: Warren LiaoTClustering of time series data — a surveyPattern Recogn200538111857187410.1016/j.patcog.2005.01.0251077.68803
– reference: RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc19716633684685010.2307/2284239
– reference: BouguessaMWangSSunHAn objective approach to cluster validationPattern Recogn Lett2006271419143010.1016/j.patrec.2006.01.015
– reference: Beringer J, Hüllermeier E (2007) Adaptive optimization of the number of clusters in fuzzy clustering. In: Proceedings of the IEEE international conference on fuzzy systems, pp 1–6. https://doi.org/10.1109/FUZZY.2007.4295444
– reference: KunchevaLIVetrovDPEvaluation of stability of k-means cluster ensembles with respect to random initializationIEEE Trans Pattern Anal Mach Intell200628111798180810.1109/TPAMI.2006.226
– reference: KimM-SHanJA particle-and-density based evolutionary clustering method for dynamic networksProc VLDB Endowment20092162263310.14778/1687627.1687698
– reference: Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining, pp 226–231
– reference: Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. In: Advances in spatial and temporal databases, pp 364–381. https://doi.org/10.1007/11535331_21
– reference: KimY-IKimD-WLeeDLeeKA cluster validation index for gk cluster analysis based on relative degree of sharingInf Sci2004168225242211729110.1016/j.ins.2004.02.0061075.62052
– reference: LiuSYamadaMCollierNSugiyamaMChange-point detection in time-series data by relative density-ratio estimationNeural Netw201343728310.1016/j.neunet.2013.01.0121367.62259
– reference: Klassen G, Tatusch M, Himmelspach L, Conrad S (2020) Fuzzy clustering stability evaluation of time series. In: 18th international conference on Information processing and management of uncertainty in knowledge-based systems, IPMU 2020, pp 680–692. https://doi.org/10.1007/978-3-030-50146-4_50
– reference: Plasse J, Hoeltgebaum H, Adams NM (2021) Streaming changepoint detection for transition matrices. Data Min Knowl Disc:1–30. https://doi.org/10.1007/s10618-021-00747-7
– reference: LampertTLafabregueBSerretteNForestierGCrémilleuxBVrainCGancarskiPConstrained distance based clustering for time-series: a comparative and experimental studyData Min Knowl Disc201832616631707385316010.1007/s10618-018-0573-y
– reference: ChiYSongXZhouDHinoKTsengBLOn evolutionary spectral clusteringACM Transactions on Knowledge Discovery from Data (TKDD)20093413010.1145/1631162.1631165
– reference: Jin X, Lu Y, Shi C (2002) Distribution discovery: Local analysis of temporal rules. In: Chen M-S, Yu PS, Liu B (eds) Advances in knowledge discovery and data mining, pp 469–480. https://doi.org/10.1007/3-540-47887-6_47
– reference: Tatusch M, Klassen G, Bravidor M, Conrad S (2020) How is your team spirit? Cluster over-time stability evaluation. In: 16th international conference on machine learning and data mining, machine learning and data mining in pattern recognition, MLDM, pp 155–170
– reference: Zhou Y, Zou H, Arghandeh R, Gu W, Spanos CJ (2018) Non-parametric outliers detection in multiple time series a case study: power grid data analysis. In: Proceedings of the AAAI conference on artificial intelligence, vol 32, pp 4605–4612
– reference: Ben-David S, Von Luxburg U (2008) Relating clustering stability to properties of cluster boundaries. In: 21St annual conference on learning theory (COLT 2008), pp 379–390
