MW-MADDPG: a meta-learning based decision-making method for collaborative UAV swarm

Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approach...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neurorobotics Vol. 17; p. 1243174
Main Authors: Zhao, Minrui, Wang, Gang, Fu, Qiang, Guo, Xiangke, Chen, Yu, Li, Tengda, Liu, XiangYu
Format: Journal Article
Language:English
Published: Lausanne Frontiers Research Foundation 21.09.2023
Frontiers Media S.A
Subjects:
ISSN:1662-5218, 1662-5218
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods.
AbstractList Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods.
Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods.Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods.
Author Liu, XiangYu
Guo, Xiangke
Wang, Gang
Zhao, Minrui
Fu, Qiang
Chen, Yu
Li, Tengda
AuthorAffiliation 2 Graduate School, Academy of Military Science , Beijing , China
1 College of Air and Missile Defense, Air Force Engineering University , Xi'an , China
3 Unit 95866 of PLA , Baoding , China
AuthorAffiliation_xml – name: 3 Unit 95866 of PLA , Baoding , China
– name: 1 College of Air and Missile Defense, Air Force Engineering University , Xi'an , China
– name: 2 Graduate School, Academy of Military Science , Beijing , China
Author_xml – sequence: 1
  givenname: Minrui
  surname: Zhao
  fullname: Zhao, Minrui
– sequence: 2
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
– sequence: 3
  givenname: Qiang
  surname: Fu
  fullname: Fu, Qiang
– sequence: 4
  givenname: Xiangke
  surname: Guo
  fullname: Guo, Xiangke
– sequence: 5
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
– sequence: 6
  givenname: Tengda
  surname: Li
  fullname: Li, Tengda
– sequence: 7
  givenname: XiangYu
  surname: Liu
  fullname: Liu, XiangYu
BookMark eNp9kU9vFCEYxompiW31C3iaxIuX2fJ_wIvZtFqbtNFEq0fywjBb1hmoMFvTby_bXRPbgyfIy_P8gOc5QgcxRY_Qa4IXjCl9MkSb5gXFlC0I5Yx0_Bk6JFLSVlCiDv7Zv0BHpawxllQKdYi-Xv1or5ZnZ1_O3zXQTH6GdvSQY4irxkLxfdN7F0pIsZ3g53ZaNTepb4aUG5fGEWzKMIc731wvvzflN-TpJXo-wFj8q_16jK4_fvh2-qm9_Hx-cbq8bB3v-NxSq4VQmirCmWDWeugZ1bZ3vVcMsMTCaaEUdnjA2GKhnSWSc8BW4A4GzY7RxY7bJ1ib2xwmyPcmQTAPg5RXBvIc3OiNJtJaZSl4qbmzWHfSC0ewGjSAY76y3u9Ytxs7-d75OGcYH0Efn8RwY1bpzhAsBOGCVcLbPSGnXxtfZjOF4nxNKPq0KYaqjiumOVNV-uaJdJ02OdasqkpKiaVUXVWpncrlVEr2g3FhrlGn7QPCWG822-7NQ_dm273Zd1-t9In170f-Y_oDoaK0sA
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110247
crossref_primary_10_1016_j_rineng_2025_105139
crossref_primary_10_1038_s41598_024_67886_x
crossref_primary_10_3389_fnbot_2023_1281166
crossref_primary_10_3389_fnbot_2023_1302898
Cites_doi 10.1016/j.comnet.2021.108439
10.1016/j.patcog.2022.108875
10.1016/j.cja.2023.03.044
10.1007/s10462-022-10281-7
10.1016/j.patrec.2022.11.031
10.1038/s41586-022-05172-4
10.1109/SMC.2017.8122622
10.1016/j.knosys.2022.109072
10.1016/j.eswa.2016.10.044
10.1007/s10489-021-02502-3
10.1109/TNNLS.2021.3070584
10.1109/MWC.011.2100036
10.1109/TITS.2022.3155072
10.3934/jimo.2022089
10.1016/j.cie.2022.107994
10.1109/TITS.2020.3040557
10.1016/j.comnet.2023.109644
10.37105/sd.4
10.1002/sys.21477
10.1109/TPAMI.2021.3079209
10.1109/TITS.2020.3042670
10.1109/TCDS.2021.3110959
10.1038/s41586-021-04357-7
10.1109/MNET.011.2000388
10.1109/TNNLS.2021.3079148
10.1016/j.vehcom.2022.100469
10.1016/j.adhoc.2020.102324
10.1038/nature14236
10.1002/asjc.2806
10.3390/rs14061406
10.1109/JSTARS.2022.3206399
10.1007/s00521-021-06569-4
10.1016/j.ast.2020.106053
10.48550/arXiv.2301.08028
10.1016/j.neucom.2020.08.034
10.1126/science.add4679
10.1016/j.cja.2022.09.008
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu.
Copyright © 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu. 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu.
– notice: Copyright © 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu. 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnbot.2023.1243174
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (NC Live)
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1662-5218
ExternalDocumentID oai_doaj_org_article_916bb8b2ae694cb0976e5c108f9aac3e
PMC10551453
10_3389_fnbot_2023_1243174
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFS
ADBBV
ADDVE
ADMLS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
3V.
7XB
8FK
ACXDI
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-2b955892814353bbead329bdcde83a0605c95880c0f00b059cb1644a0b507af93
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001075763600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5218
IngestDate Fri Oct 03 12:52:53 EDT 2025
Tue Nov 04 02:06:17 EST 2025
Thu Oct 02 11:45:20 EDT 2025
Sun Jul 13 03:27:04 EDT 2025
Tue Nov 18 20:36:13 EST 2025
Sat Nov 29 03:48:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-2b955892814353bbead329bdcde83a0605c95880c0f00b059cb1644a0b507af93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Mu Hua, University of Lincoln, United Kingdom; Yan Fang, Kennesaw State University, United States; Pengyu Yuan, Google, United States
Edited by: Ming-Feng Ge, China University of Geosciences Wuhan, China
OpenAccessLink https://doaj.org/article/916bb8b2ae694cb0976e5c108f9aac3e
PQID 2866606687
PQPubID 4424403
ParticipantIDs doaj_primary_oai_doaj_org_article_916bb8b2ae694cb0976e5c108f9aac3e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10551453
proquest_miscellaneous_2874839438
proquest_journals_2866606687
crossref_citationtrail_10_3389_fnbot_2023_1243174
crossref_primary_10_3389_fnbot_2023_1243174
PublicationCentury 2000
PublicationDate 2023-09-21
PublicationDateYYYYMMDD 2023-09-21
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-21
  day: 21
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neurorobotics
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Li (B14) 2022; 131
Pan (B21) 2022; 14
Hospedales (B8) 2022; 44
Giles (B7) 2019; 22
Beck (B2) 2023
Poudel (B24) 2022; 35
Lei (B13) 2021; 35
Wei (B31) 2021; 199
Silveira (B27) 2020; 105
Hou (B9) 2017
Jin (B12) 2023; 225
Yao (B35) 2021; 28
Tang (B28) 2023; 56
Aleksander (B1) 2018; 4
Liu (B16) 2021; 22
Liu (B17); 14
Mnih (B19) 2015; 518
Puente-Castro (B25) 2022; 34
Yang (B34) 2022; 52
Xu (B33) 2021; 432
Fawzi (B5) 2022; 610
Ge (B6) 2023
Ouyang (B20) 2023; 25
Zhao (B37) 2023; 165
Hu (B10) 2023; 36
Pasha (B22) 2022; 23
Rodriguez-Fernandez (B26) 2017; 70
Wang (B30) 2022; 250
Wurman (B32) 2022; 602
Li (B15) 2021; 22
Chamola (B3) 2021; 111
Zhang (B36) 2022; 167
Liu (B18); 15
Perolat (B23) 2022; 378
Wang (B29) 2022; 19
Chen (B4) 2022; 33
Jiang (B11) 2022; 33
References_xml – volume: 199
  start-page: 108439
  year: 2021
  ident: B31
  article-title: Computation offloading over multi-UAV MEC network: a distributed deep reinforcement learning approach
  publication-title: Comput. Netw
  doi: 10.1016/j.comnet.2021.108439
– volume: 131
  start-page: 108875
  year: 2022
  ident: B14
  article-title: Clustering experience replay for the effective exploitation in reinforcement learning
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108875
– year: 2023
  ident: B6
  article-title: Electromagnetic interference modeling and elimination for a solar/hydrogen hybrid powered small-scale UAV
  publication-title: Chin. J. Aeronaut
  doi: 10.1016/j.cja.2023.03.044
– volume: 56
  start-page: 4295
  year: 2023
  ident: B28
  article-title: Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: a comprehensive review
  publication-title: Artif. Intell. Rev
  doi: 10.1007/s10462-022-10281-7
– volume: 165
  start-page: 47
  year: 2023
  ident: B37
  article-title: A multi-scenario text generation method based on meta reinforcement learning
  publication-title: Pattern Recognit. Lett
  doi: 10.1016/j.patrec.2022.11.031
– volume: 610
  start-page: 47
  year: 2022
  ident: B5
  article-title: Discovering faster matrix multiplication algorithms with reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-022-05172-4
– start-page: 316
  volume-title: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
  year: 2017
  ident: B9
  article-title: A novel DDPG method with prioritized experience replay
  doi: 10.1109/SMC.2017.8122622
– volume: 250
  start-page: 109072
  year: 2022
  ident: B30
  article-title: A task allocation algorithm for a swarm of unmanned aerial vehicles based on bionic wolf pack method
  publication-title: Knowl. Based Syst
  doi: 10.1016/j.knosys.2022.109072
– volume: 70
  start-page: 103
  year: 2017
  ident: B26
  article-title: Analysing temporal performance profiles of UAV operators using time series clustering
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2016.10.044
– volume: 52
  start-page: 1582
  year: 2022
  ident: B34
  article-title: A distributed task reassignment method in dynamic environment for multi-UAV system
  publication-title: Appl. Intell
  doi: 10.1007/s10489-021-02502-3
– volume: 33
  start-page: 5374
  year: 2022
  ident: B4
  article-title: Multiagent meta-reinforcement learning for adaptive multipath routing optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2021.3070584
– volume: 28
  start-page: 28
  year: 2021
  ident: B35
  article-title: Joint optimization of control and communication in autonomous UAV swarms: challenges, potentials, and framework
  publication-title: IEEE Wirel. Commun
  doi: 10.1109/MWC.011.2100036
– volume: 23
  start-page: 14224
  year: 2022
  ident: B22
  article-title: The drone scheduling problem: a systematic state-of-the-art review
  publication-title: IEEE Trans. Intell. Transp. Syst
  doi: 10.1109/TITS.2022.3155072
– volume: 19
  start-page: 3362
  year: 2022
  ident: B29
  article-title: A mini review on UAV mission planning
  publication-title: J. Ind. Manag. Optim
  doi: 10.3934/jimo.2022089
– volume: 167
  start-page: 107994
  year: 2022
  ident: B36
  article-title: Helicopter-UAVs search and rescue task allocation considering UAVs operating environment and performance
  publication-title: Comput. Ind. Eng
  doi: 10.1016/j.cie.2022.107994
– volume: 22
  start-page: 2100
  year: 2021
  ident: B15
  article-title: Novel UAV-enabled data collection scheme for intelligent transportation system through UAV speed control
  publication-title: IEEE Trans. Intell. Transp. Syst
  doi: 10.1109/TITS.2020.3040557
– volume: 225
  start-page: 109644
  year: 2023
  ident: B12
  article-title: Equalizing service probability in UAV-assisted wireless powered mmWave networks for post-disaster rescue
  publication-title: Comput. Netw
  doi: 10.1016/j.comnet.2023.109644
– volume: 4
  start-page: 17
  year: 2018
  ident: B1
  article-title: Military use of unmanned aerial vehicles-a historical study
  publication-title: Saf. Def
  doi: 10.37105/sd.4
– volume: 22
  start-page: 271
  year: 2019
  ident: B7
  article-title: A mission-based architecture for swarm unmanned systems
  publication-title: Syst. Eng
  doi: 10.1002/sys.21477
– volume: 44
  start-page: 5149
  year: 2022
  ident: B8
  article-title: Meta-learning in neural networks: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2021.3079209
– volume: 22
  start-page: 5926
  year: 2021
  ident: B16
  article-title: An iterative two-phase optimization method based on divide and conquer framework for integrated scheduling of multiple UAVs
  publication-title: IEEE Trans. Intell. Transp. Syst
  doi: 10.1109/TITS.2020.3042670
– volume: 14
  start-page: 1486
  year: 2022
  ident: B21
  article-title: A dynamically adaptive approach to reducing strategic interference for multiagent systems
  publication-title: IEEE Trans. Cogn. Develop. Syst
  doi: 10.1109/TCDS.2021.3110959
– volume: 602
  start-page: 223
  year: 2022
  ident: B32
  article-title: Outracing champion Gran Turismo drivers with deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-021-04357-7
– volume: 35
  start-page: 386
  year: 2021
  ident: B13
  article-title: Toward intelligent cooperation of UAV swarms: when machine learning meets digital twin
  publication-title: IEEE Netw
  doi: 10.1109/MNET.011.2000388
– volume: 33
  start-page: 6388
  year: 2022
  ident: B11
  article-title: Attention-based meta-reinforcement learning for tracking control of AUV with time-varying dynamics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2021.3079148
– volume: 35
  start-page: 100469
  year: 2022
  ident: B24
  article-title: Task assignment algorithms for unmanned aerial vehicle networks: a comprehensive survey
  publication-title: Veh. Commun
  doi: 10.1016/j.vehcom.2022.100469
– volume: 111
  start-page: 102324
  year: 2021
  ident: B3
  article-title: A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2020.102324
– volume: 518
  start-page: 529
  year: 2015
  ident: B19
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 25
  start-page: 570
  year: 2023
  ident: B20
  article-title: Formation control of unmanned aerial vehicle swarms: a comprehensive review
  publication-title: Asian J. Control
  doi: 10.1002/asjc.2806
– volume: 14
  start-page: 1406
  ident: B17
  article-title: Swarm scheduling method for remote sensing observations during emergency scenarios
  publication-title: Remote Sens
  doi: 10.3390/rs14061406
– volume: 15
  start-page: 8085
  ident: B18
  article-title: YOLOv5-tassel: detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
  doi: 10.1109/JSTARS.2022.3206399
– volume: 34
  start-page: 153
  year: 2022
  ident: B25
  article-title: A review of artificial intelligence applied to path planning in UAV swarms
  publication-title: Neural Comput. Appl
  doi: 10.1007/s00521-021-06569-4
– volume: 105
  start-page: 106053
  year: 2020
  ident: B27
  article-title: Design and real-time implementation of a wireless autopilot using multivariable predictive generalized minimum variance control in the state-space
  publication-title: Aerosp. Sci. Technol
  doi: 10.1016/j.ast.2020.106053
– year: 2023
  ident: B2
  article-title: Survey of meta-reinforcement learning
  publication-title: arXiv
  doi: 10.48550/arXiv.2301.08028
– volume: 432
  start-page: 124
  year: 2021
  ident: B33
  article-title: Meta weight learning via model-agnostic meta-learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.034
– volume: 378
  start-page: 990
  year: 2022
  ident: B23
  article-title: Mastering the game of Stratego with model-free multiagent reinforcement learning
  publication-title: Science
  doi: 10.1126/science.add4679
– volume: 36
  start-page: 377
  year: 2023
  ident: B10
  article-title: Imaginary filtered hindsight experience replay for UAV tracking dynamic targets in large-scale unknown environments
  publication-title: Chin. J. Aeronaut
  doi: 10.1016/j.cja.2022.09.008
SSID ssj0062658
Score 2.3296103
Snippet Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1243174
SubjectTerms Algorithms
Cluster analysis
Collaboration
Decision making
Deep learning
Efficiency
Evacuations & rescues
Learning
MADDPG
meta learning
Model Agnostic Meta Learning (MAML)
multi-agent reinforcement learning (MARL)
Neuroscience
Reinforcement
Scheduling
UAV
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4QAHvisCBRmJGzK1HWdjc0ELpXBgq5WgpbfIdpxSiU3K7rb8fWay3mVz6YVr4ihO3ozn2R7PA3hdlqFpvLHcyeC4LuKIu0bWXAbjRPBSxP5s1cnX8ujInJ7aaVpwW6S0yvWY2A_UdRdojXxfGSTaGB9N-f7iNyfVKNpdTRIaN-EWMhtJKV0TNV2PxMjVC7M6KIMTMbvftL6j9EmVv8WohoFTD4JRX7N_QDSHaZJbcefw_v_2-AHcS4yTjVcm8hBuxPYR3N2qQ_gYvk1-8Mn44GD6-R1zbBaXjic1iTNGYa5mdZLi4bNevYqthKcZMl62ZUlXkR2PT9jij5vPnsDx4afvH7_wpLbAgy71kitvi8JYZYhB5d6jieXK-jrU0eRO4LQn2AK9PYhGCI-sDJFEMuWER0rpGpvvwk7btfEpMK0D8h6iDyOrvSu8kaPaaSvDqKxVFBnI9W-vQipFTooYvyqckhBUVQ9VRVBVCaoM3myeuVgV4ri29QdCc9OSimj3F7r5WZV8skJm7L3xykXsZvACmVksghSmsc6FPGawtwa2Sp69qP6hmsGrzW30SdpocW3sLqlNqZF46txkYAY2NOjQ8E57_rOv7k2KpVIX-bPr3_4c7tAHU-qKknuws5xfxhdwO1wtzxfzl70f_AUEaxL5
  priority: 102
  providerName: ProQuest
Title MW-MADDPG: a meta-learning based decision-making method for collaborative UAV swarm
URI https://www.proquest.com/docview/2866606687
https://www.proquest.com/docview/2874839438
https://pubmed.ncbi.nlm.nih.gov/PMC10551453
https://doaj.org/article/916bb8b2ae694cb0976e5c108f9aac3e
Volume 17
WOSCitedRecordID wos001075763600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CjQM7IH6KjFEZiRsysx2ntrl1bAMkWkXARjlFtuOwSWuK2m779_ecpFVzgQsXH2JHcj4_-31PeX4fwFulfFU5bajl3lKZhSG1FS8p99oy7zgLzd2q869qMtHTqcm3pL5iTlhbHrgF7hDpi3PaCRuGRnrH0H2GzHOmK2OtT0M8fZky62CqPYORpWe6vSKDIZg5rGo3j4mTIn2P_gxdpuy5oaZaf49i9hMktzzO6WN41FFFMmqn-ATuhfop7G0VEHwG38c_6Xh0fJx_-kAsmYWVpZ0MxG8S_VNJyk5Dh84a2SnSKkYTpKpkywRuAjkbnZPlrV3MnsPZ6cmPj59pJ5NAvVRyRYUzWaaN0JH6pM6hbaTCuNKXQaeWYbziTYbb1LOKMYd0CpcAWZBlDrmgrUz6AnbqeR1eApHSI2GJfh_BdjZzmg9LKw33Q1WKwBLga9QK39UQj1IWVwXGEhHpokG6iEgXHdIJvNu886etoPHX0UdxMTYjY_Xr5gHaRNHZRPEvm0jgYL2URbcll4XQGKkhwdIqgTebbtxM8Q-JrcP8Oo5REhmjTHUCumcCvQn1e-rLi6Ysd5Qa5TJL9__HJ7yChxGWmJki-AHsrBbX4TU88Dery-ViAPfVVA9g9-hkkn8bNKaP7VjksVXY7uZfxvmvO6dMC8A
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOiTggW9EYICR4AmZ2YnT2EgIFcpYtbaqxDbGU7AdZ0yiyWi7TfwpfiPXaVKal73tgdfYUfxxfO9xfH0PwMsksXlupKKaW01F7LpU5zyj3ErNrOHMVXerDofJeCyPjtRkA_40d2F8WGVjEytDnZXW_yPfDiUSbfSPMnl_-ot61Sh_utpIaCxhsed-X-CWbf5u0Mf5fRWGO5_2P-7SWlWAWpGIBQ2NimOpQumZQmQMDmUUKpPZzMlIM6T3VsWIastyxgyyD2wxkgbNDFInnfvkS2jyNwWCnXVgczIYTb41th93B7FcXs3BrZ_azgtT-oDNMHqDfhRdtWi5v0oloEVt24GZa55u5_b_NkZ34FbNqUlvuQjuwoYr7sHNtUyL9-HL6Csd9fr9yee3RJOpW2ha62UcE-_IM5LVYkN0WulzkaW0NkFOT9bWyrkjB71DMr_Qs-kDOLiSXj2ETlEW7hEQISwyO0-QukoYHRvJu5kWittukoWOBcCbaU5tnWzda378THHT5aGRVtBIPTTSGhoBvF69c7pMNXJp7Q8ePauaPk149aCcHae11UmR-xsjTagdNtMahtzTxZYzmSutbeQC2GqAlNa2a57-Q1EAL1bFaHX8UZIuXHnm6yQCqbWIZACyhdlWg9olxcmPKn-512TlIo4eX_7153B9d380TIeD8d4TuOE77wN1Qr4FncXszD2Fa_Z8cTKfPatXIYHvVw3qvx8Ab8s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH6aOoTYgd-IwAAjwQmZ2onTOEgIdXSFaVtVARu7Gdtxtkk0GW23iX-Nv47nNCnNZbcduCaO4tif3_te_Pw-gFdJYvPcyJRqbjUVsetRnfOMcis1s4YzV52tOtxLRiN5dJSO1-BPcxbGp1U2NrEy1Flp_T_ybiiRaKN_lEk3r9MixoPhh7Nf1CtI-Z3WRk5jAZFd9_sSw7fZ-50BzvXrMBxuf_v4mdYKA9SKRMxpaNI4lmkoPWuIjMFhjcLUZDZzMtIMqb5NY0S4ZTljBpkI9h4JhGYGaZTOfSEmNP_rSYRBTwfWt7ZH4y-NH8BIIZaLYzoYBqbdvDClT94Mo7foU9Fti5YrrBQDWjS3naS54vWGd_7n8boLt2uuTfqLxXEP1lxxHzZWKjA-gK_73-l-fzAYf3pHNJm4uaa1jsYx8Q4-I1ktQkQnlW4XWUhuE-T6ZGUNXThy0D8ks0s9nTyEg2v5qkfQKcrCPQYihEXG54lTLxVGx0byXqZFym0vyULHAuDNlCtbF2H3WiA_FQZjHiaqgonyMFE1TAJ4s3zmbFGC5MrWWx5Jy5a-fHh1oZweq9oaKYwJjJEm1A67aQ1DTupiy5nMU61t5ALYbEClaps2U_8QFcDL5W20Rn6LSReuPPdtEoGUW0QyANnCb6tD7TvF6UlV19xrtXIRR0-ufvsLuIlIVns7o92ncMt_u8_fCfkmdObTc_cMbtiL-els-rxekAR-XDem_wLxUnhl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MW-MADDPG%3A+a+meta-learning+based+decision-making+method+for+collaborative+UAV+swarm&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Zhao%2C+Minrui&rft.au=Wang%2C+Gang&rft.au=Fu%2C+Qiang&rft.au=Guo%2C+Xiangke&rft.date=2023-09-21&rft.issn=1662-5218&rft.eissn=1662-5218&rft.volume=17&rft_id=info:doi/10.3389%2Ffnbot.2023.1243174&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnbot_2023_1243174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon