Qualitative and quantitative chest CT parameters as predictors of specific mortality in COVID-19 patients

Purpose To test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19) early outbreak. Methods The study analyzed retrospectively patients underwent chest CT at hospital admission for COVID-19 pneumonia su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Emergency radiology Ročník 27; číslo 6; s. 701 - 710
Hlavní autoři: Colombi, Davide, Villani, Gabriele D., Maffi, Gabriele, Risoli, Camilla, Bodini, Flavio C., Petrini, Marcello, Morelli, Nicola, Anselmi, Pietro, Milanese, Gianluca, Silva, Mario, Sverzellati, Nicola, Michieletti, Emanuele
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2020
Springer Nature B.V
Témata:
ISSN:1070-3004, 1438-1435, 1438-1435
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose To test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19) early outbreak. Methods The study analyzed retrospectively patients underwent chest CT at hospital admission for COVID-19 pneumonia suspicion, between February 21 and March 6, 2020. CT was performed in case of hypoxemia or moderate-to-severe dyspnea. CT scans were analyzed for quantitative and qualitative features obtained visually and by software. Cox proportional hazards regression analysis examined the association between variables and overall survival (OS). Three models were built for stratification of mortality risk: clinical, clinical/visual CT evaluation, and clinical/software-based CT assessment. AUC for each model was used to assess performance in predicting death. Results The study included 248 patients (70% males, median age 68 years). Death occurred in 78/248 (32%) patients. Visual pneumonia extent > 40% (HR 2.15, 95% CI 1.2–3.85, P = 0.01), %high attenuation area – 700 HU > 35% (HR 2.17, 95% CI 1.2–3.94, P = 0.01), exudative consolidations (HR 2.85–2.93, 95% CI 1.61–5.05/1.66–5.16, P < 0.001), visual CAC score > 1 (HR 2.76–3.32, 95% CI 1.4–5.45/1.71–6.46, P < 0.01/ P < 0.001), and CT classified as COVID-19 and other disease (HR 1.92–2.03, 95% CI 1.01–3.67/1.06–3.9, P = 0.04/ P = 0.03) were significantly associated with shorter OS. Models including CT parameters (AUC 0.911–0.913, 95% CI 0.873–0.95/0.875–0.952) were better predictors of death as compared to clinical model (AUC 0.869, 95% CI 0.816–0.922; P = 0.04 for both models). Conclusions In COVID-19 patients, qualitative and quantitative chest CT parameters obtained visually or by software are predictors of mortality. Predictive models including CT metrics were better predictors of death in comparison to clinical model.
AbstractList Purpose To test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19) early outbreak. Methods The study analyzed retrospectively patients underwent chest CT at hospital admission for COVID-19 pneumonia suspicion, between February 21 and March 6, 2020. CT was performed in case of hypoxemia or moderate-to-severe dyspnea. CT scans were analyzed for quantitative and qualitative features obtained visually and by software. Cox proportional hazards regression analysis examined the association between variables and overall survival (OS). Three models were built for stratification of mortality risk: clinical, clinical/visual CT evaluation, and clinical/software-based CT assessment. AUC for each model was used to assess performance in predicting death. Results The study included 248 patients (70% males, median age 68 years). Death occurred in 78/248 (32%) patients. Visual pneumonia extent > 40% (HR 2.15, 95% CI 1.2–3.85, P = 0.01), %high attenuation area – 700 HU > 35% (HR 2.17, 95% CI 1.2–3.94, P = 0.01), exudative consolidations (HR 2.85–2.93, 95% CI 1.61–5.05/1.66–5.16, P < 0.001), visual CAC score > 1 (HR 2.76–3.32, 95% CI 1.4–5.45/1.71–6.46, P < 0.01/ P < 0.001), and CT classified as COVID-19 and other disease (HR 1.92–2.03, 95% CI 1.01–3.67/1.06–3.9, P = 0.04/ P = 0.03) were significantly associated with shorter OS. Models including CT parameters (AUC 0.911–0.913, 95% CI 0.873–0.95/0.875–0.952) were better predictors of death as compared to clinical model (AUC 0.869, 95% CI 0.816–0.922; P = 0.04 for both models). Conclusions In COVID-19 patients, qualitative and quantitative chest CT parameters obtained visually or by software are predictors of mortality. Predictive models including CT metrics were better predictors of death in comparison to clinical model.
To test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19) early outbreak.PURPOSETo test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19) early outbreak.The study analyzed retrospectively patients underwent chest CT at hospital admission for COVID-19 pneumonia suspicion, between February 21 and March 6, 2020. CT was performed in case of hypoxemia or moderate-to-severe dyspnea. CT scans were analyzed for quantitative and qualitative features obtained visually and by software. Cox proportional hazards regression analysis examined the association between variables and overall survival (OS). Three models were built for stratification of mortality risk: clinical, clinical/visual CT evaluation, and clinical/software-based CT assessment. AUC for each model was used to assess performance in predicting death.METHODSThe study analyzed retrospectively patients underwent chest CT at hospital admission for COVID-19 pneumonia suspicion, between February 21 and March 6, 2020. CT was performed in case of hypoxemia or moderate-to-severe dyspnea. CT scans were analyzed for quantitative and qualitative features obtained visually and by software. Cox proportional hazards regression analysis examined the association between variables and overall survival (OS). Three models were built for stratification of mortality risk: clinical, clinical/visual CT evaluation, and clinical/software-based CT assessment. AUC for each model was used to assess performance in predicting death.The study included 248 patients (70% males, median age 68 years). Death occurred in 78/248 (32%) patients. Visual pneumonia extent > 40% (HR 2.15, 95% CI 1.2-3.85, P = 0.01), %high attenuation area - 700 HU > 35% (HR 2.17, 95% CI 1.2-3.94, P = 0.01), exudative consolidations (HR 2.85-2.93, 95% CI 1.61-5.05/1.66-5.16, P < 0.001), visual CAC score > 1 (HR 2.76-3.32, 95% CI 1.4-5.45/1.71-6.46, P < 0.01/P < 0.001), and CT classified as COVID-19 and other disease (HR 1.92-2.03, 95% CI 1.01-3.67/1.06-3.9, P = 0.04/P = 0.03) were significantly associated with shorter OS. Models including CT parameters (AUC 0.911-0.913, 95% CI 0.873-0.95/0.875-0.952) were better predictors of death as compared to clinical model (AUC 0.869, 95% CI 0.816-0.922; P = 0.04 for both models).RESULTSThe study included 248 patients (70% males, median age 68 years). Death occurred in 78/248 (32%) patients. Visual pneumonia extent > 40% (HR 2.15, 95% CI 1.2-3.85, P = 0.01), %high attenuation area - 700 HU > 35% (HR 2.17, 95% CI 1.2-3.94, P = 0.01), exudative consolidations (HR 2.85-2.93, 95% CI 1.61-5.05/1.66-5.16, P < 0.001), visual CAC score > 1 (HR 2.76-3.32, 95% CI 1.4-5.45/1.71-6.46, P < 0.01/P < 0.001), and CT classified as COVID-19 and other disease (HR 1.92-2.03, 95% CI 1.01-3.67/1.06-3.9, P = 0.04/P = 0.03) were significantly associated with shorter OS. Models including CT parameters (AUC 0.911-0.913, 95% CI 0.873-0.95/0.875-0.952) were better predictors of death as compared to clinical model (AUC 0.869, 95% CI 0.816-0.922; P = 0.04 for both models).In COVID-19 patients, qualitative and quantitative chest CT parameters obtained visually or by software are predictors of mortality. Predictive models including CT metrics were better predictors of death in comparison to clinical model.CONCLUSIONSIn COVID-19 patients, qualitative and quantitative chest CT parameters obtained visually or by software are predictors of mortality. Predictive models including CT metrics were better predictors of death in comparison to clinical model.
PurposeTo test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19) early outbreak.MethodsThe study analyzed retrospectively patients underwent chest CT at hospital admission for COVID-19 pneumonia suspicion, between February 21 and March 6, 2020. CT was performed in case of hypoxemia or moderate-to-severe dyspnea. CT scans were analyzed for quantitative and qualitative features obtained visually and by software. Cox proportional hazards regression analysis examined the association between variables and overall survival (OS). Three models were built for stratification of mortality risk: clinical, clinical/visual CT evaluation, and clinical/software-based CT assessment. AUC for each model was used to assess performance in predicting death.ResultsThe study included 248 patients (70% males, median age 68 years). Death occurred in 78/248 (32%) patients. Visual pneumonia extent > 40% (HR 2.15, 95% CI 1.2–3.85, P = 0.01), %high attenuation area – 700 HU > 35% (HR 2.17, 95% CI 1.2–3.94, P = 0.01), exudative consolidations (HR 2.85–2.93, 95% CI 1.61–5.05/1.66–5.16, P < 0.001), visual CAC score > 1 (HR 2.76–3.32, 95% CI 1.4–5.45/1.71–6.46, P < 0.01/P < 0.001), and CT classified as COVID-19 and other disease (HR 1.92–2.03, 95% CI 1.01–3.67/1.06–3.9, P = 0.04/P = 0.03) were significantly associated with shorter OS. Models including CT parameters (AUC 0.911–0.913, 95% CI 0.873–0.95/0.875–0.952) were better predictors of death as compared to clinical model (AUC 0.869, 95% CI 0.816–0.922; P = 0.04 for both models).ConclusionsIn COVID-19 patients, qualitative and quantitative chest CT parameters obtained visually or by software are predictors of mortality. Predictive models including CT metrics were better predictors of death in comparison to clinical model.
To test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19) early outbreak. The study analyzed retrospectively patients underwent chest CT at hospital admission for COVID-19 pneumonia suspicion, between February 21 and March 6, 2020. CT was performed in case of hypoxemia or moderate-to-severe dyspnea. CT scans were analyzed for quantitative and qualitative features obtained visually and by software. Cox proportional hazards regression analysis examined the association between variables and overall survival (OS). Three models were built for stratification of mortality risk: clinical, clinical/visual CT evaluation, and clinical/software-based CT assessment. AUC for each model was used to assess performance in predicting death. The study included 248 patients (70% males, median age 68 years). Death occurred in 78/248 (32%) patients. Visual pneumonia extent > 40% (HR 2.15, 95% CI 1.2-3.85, P = 0.01), %high attenuation area - 700 HU > 35% (HR 2.17, 95% CI 1.2-3.94, P = 0.01), exudative consolidations (HR 2.85-2.93, 95% CI 1.61-5.05/1.66-5.16, P < 0.001), visual CAC score > 1 (HR 2.76-3.32, 95% CI 1.4-5.45/1.71-6.46, P < 0.01/P < 0.001), and CT classified as COVID-19 and other disease (HR 1.92-2.03, 95% CI 1.01-3.67/1.06-3.9, P = 0.04/P = 0.03) were significantly associated with shorter OS. Models including CT parameters (AUC 0.911-0.913, 95% CI 0.873-0.95/0.875-0.952) were better predictors of death as compared to clinical model (AUC 0.869, 95% CI 0.816-0.922; P = 0.04 for both models). In COVID-19 patients, qualitative and quantitative chest CT parameters obtained visually or by software are predictors of mortality. Predictive models including CT metrics were better predictors of death in comparison to clinical model.
Author Sverzellati, Nicola
Milanese, Gianluca
Petrini, Marcello
Michieletti, Emanuele
Morelli, Nicola
Silva, Mario
Maffi, Gabriele
Villani, Gabriele D.
Colombi, Davide
Risoli, Camilla
Bodini, Flavio C.
Anselmi, Pietro
Author_xml – sequence: 1
  givenname: Davide
  orcidid: 0000-0002-2794-5237
  surname: Colombi
  fullname: Colombi, Davide
  email: D.Colombi@ausl.pc.it
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
– sequence: 2
  givenname: Gabriele D.
  surname: Villani
  fullname: Villani, Gabriele D.
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
– sequence: 3
  givenname: Gabriele
  surname: Maffi
  fullname: Maffi, Gabriele
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
– sequence: 4
  givenname: Camilla
  surname: Risoli
  fullname: Risoli, Camilla
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
– sequence: 5
  givenname: Flavio C.
  surname: Bodini
  fullname: Bodini, Flavio C.
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
– sequence: 6
  givenname: Marcello
  surname: Petrini
  fullname: Petrini, Marcello
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
– sequence: 7
  givenname: Nicola
  surname: Morelli
  fullname: Morelli, Nicola
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
– sequence: 8
  givenname: Pietro
  surname: Anselmi
  fullname: Anselmi, Pietro
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
– sequence: 9
  givenname: Gianluca
  surname: Milanese
  fullname: Milanese, Gianluca
  organization: Department of Medicine and Surgery (DiMeC), Unit “Scienze Radiologiche”, University of Parma, Padiglione Barbieri
– sequence: 10
  givenname: Mario
  surname: Silva
  fullname: Silva, Mario
  organization: Department of Medicine and Surgery (DiMeC), Unit “Scienze Radiologiche”, University of Parma, Padiglione Barbieri
– sequence: 11
  givenname: Nicola
  surname: Sverzellati
  fullname: Sverzellati, Nicola
  organization: Department of Medicine and Surgery (DiMeC), Unit “Scienze Radiologiche”, University of Parma, Padiglione Barbieri
– sequence: 12
  givenname: Emanuele
  surname: Michieletti
  fullname: Michieletti, Emanuele
  organization: Department of Radiological Functions, Radiology Unit, “Guglielmo da Saliceto” Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33119835$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu3SAURFWi5tH-QBcVUjfdODk8bMymUnX7SKRIUaW0W4QxTohscABHyt8X5-b2kUUWwDmcmdHAHKE9H7xF6B2BEwIgThMBwqECWhZpG1GRV-iQcNZWZav3Sg0CKgbAD9BRSrcA0MimfY0OGCNEtqw-RO7HokeXdXb3Fmvf47tF-7y7MDc2Zby5wrOOerLZxoR1wnO0vTM5lC4MOM3WuMEZPIWYV7EH7DzeXP46_1IRWajZWZ_TG7Q_6DHZt0_nMfr57evV5qy6uPx-vvl8URkueK6oaRvNJWvqjna9ZYYMmloBou06yURpKbM1570pM8np0PeitdByYAOhINgx-rTVnZdusgXmc9SjmqObdHxQQTv1_8S7G3Ud7pWoJZdNUwQ-PgnEcLeUD1CTS8aOo_Y2LElRXjccJJUr9MMz6G1Yoi_PKyhBJGOsXh29_9fRHyu7FAqg3QJMDClFOyjzmEBYDbpREVBr4GobuCqBq8fAFSlU-oy6U3-RxLakVMD-2sa_tl9g_QagGr3S
CitedBy_id crossref_primary_10_1097_RTI_0000000000000704
crossref_primary_10_1007_s11547_025_02023_w
crossref_primary_10_1097_MD_0000000000026532
crossref_primary_10_1007_s10140_025_02320_x
crossref_primary_10_1016_j_cpcardiol_2022_101175
crossref_primary_10_1007_s11517_023_02958_0
crossref_primary_10_7759_cureus_18768
crossref_primary_10_1186_s12931_023_02530_2
crossref_primary_10_3390_diagnostics12061501
crossref_primary_10_3390_diagnostics11112125
crossref_primary_10_2217_bmm_2021_0536
crossref_primary_10_1038_s41440_021_00798_9
crossref_primary_10_1055_a_2293_8132
crossref_primary_10_3390_diagnostics12071529
crossref_primary_10_6061_clinics_2021_e3503
crossref_primary_10_1007_s10140_021_01905_6
crossref_primary_10_2459_JCM_0000000000001228
crossref_primary_10_3390_diagnostics13213328
crossref_primary_10_1186_s41747_023_00334_z
crossref_primary_10_1186_s44158_021_00016_5
crossref_primary_10_3390_medicina61091646
crossref_primary_10_1111_ggi_14940
crossref_primary_10_1183_23120541_00165_2021
crossref_primary_10_3390_jcm12010143
crossref_primary_10_1007_s10140_022_02048_y
crossref_primary_10_25259_JPATS_31_2023
crossref_primary_10_1016_j_ultrasmedbio_2021_07_014
crossref_primary_10_1016_j_heliyon_2022_e10166
Cites_doi 10.1148/ryct.2020200312
10.1371/journal.pone.0230548
10.1001/jamacardio.2020.3557
10.7150/thno.45985
10.1016/j.ijid.2020.05.021
10.1136/bmjopen-2011-000545
10.1056/NEJMoa2001017
10.3348/kjr.2020.0293
10.1016/j.ejrad.2020.109209
10.1016/j.jhin.2020.01.022
10.1097/RTI.0000000000000516
10.1148/radiol.2462070712
10.1016/j.jcct.2016.10.001
10.1037/h0026256
10.1093/cid/ciaa1012
10.1016/j.jcrc.2020.07.003
10.11613/BM.2012.031
10.3348/kjr.2020.0423
10.1016/j.acra.2015.01.008
10.1007/s00134-020-06212-1
10.1016/j.jcmg.2015.12.001
10.1016/S0140-6736(20)30566-3
10.1007/s00330-020-06969-5
10.1016/j.jcm.2016.02.012
10.1148/radiol.2020201365
10.1038/s41598-020-68057-4
10.1007/s00330-011-2098-2
10.2307/2531595
10.1016/j.mri.2012.05.001
10.1016/j.ejrad.2020.109344
10.1007/s00330-011-2191-6
10.1093/cvr/cvaa193
10.1007/s00330-020-07033-y
10.2174/1573403X16666200731162614
10.1148/radiol.2020201433
ContentType Journal Article
Copyright American Society of Emergency Radiology 2020
American Society of Emergency Radiology 2020.
Copyright_xml – notice: American Society of Emergency Radiology 2020
– notice: American Society of Emergency Radiology 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
KB0
M0S
M1P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s10140-020-01867-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Collection
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1438-1435
EndPage 710
ExternalDocumentID PMC7594966
33119835
10_1007_s10140_020_01867_1
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-XW
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
78A
7RV
7X7
88E
8AO
8FE
8FG
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
AXYYD
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7X
Z82
Z87
Z8V
ZMTXR
ZOVNA
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-2c86a49365b2bde3c1fa2e7078bb937c1f23e544dce3c942fdd78e08403f12073
IEDL.DBID RSV
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000584982200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-3004
1438-1435
IngestDate Tue Nov 04 02:04:49 EST 2025
Sun Nov 09 09:38:36 EST 2025
Tue Dec 02 16:28:00 EST 2025
Mon Jul 21 05:43:46 EDT 2025
Sat Nov 29 05:37:20 EST 2025
Tue Nov 18 21:40:20 EST 2025
Fri Feb 21 02:35:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords COVID-19
Survival analysis
CT scan
Computer Software Applications
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-2c86a49365b2bde3c1fa2e7078bb937c1f23e544dce3c942fdd78e08403f12073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2794-5237
OpenAccessLink http://dx.doi.org/10.1007/s10140-020-01867-1
PMID 33119835
PQID 2471933357
PQPubID 55417
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594966
proquest_miscellaneous_2456409296
proquest_journals_2471933357
pubmed_primary_33119835
crossref_citationtrail_10_1007_s10140_020_01867_1
crossref_primary_10_1007_s10140_020_01867_1
springer_journals_10_1007_s10140_020_01867_1
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: Heidelberg
PublicationSubtitle A Journal of Practical Imaging Official Journal of the American Society of Emergency Radiology
PublicationTitle Emergency radiology
PublicationTitleAbbrev Emerg Radiol
PublicationTitleAlternate Emerg Radiol
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Kim, Garg, O’Halloran, Whitaker, Pham, Anderson, Armistead, Bennett, Billing, Como-Sabetti, Hill, Kim, Monroe, Muse, Reingold, Schaffner, Sutton, Talbot, Torres, Yousey-Hindes, Holstein, Cummings, Brammer, Hall, Fry, Langley (CR3) 2020; 2019
Koo, Li (CR21) 2016; 15
Sun, Li, Guo, Wu, Chen, Fang, Chen, Zeng, Yang (CR8) 2020; 21
Guillo, Bedmar Gomez, Dangeard, Bennani, Saab, Tordjman, Jilet, Chassagnon, Revel (CR28) 2020; 131
DeLong, DeLong, Clarke-Pearson (CR24) 1988; 44
Roberton, Hansell (CR13) 2011; 21
Lichter, Topilsky, Taieb, Banai, Hochstadt, Merdler, Gal Oz, Vine, Goren, Cohen, Sapir, Granot, Mann, Friedman, Angel, Adi, Laufer-Perl, Ingbir, Arbel, Matot, Szekely (CR26) 2020; 46
CR37
Hansell, Bankier, MacMahon, McLoud, Müller, Remy (CR12) 2008; 246
Cohen (CR20) 1968; 70
CR33
Puntmann, Carerj, Wieters, Fahim, Arendt, Hoffmann, Shchendrygina, Escher, Vasa-Nicotera, Zeiher, Vehreschild, Nagel (CR34) 2019; 2020
CR10
Puntmann, Carr-White, Jabbour, Yu, Gebker, Kelle, Hinojar, Doltra, Varma, Child, Rogers, Suna, Arroyo Ucar, Goodman, Khan, Dabir, Herrmann, Zeiher, Nagel (CR35) 2016; 9
Zhou, Yu, Du, Fan, Liu, Liu, Xiang, Wang, Song, Gu, Guan, Wei, Li, Wu, Xu, Tu, Zhang, Chen, Cao (CR32) 2020; 395
Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu, Wu, Gao, Tan (CR1) 2020; 382
Yin, Min, Nan, Feng, Li, Cai, Xi, Wang (CR30) 2020; 21
Liu, Zhang, Huang, Shi, Wang, Shi, Fang, Shan, Mei, Shi, Song, Yang, Ding, Su, Lu, Zhu, Zhang, Shi, Shi (CR7) 2020; 10
Sverzellati, Milanese, Milone, Balbi, Ledda, Silva (CR16) 2020; 35
CR2
CR4
Yuan, Yin, Tao, Tan, Hu (CR6) 2020; 15
Azour, Kadoch, Ward, Eber, Jacobi (CR15) 2017; 11
Kampf, Todt, Pfaender, Steinmann (CR11) 2020; 104
Borghesi, Zigliani, Golemi, Carapella, Maculotti, Farina, Maroldi (CR25) 2020; 96
Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka, Buatti, Aylward, Miller, Pieper, Kikinis (CR19) 2012; 30
Colombi, Petrini, Maffi, Villani, Bodini, Morelli, Milanese, Silva, Sverzellati, Michieletti (CR27) 2020; 133
CR23
Rubin, Haramati, Kanne, Schluger, Yim, Anderson, Altes, Desai, Goo, Inoue, Luo, Prokop, Richeldi, Tomiyama, Leung, Ryerson, Sverzellati, Raoof, Volpi, Martin, Kong, Bush, Goldin, Humbert, Kauczor, Mazzone, Remy-Jardin, Schaefer-Prokop, Wells (CR9) 2020; 201365
(CR31) 2020; 60
Ciccarese, Coppola, Spinelli, Galletta, Lucidi, Paccapelo, De Benedittis, Balacchi, Golfieri (CR14) 2020; 2
McHugh (CR22) 2012; 22
Li, Yang, Ai, Wu (CR36) 2019; 30
Ichikado, Muranaka, Gushima, Kotani, Nader, Fujimoto, Johkoh, Iwamoto, Kawamura, Nagano, Fukuda, Hirata, Yoshinaga, Ichiyasu, Tsumura, Kohrogi, Kawaguchi, Yoshioka, Sakuma, Suga (CR17) 2012; 2
Edey, Devaraj, Barker, Nicholson, Wells, Hansell (CR18) 2011; 21
Pan, Zheng, Ye, Li, Liu, Li, Hesketh, Yang (CR5) 2020; 10
Matsuoka, Yamashiro, Matsushita, Kotoku, Fujikawa, Yagihashi, Nakajima (CR29) 2015; 22
1867_CR4
1867_CR2
F Ciccarese (1867_CR14) 2020; 2
VO Puntmann (1867_CR35) 2016; 9
A Fedorov (1867_CR19) 2012; 30
J Cohen (1867_CR20) 1968; 70
1867_CR23
F Liu (1867_CR7) 2020; 10
VO Puntmann (1867_CR34) 2019; 2020
M Yuan (1867_CR6) 2020; 15
Y Li (1867_CR36) 2019; 30
A Borghesi (1867_CR25) 2020; 96
Chen FZMLYZYZKSDMXZY (1867_CR31) 2020; 60
TK Koo (1867_CR21) 2016; 15
D Sun (1867_CR8) 2020; 21
ER DeLong (1867_CR24) 1988; 44
S Matsuoka (1867_CR29) 2015; 22
N Zhu (1867_CR1) 2020; 382
L Azour (1867_CR15) 2017; 11
1867_CR10
1867_CR33
K Ichikado (1867_CR17) 2012; 2
1867_CR37
D Colombi (1867_CR27) 2020; 133
F Zhou (1867_CR32) 2020; 395
L Kim (1867_CR3) 2020; 2019
AJ Edey (1867_CR18) 2011; 21
X Yin (1867_CR30) 2020; 21
F Pan (1867_CR5) 2020; 10
G Kampf (1867_CR11) 2020; 104
ML McHugh (1867_CR22) 2012; 22
GD Rubin (1867_CR9) 2020; 201365
Y Lichter (1867_CR26) 2020; 46
N Sverzellati (1867_CR16) 2020; 35
E Guillo (1867_CR28) 2020; 131
BJ Roberton (1867_CR13) 2011; 21
DM Hansell (1867_CR12) 2008; 246
References_xml – volume: 2
  year: 2020
  ident: CR14
  article-title: Diagnostic accuracy of North America Expert Consensus Statement on reporting ct findings in patients with suspected COVID-19 infection: an Italian single center experience
  publication-title: Radiol Cardiothorac Imaging
  doi: 10.1148/ryct.2020200312
– volume: 15
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR6
  article-title: Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0230548
– volume: 2020
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR34
  article-title: Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19)
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2020.3557
– volume: 10
  start-page: 5613
  year: 2020
  end-page: 5622
  ident: CR7
  article-title: CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients
  publication-title: Theranostics
  doi: 10.7150/thno.45985
– ident: CR4
– volume: 96
  start-page: 291
  year: 2020
  end-page: 293
  ident: CR25
  article-title: Chest X-ray severity index as a predictor of in-hospital mortality in coronavirus disease 2019: a study of 302 patients from Italy
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2020.05.021
– ident: CR2
– volume: 2
  start-page: 1
  year: 2012
  end-page: 11
  ident: CR17
  article-title: Fibroproliferative changes on high-resolution CT in the acute respiratory distress syndrome predict mortality and ventilator dependency: a prospective observational cohort study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2011-000545
– ident: CR37
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: CR1
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2001017
– volume: 21
  start-page: 859
  year: 2020
  end-page: 868
  ident: CR8
  article-title: Ct quantitative analysis and its relationship with clinical features for assessing the severity of patients with COVID-19
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2020.0293
– volume: 131
  start-page: 109209
  year: 2020
  ident: CR28
  article-title: COVID-19 pneumonia: diagnostic and prognostic role of CT based on a retrospective analysis of 214 consecutive patients from Paris
  publication-title: France. Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109209
– volume: 104
  start-page: 246
  year: 2020
  end-page: 251
  ident: CR11
  article-title: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents
  publication-title: J Hosp Infect
  doi: 10.1016/j.jhin.2020.01.022
– volume: 35
  start-page: 228
  year: 2020
  end-page: 233
  ident: CR16
  article-title: Integrated radiologic algorithm for COVID-19 pandemic
  publication-title: J Thorac Imaging
  doi: 10.1097/RTI.0000000000000516
– ident: CR10
– ident: CR33
– volume: 246
  start-page: 697
  year: 2008
  end-page: 722
  ident: CR12
  article-title: Fleischner Society: glossary of terms for thoracic imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2462070712
– volume: 11
  start-page: 8
  year: 2017
  end-page: 15
  ident: CR15
  article-title: Estimation of cardiovascular risk on routine chest CT: Ordinal coronary artery calcium scoring as an accurate predictor of Agatston score ranges
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2016.10.001
– volume: 70
  start-page: 213
  year: 1968
  end-page: 220
  ident: CR20
  article-title: Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit
  publication-title: Psychol Bull
  doi: 10.1037/h0026256
– volume: 2019
  start-page: 1
  year: 2020
  end-page: 27
  ident: CR3
  article-title: Risk factors for intensive care unit admission and in-hospital mortality among hospitalized adults identified through the U.S. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET)
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa1012
– volume: 60
  start-page: 32
  year: 2020
  end-page: 37
  ident: CR31
  article-title: The characteristics and outcomes of 681 severe cases with COVID-19 in China
  publication-title: J Crit Care
  doi: 10.1016/j.jcrc.2020.07.003
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  end-page: 282
  ident: CR22
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem Med (Zagreb)
  doi: 10.11613/BM.2012.031
– volume: 21
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR30
  article-title: Assessment of the severity of coronavirus disease: quantitative computed tomography parameters versus semiquantitative visual score
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2020.0423
– ident: CR23
– volume: 22
  start-page: 626
  year: 2015
  end-page: 631
  ident: CR29
  article-title: Quantitative CT evaluation in patients with combined pulmonary fibrosis and emphysema: correlation with pulmonary function
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2015.01.008
– volume: 46
  start-page: 1873
  year: 2020
  end-page: 1883
  ident: CR26
  article-title: Lung ultrasound predicts clinical course and outcomes in COVID-19 patients
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-020-06212-1
– volume: 9
  start-page: 40
  year: 2016
  end-page: 50
  ident: CR35
  article-title: T1-mapping and outcome in nonischemic cardiomyopathy all-cause mortality and heart failure
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2015.12.001
– volume: 395
  start-page: 1054
  year: 2020
  end-page: 1062
  ident: CR32
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
– volume: 30
  start-page: 6186
  year: 2019
  end-page: 6193
  ident: CR36
  article-title: Xia L (2020) Association of “initial CT” findings with mortality in older patients with coronavirus disease 2019 (COVID-19)
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06969-5
– volume: 15
  start-page: 155
  year: 2016
  end-page: 163
  ident: CR21
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J Chiropr Med
  doi: 10.1016/j.jcm.2016.02.012
– volume: 201365
  start-page: 172
  year: 2020
  end-page: 180
  ident: CR9
  article-title: The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner Society
  publication-title: Radiology
  doi: 10.1148/radiol.2020201365
– volume: 10
  start-page: 11336
  year: 2020
  ident: CR5
  article-title: Different computed tomography patterns of coronavirus disease 2019 (COVID-19) between survivors and non-survivors
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-68057-4
– volume: 21
  start-page: 1586
  year: 2011
  end-page: 1593
  ident: CR18
  article-title: Fibrotic idiopathic interstitial pneumonias: HRCT findings that predict mortality
  publication-title: Eur Radiol
  doi: 10.1007/s00330-011-2098-2
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR24
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 30
  start-page: 1323
  year: 2012
  end-page: 1341
  ident: CR19
  article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 133
  start-page: 109344
  year: 2020
  ident: CR27
  article-title: Comparison of admission chest computed tomography and lung ultrasound performance for diagnosis of COVID-19 pneumonia in populations with different disease prevalence
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109344
– volume: 21
  start-page: 2244
  year: 2011
  end-page: 2254
  ident: CR13
  article-title: Organizing pneumonia: a kaleidoscope of concepts and morphologies
  publication-title: Eur Radiol
  doi: 10.1007/s00330-011-2191-6
– volume: 46
  start-page: 1873
  year: 2020
  ident: 1867_CR26
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-020-06212-1
– volume: 21
  start-page: 2244
  year: 2011
  ident: 1867_CR13
  publication-title: Eur Radiol
  doi: 10.1007/s00330-011-2191-6
– volume: 21
  start-page: 1586
  year: 2011
  ident: 1867_CR18
  publication-title: Eur Radiol
  doi: 10.1007/s00330-011-2098-2
– volume: 21
  start-page: 859
  year: 2020
  ident: 1867_CR8
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2020.0293
– volume: 2
  start-page: 1
  year: 2012
  ident: 1867_CR17
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2011-000545
– volume: 70
  start-page: 213
  year: 1968
  ident: 1867_CR20
  publication-title: Psychol Bull
  doi: 10.1037/h0026256
– volume: 395
  start-page: 1054
  year: 2020
  ident: 1867_CR32
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
– volume: 21
  start-page: 1
  year: 2020
  ident: 1867_CR30
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2020.0423
– volume: 382
  start-page: 727
  year: 2020
  ident: 1867_CR1
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2001017
– volume: 30
  start-page: 6186
  year: 2019
  ident: 1867_CR36
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06969-5
– ident: 1867_CR37
  doi: 10.1093/cvr/cvaa193
– volume: 22
  start-page: 626
  year: 2015
  ident: 1867_CR29
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2015.01.008
– ident: 1867_CR4
  doi: 10.1007/s00330-020-07033-y
– volume: 15
  start-page: 1
  year: 2020
  ident: 1867_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0230548
– ident: 1867_CR33
  doi: 10.2174/1573403X16666200731162614
– volume: 246
  start-page: 697
  year: 2008
  ident: 1867_CR12
  publication-title: Radiology
  doi: 10.1148/radiol.2462070712
– volume: 131
  start-page: 109209
  year: 2020
  ident: 1867_CR28
  publication-title: France. Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109209
– volume: 2019
  start-page: 1
  year: 2020
  ident: 1867_CR3
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa1012
– volume: 35
  start-page: 228
  year: 2020
  ident: 1867_CR16
  publication-title: J Thorac Imaging
  doi: 10.1097/RTI.0000000000000516
– volume: 11
  start-page: 8
  year: 2017
  ident: 1867_CR15
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2016.10.001
– volume: 10
  start-page: 11336
  year: 2020
  ident: 1867_CR5
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-68057-4
– volume: 104
  start-page: 246
  year: 2020
  ident: 1867_CR11
  publication-title: J Hosp Infect
  doi: 10.1016/j.jhin.2020.01.022
– volume: 201365
  start-page: 172
  year: 2020
  ident: 1867_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2020201365
– volume: 44
  start-page: 837
  year: 1988
  ident: 1867_CR24
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 30
  start-page: 1323
  year: 2012
  ident: 1867_CR19
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 2
  year: 2020
  ident: 1867_CR14
  publication-title: Radiol Cardiothorac Imaging
  doi: 10.1148/ryct.2020200312
– volume: 96
  start-page: 291
  year: 2020
  ident: 1867_CR25
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2020.05.021
– volume: 10
  start-page: 5613
  year: 2020
  ident: 1867_CR7
  publication-title: Theranostics
  doi: 10.7150/thno.45985
– volume: 60
  start-page: 32
  year: 2020
  ident: 1867_CR31
  publication-title: J Crit Care
  doi: 10.1016/j.jcrc.2020.07.003
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 1867_CR22
  publication-title: Biochem Med (Zagreb)
  doi: 10.11613/BM.2012.031
– ident: 1867_CR2
– volume: 133
  start-page: 109344
  year: 2020
  ident: 1867_CR27
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109344
– volume: 9
  start-page: 40
  year: 2016
  ident: 1867_CR35
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2015.12.001
– volume: 15
  start-page: 155
  year: 2016
  ident: 1867_CR21
  publication-title: J Chiropr Med
  doi: 10.1016/j.jcm.2016.02.012
– ident: 1867_CR23
– volume: 2020
  start-page: 1
  year: 2019
  ident: 1867_CR34
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2020.3557
– ident: 1867_CR10
  doi: 10.1148/radiol.2020201433
SSID ssj0006968
Score 2.3792942
Snippet Purpose To test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease...
To test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19)...
PurposeTo test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 701
SubjectTerms Aged
Attenuation
Betacoronavirus
Chest
Computed tomography
Coronavirus Infections - diagnostic imaging
Coronavirus Infections - mortality
Coronaviruses
COVID-19
Death
Dyspnea
Emergency Medicine
Exudation
Female
Humans
Hypoxemia
Imaging
Male
Mathematical models
Medicine
Medicine & Public Health
Mortality
Original
Original Article
Pandemics
Parameters
Performance prediction
Pneumonia
Pneumonia, Viral - diagnostic imaging
Pneumonia, Viral - mortality
Prediction models
Predictive Value of Tests
Qualitative analysis
Radiographic Image Interpretation, Computer-Assisted
Radiography, Thoracic - methods
Radiology
Regression analysis
Retrospective Studies
SARS-CoV-2
Software
Tomography, X-Ray Computed - methods
Viral diseases
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7BFiEkxFGuQEFG4g0i4iOHnxAsrUCCpUKl6ltkO7ZYiWa3m11-Px7HyWqp6AuPSZzDmfF4xv7mG4BXWWGk1rlNeaazVCglU-UwC8TJoskc0zQQaZ9-KWez6uxMHscFty7CKgebGAx1szC4Rv6WeSvqg2-el--WFylWjcLd1VhC4zrsIVOZmMDeh8PZ8ffRFiP1S4869NbG60NMm4nJcwHayBCYVXlzQXenpkv-5mXY5F97p2FKOrr7v525B3eiM0re99pzH67Zdh9ufo3b7ftwu1_UI32u0gOY94wbgSucqLYhFxvVrocTofQWmZ4QpBM_R5hNR1RHlit8Hhb1IQtHMLMT0UnkPPj9PgYg85ZMv51-_phSSSLNa_cQfhwdnkw_pbFWQ2pEKdYpM1WhhORFrpluLDfUKWaRSkhr7wH5Q8ZtLoT_edxIwVzTlJXNfHjJHWXezjyCSbto7RMg0lDjxWYlNblwJVNWV7LQPM-ELoWTCdBBTLWJROZYT-NXvaVgDpA1L9o6iLamCbwe71n2NB5Xtj4YxFbHId3VW5kl8HK87Acj7rCo1i422CYvfMDMZJHA415Zxtdx7jXU-7sJlDtqNDZAou_dK-38ZyD8LnMpfFiawJtB4baf9e9ePL26F8_gFkPlD9CcA5isVxv7HG6Y3-t5t3oRB9IfnJYjmw
  priority: 102
  providerName: ProQuest
Title Qualitative and quantitative chest CT parameters as predictors of specific mortality in COVID-19 patients
URI https://link.springer.com/article/10.1007/s10140-020-01867-1
https://www.ncbi.nlm.nih.gov/pubmed/33119835
https://www.proquest.com/docview/2471933357
https://www.proquest.com/docview/2456409296
https://pubmed.ncbi.nlm.nih.gov/PMC7594966
Volume 27
WOSCitedRecordID wos000584982200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1438-1435
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006968
  issn: 1070-3004
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CDSEkxGUMCIzKSLxBpPiSOH6EsgkkKFUZVcVLZDuOqMTS0bT8fo6dyygDJHix5Ni52D7H5zj-zmeAZ0lmlTGpi3liklhorWJd-SiQSmVlUjFDA5H2_J2cTPLFQk27oLCmR7v3W5Jhpv4p2C1AEZkHUuWo3rjm2Udzl3t1nH2cD_Ovp3tpkYY4w6AMdKEyv3_Grjm65GNehkr-sl8azNDJ7f9rwB241bmd5GUrJ3fhiqsP4Pr7bmP9AG62v-9IG5V0D5Ytt0ZgBSe6Lsm3ra43_YVwyBYZnxJPHH7mATUN0Q05X_vn-eN7yKoiPobT45DIWfDw0dsny5qMP8zfvo6pIh2ha3MIn06OT8dv4u5UhtgKKTYxs3mmheJZapgpHbe00sx50iBj0NfBLOMuFQK7jFslWFWWMncJLiR5RRnOKPdhr17V7iEQZanFwXKK2lRUkmlncpUZnibCSFGpCGg_OIXtKMv9yRlfiwuy5QBOwz4tQp8WNILnwz3nLWHHX2sf9WNedMrbFAwNtuKcpzKCp0Mxqp3fS9G1W219nTTDpTFTWQQPWhEZXsc5pQo92wjkjvAMFTyl925JvfwSqL1lqgQuQCN40YvQxWf9uRWP_q36Y7jBvBQGUM4R7G3WW_cErtnvm2WzHsFVOZv7dCFDmo9g_9XxZDrD3DT9PArK9gNvFB2D
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aAwES4mN8BQYYCZ4gInacDz8ghDqmVesKQqXaW4gdR1Riade0IP4Uv5F7naRVmdjbHnhs7aZxe3zsG597LsCLIDZK68j6YaADX-a58vOSskBKFRdBKTR3RtrjQTIcpsfH6tMW_O5yYUhW2XGiI-piaugZ-RuBLIrBdxgl72anPlWNotPVroRGA4tD--snhmz12_4e_r8vhdj_MOod-G1VAd_IRC58YdI4lyqMIy10YUPDy1xYMr3RGtdqfClCG0lZGGxTUpRFkaQ2wEAoLLnAGYHXvQSXkcc5SciSz-MV85PRTKNxRG5D9LVJOm2qnhNSCpKBpUhOfHMhPLO7PSvS_Ouk1i2A-7f-t5_uNtxst9rsfTM37sCWrXbg6lErJtiBG80jS9ZkYt2FSeMn4pzQWV4V7HSZV4vuDVdYjPVGjMzST0hEVLO8ZrM5XY9KFrFpyShvlbRX7MRFNRjhsEnFeh_H_T2fK9aa2Nb34MuFDPw-bFfTyj4Epgw3CBOruIlkmYjc6lTFOowCqRNZKg94B4vMtDbtVC3ke7Y2mHaCPIRS5qCUcQ9erT4za0xKzu2928EkawmrztYY8eD5qhmphs6P8spOl9QnimWA--nYgwcNOFdfF4acK9zNe5BswHbVgWzMN1uqyTdnZ55ESmLQ7cHrDuDr2_r3KB6dP4pncO1gdDTIBv3h4WO4LmjiORHSLmwv5kv7BK6YH4tJPX_qpjCDrxcN_D8o8n8K
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA01IiMu4BQYYCZ4gInacix8QQi0V1Ubpw5imvQTbsUUllnZNC-Kv8es4dpJWZWJve-CxsZPG7XeOfezvfAfgRZRqoVRiwjhSUcilFKG0LgvEirSMLFPUC2kfHWSjUX58LMZb8LvLhXG0ys4nekddTrXbI3_D0Iti8B1jAG9bWsS4P3g3OwtdBSl30tqV02ggsm9-_cTwrX477ON__ZKxwYfD3sewrTAQap7xRch0nkou4jRRTJUm1tRKZpwAjlI4b-NHFpuE81Jjm-DMlmWWmwiDothShtaBz70CVzOMMZ11jZOT1SzgRGcaviP6OURim7DTpu15UiVzlLAcHRXdnBTPrXTPEzb_OrX1k-Hg1v_8M96Gm-0SnLxvbOYObJlqF3Y-tSSDXbjRbGWSJkPrLkwanRGvkE5kVZKzpawW3QVfcIz0DokTUT915KKayJrM5u55rpQRmVri8lkdJ4uc-mgHIx8yqUjv89GwH1JBWnHb-h58uZSB34ftalqZh0CEphohYwTVCbcZk0blIlVxEnGVcSsCoB1ECt3Kt7sqIt-LtfC0J-ohrAoPq4IG8Gp1z6wRL7mw914HmaJ1ZHWxxksAz1fN6ILcuZKszHTp-iQpj3CdnQbwoAHq6uvimFKBq_wAsg0Irzo4efPNlmryzcucZ4ngGIwH8LoD-_q1_j2KRxeP4hnsIN6Lg-Fo_zFcZ84GPTdpD7YX86V5Atf0j8Wknj_11kzg62Xj_g8kMofQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qualitative+and+quantitative+chest+CT+parameters+as+predictors+of+specific+mortality+in+COVID-19+patients&rft.jtitle=Emergency+radiology&rft.au=Colombi%2C+Davide&rft.au=Villani%2C+Gabriele+D.&rft.au=Maffi%2C+Gabriele&rft.au=Risoli%2C+Camilla&rft.date=2020-12-01&rft.pub=Springer+International+Publishing&rft.issn=1070-3004&rft.eissn=1438-1435&rft.volume=27&rft.issue=6&rft.spage=701&rft.epage=710&rft_id=info:doi/10.1007%2Fs10140-020-01867-1&rft.externalDocID=10_1007_s10140_020_01867_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-3004&client=summon