– reference: HuangXYeYXiongLLauRYJiangNWangSTime series k-means: a new k-means type smooth subspace clustering for time series dataInf Sci2016367–36811310.1016/j.ins.2016.05.0401428.62276
– reference: von LuxburgUClustering stability: an overviewFound Trend Mach Learn20102323527410.1561/22000000081191.68615
– reference: Xiong Y, Yeung D-Y (2002) Mixtures Of arma models for model-based time series clustering. In: Proceedings - IEEE international conference on data mining, ICDM, pp 717–720. https://doi.org/10.1109/ICDM.2002.1184037
– reference: Ramoni M, Sebastiani P, Cohen P (2000) Multivariate clustering by dynamics. In: AAAI/IAAI, pp 633–638
– reference: Alaee S, Mercer R, Kamgar K, Keogh E (2021) Time series motifs discovery under dtw allows more robust discovery of conserved structure. Data Min Knowl Disc:1–48. https://doi.org/10.1007/s10618-021-00740-0
– reference: Roth V, Lange T, Braun M, Buhmann J (2002) A resampling approach to cluster validation. COMPSTAT, pp 123–128. https://doi.org/10.1007/978-3-642-57489-4_13
– reference: LinardiMZhuYPalpanasTKeoghEMatrix profile goes mad: variable-length motif and discord discovery in data seriesData Min Knowl Disc20203410221071411428410.1007/s10618-020-00685-w
– reference: Chen JR (2007) Useful clustering outcomes from meaningful time series clustering. In: Proceedings of the sixth Australasian conference on data mining and analytics, vol 70, pp 101–109. https://doi.org/10.5555/1378245.1378259
– volume: 21
  start-page: i159
  issue: suppl_1
  year: 2005
  ident: 4231_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1022
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 4231_CR17
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00619-1
– ident: 4231_CR9
  doi: 10.5555/1378245.1378259
– ident: 4231_CR1
  doi: 10.1088/1742-6596/954/1/012010
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 4231_CR14
  publication-title: J Cybern
  doi: 10.1080/01969727308546046
– volume: 3
  start-page: 1
  issue: 4
  year: 2009
  ident: 4231_CR10
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/1631162.1631165
– volume-title: Pattern recognition with fuzzy objective function algorithms
  year: 1981
  ident: 4231_CR6
  doi: 10.1007/978-1-4757-0450-1
– volume: 20
  start-page: 53
  year: 1987
  ident: 4231_CR47
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– ident: 4231_CR41
  doi: 10.1145/2949741.2949758
– ident: 4231_CR20
– volume: 28
  start-page: 304
  issue: 2
  year: 2014
  ident: 4231_CR58
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-012-0302-x
– volume: 19
  start-page: 2451
  issue: 11
  year: 2019
  ident: 4231_CR39
  publication-title: Sensors
  doi: 10.3390/s19112451
– volume: 34
  start-page: 1022
  year: 2020
  ident: 4231_CR36
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00685-w
– ident: 4231_CR52
  doi: 10.1007/978-3-030-59065-9_26
– ident: 4231_CR4
– ident: 4231_CR23
  doi: 10.1007/11535331_21
– ident: 4231_CR59
  doi: 10.1609/aaai.v32i1.11632
– volume: 28
  start-page: 1798
  issue: 11
  year: 2006
  ident: 4231_CR32
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.226
– volume: 168
  start-page: 225
  year: 2004
  ident: 4231_CR28
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2004.02.006
– ident: 4231_CR49
  doi: 10.1137/1.9781611972764.9
– volume: 8
  start-page: 154
  issue: 2
  year: 2005
  ident: 4231_CR25
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-004-0172-7
– ident: 4231_CR51
– ident: 4231_CR13
– ident: 4231_CR43
  doi: 10.1007/s10618-021-00747-7
– ident: 4231_CR30
  doi: 10.1007/978-3-030-50146-4_50
– volume: 19
  start-page: 580
  year: 2011
  ident: 4231_CR35
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2011.2106216
– volume: 2
  start-page: 622
  issue: 1
  year: 2009
  ident: 4231_CR27
  publication-title: Proc VLDB Endowment
  doi: 10.14778/1687627.1687698
– ident: 4231_CR34
  doi: 10.1007/978-3-319-99807-7_2
– ident: 4231_CR11
  doi: 10.1145/2983323.2983855
– ident: 4231_CR44
– ident: 4231_CR16
– ident: 4231_CR53
  doi: 10.1007/978-3-030-65390-3_28
– volume: 32
  start-page: 1663
  issue: 6
  year: 2018
  ident: 4231_CR33
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-018-0573-y
– ident: 4231_CR46
  doi: 10.1007/978-3-642-57489-4_13
– ident: 4231_CR21
  doi: 10.1016/j.engappai.2014.12.015
– ident: 4231_CR26
  doi: 10.1109/MDM.2018.00029
– ident: 4231_CR29
  doi: 10.1109/SSCI47803.2020.9308516
– volume: 11
  start-page: 153
  year: 2008
  ident: 4231_CR42
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.1990.tb00048.x
– ident: 4231_CR54
– volume: 15
  start-page: 515
  issue: 3
  year: 2003
  ident: 4231_CR18
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2003.1198387
– volume: 38
  start-page: 1857
  issue: 11
  year: 2005
  ident: 4231_CR56
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2005.01.025
– volume: PAMI-1
  start-page: 224
  issue: 2
  year: 1979
  ident: 4231_CR12
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.1979.4766909
– volume: 43
  start-page: 72
  year: 2013
  ident: 4231_CR37
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2013.01.012
– ident: 4231_CR38
– ident: 4231_CR48
  doi: 10.1007/978-3-642-14049-5_4
– ident: 4231_CR24
  doi: 10.1137/1.9781611972795.34
– volume: 367–368
  start-page: 1
  year: 2016
  ident: 4231_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.05.040
– ident: 4231_CR40
  doi: 10.1109/ICDE.2002.994785
– ident: 4231_CR22
  doi: 10.1007/3-540-47887-6_47
– ident: 4231_CR50
  doi: 10.1007/978-981-15-1699-3_8
– ident: 4231_CR31
  doi: 10.1145/775047.775129
– volume: 27
  start-page: 1419
  year: 2006
  ident: 4231_CR7
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2006.01.015
– volume: 2
  start-page: 235
  issue: 3
  year: 2010
  ident: 4231_CR55
  publication-title: Found Trend Mach Learn
  doi: 10.1561/2200000008
– ident: 4231_CR8
  doi: 10.1145/1150402.1150467
– ident: 4231_CR57
  doi: 10.1109/ICDM.2002.1184037
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  ident: 4231_CR45
  publication-title: J Am Stat Assoc
  doi: 10.2307/2284239
– ident: 4231_CR2
  doi: 10.1007/s10618-021-00740-0
– ident: 4231_CR3
– ident: 4231_CR5
  doi: 10.1109/FUZZY.2007.4295444
SSID ssj0003301
Score 2.3494816
Snippet In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures are usually only...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16606
SubjectTerms Algorithms
Artificial Intelligence
Clustering
Computer Science
Data analysis
Datasets
Evaluation
Evolutionary algorithms
Machines
Manufacturing
Mechanical Engineering
Outliers (statistics)
Parameters
Processes
Stability analysis
Time dependence
Time series
Toolkits
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpIdemqZPt2lQobdWdC3rSQ-lhIQeQgj0wd6MpZXpQvCm8W6h_74zWtnLNiSX3gySsaV5az7NALwNpbHO-5Kj3sMARSnF0TkSvLUqeoc8IhJ4_MeZOT-306m7yAdufYZVDjoxKerZItAZ-Qc0gyXaVifVp6tfnLpGUXY1t9C4B3tUJaFM0L2voybGWD11zMMYg2vtpvnSTL46JwkshKEYIUPwX7cN0w1v8yZo8p_MaTJIp_v_u5RH8DC7ouzzmncOYCd2j2F_aPPAstQ_gY_Hlysqp8DJ4s0YupMJUPuHbSqFs3nHqEs9I4aOPSPcKT4v-6fw_fTk2_EXnnsu8CCNXHLRhjAxs7IRjfUTL9VMeCXbqLVxrpFK6hija1qLrgodhlSyUdJbV0YdQ1P56hnsdosuvgBmdduGSvh2YoO0OjoTq2BEjMLrWKlQQDlseB1yQXLqi3FZb0opE5FqJFKdiFSbAt6N71yty3HcOftwIECdRbOvN7tfwJtxGIWKMiVNFxcrnGOUsqjehC3g-Zrs4-cqTWrLVAWYLYYYJ1DB7u2Rbv4zFe7G2I2y2AW8H1hn81u3r-Ll3at4BQ8EOl5rCPEh7C6vV_E13A-_l_P--igJxF_zZBAY
  priority: 102
  providerName: ProQuest
Title Cluster-based stability evaluation in time series data sets
URI https://link.springer.com/article/10.1007/s10489-022-04231-7
https://www.ncbi.nlm.nih.gov/pubmed/36531973
https://www.proquest.com/docview/2831893945
https://www.proquest.com/docview/2755804028
https://pubmed.ncbi.nlm.nih.gov/PMC9746592
Volume 53
WOSCitedRecordID wos000898660400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQde2Pgaga0yEm9gqXH8KZ6g2oQEVNUGo_ASxa4jKk0ZWlok_nvu0iRdN0CCFyuRHSe2z3e_y53vAJ6H1FjnfcqR76GCopTiCI4EL62K3iGNiMZ5_Oy9GY_tdOom7aGwuvN270ySDae-cthNknsPKk_ky4G9b8EOijtLCRtOTs96_osaepMnDzULrrWbtkdlft_Hpji6gTFvukpes5c2Yuh49_8GsAd3W9jJXq_o5B7citV92O1SOrB2hz-AV6PzJYVO4CTdZgyhY-M8-5Oto4KzecUoIz0j4o01Ix9TvF7UD-HT8dHH0Vve5lfgQRq54KIMYWhmaSEK64deqpnwSpZRa-NcIZXUMUZXlBZhCf34yGShpLcujTqGIvPZI9iuLqr4GJjVZRky4cuhDdLq6EzMghExCq9jpkICaTfNeWiDj1MOjPN8HTaZZifH2cmb2clNAi_6Z76vQm_8tfVBt3p5uw3rHLFTioDMSZXAs74aNxBZRYoqXiyxjVHKIisTNoH91WL3r8s0sSiTJWA2yKBvQMG5N2uq-bcmSDfqaWSxTuBlRwzrz_rzKJ78W_OncEcg6Fq5Dx_A9uJyGQ_hdvixmNeXA9gyn79QObUD2HlzNJ6c4N07w7H8MBxRaU6xnKivg2YL_QLdDQ0g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyruBAkaCE1hs_LYQQqhQtdplxaGgvYXY64iV2mxpsqD-KX4j4zx2tVT01gO3SHYetj9_M5MZzwA896k21rmUIu-hgSKlpKgcMVoYGZxFjLAmePzrSI_HZjKxnzfgd38WJoZV9pzYEPV07uM_8tcoBlOUrVbIdyc_aKwaFb2rfQmNFhbDcPYLTbbq7cEHXN8XjO19PNzdp11VAeqFFjVlhfcDPU1zlhs3cEJOmZOiCEppa3MhhQoh2LwwKIyjuc9FLoUzNg0q-Jw7js-9AlcFNzruq6GmS-bnvCm3PECbhiplJ90hne6onojBSWj6xUgUnJt1QXhOuz0fpPmXp7YRgHtb_9vU3YKbnapN3rd74zZshPIObPVlLEjHanfhze7RIqaLoFGiTwmqy03A8BlZZUIns5LUs-NA4oYNFYlxtXhdV_fgy6UM4T5slvMybAMxqig8Z64YGC-MClYH7jULgTkVuPQJpP0CZ75LuB7rfhxlq1TRERQZgiJrQJHpBF4u7zlp041c2HunX_Cso54qW612As-WzUga0ROUl2G-wD5aSoP0zUwCD1qYLV_HVaRlzRPQawBcdogJyddbytn3JjE52qbRS5_Aqx6qq8_69ygeXjyKp3B9__DTKBsdjIeP4AZDJbMNl96Bzfp0ER7DNf-znlWnT5rNSODbZUP4D7QYbRI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXypvQAkaCE0Td-G0hVFUtK6pWqz0AWnFJY68jVirZ0mRB_Wv8uo7zWi0VvfXALZKdh-3P88h8ngF47RKljbVJjHIPHRQhRIzGEY1zLbw1iBFak8e_HqnRSE8mZrwGf7qzMIFW2cnEWlBP5y78I99GNZigbjVcbOctLWK8P9w5_RmHClIh0tqV02ggcujPf6P7Vn442Me1fkPp8OPnvU9xW2EgdlzxKqa5cwM1TTKaaTuwXEypFTz3UipjMi649N6bLNeomIPrz3gmuNUm8dK7jFmGz70BNxX6mIFOOBbfei3AWF16eYD-TSylmbQHdtpjezwQldANDKwUnKdVpXjJ0r1M2Pwralsrw-HG_zyN9-Bua4KT3WbP3Ic1XzyAja68BWml3UN4v3eyCGkk4qDppwTN6JpIfE6WGdLJrCDV7IcnYSP7kgS-LV5X5SP4ci1DeAzrxbzwT4FomeeOUZsPtONaeqM8c4p6T630TLgIkm6xU9cmYg_1QE7SZQrpAJAUAZLWAElVBG_7e06bNCRX9t7qFj9tRVKZLlc-gld9MwqTECHKCj9fYB8lhEaxTnUETxrI9a9jMohrxSJQK2DsO4RE5astxex7nbAcfdYQvY_gXQfb5Wf9exTPrh7FS7iNyE2PDkaHm3CHou3ZsKi3YL06W_jncMv9qmbl2Yt6XxI4vm4EXwCI8HY2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster-based+stability+evaluation+in+time+series+data+sets&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Klassen%2C+Gerhard&rft.au=Tatusch%2C+Martha&rft.au=Conrad%2C+Stefan&rft.date=2023-07-01&rft.issn=1573-7497&rft.eissn=1573-7497&rft.spage=1&rft_id=info:doi/10.1007%2Fs10489-022-04231-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon