MW-MADDPG: a meta-learning based decision-making method for collaborative UAV swarm
Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approach...
Saved in:
| Published in: | Frontiers in neurorobotics Vol. 17; p. 1243174 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Lausanne
Frontiers Research Foundation
21.09.2023
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1662-5218, 1662-5218 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods. |
|---|---|
| AbstractList | Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods. Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods.Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods. |
| Author | Liu, XiangYu Guo, Xiangke Wang, Gang Zhao, Minrui Fu, Qiang Chen, Yu Li, Tengda |
| AuthorAffiliation | 2 Graduate School, Academy of Military Science , Beijing , China 1 College of Air and Missile Defense, Air Force Engineering University , Xi'an , China 3 Unit 95866 of PLA , Baoding , China |
| AuthorAffiliation_xml | – name: 3 Unit 95866 of PLA , Baoding , China – name: 1 College of Air and Missile Defense, Air Force Engineering University , Xi'an , China – name: 2 Graduate School, Academy of Military Science , Beijing , China |
| Author_xml | – sequence: 1 givenname: Minrui surname: Zhao fullname: Zhao, Minrui – sequence: 2 givenname: Gang surname: Wang fullname: Wang, Gang – sequence: 3 givenname: Qiang surname: Fu fullname: Fu, Qiang – sequence: 4 givenname: Xiangke surname: Guo fullname: Guo, Xiangke – sequence: 5 givenname: Yu surname: Chen fullname: Chen, Yu – sequence: 6 givenname: Tengda surname: Li fullname: Li, Tengda – sequence: 7 givenname: XiangYu surname: Liu fullname: Liu, XiangYu |
| BookMark | eNp9kU9vFCEYxompiW31C3iaxIuX2fJ_wIvZtFqbtNFEq0fywjBb1hmoMFvTby_bXRPbgyfIy_P8gOc5QgcxRY_Qa4IXjCl9MkSb5gXFlC0I5Yx0_Bk6JFLSVlCiDv7Zv0BHpawxllQKdYi-Xv1or5ZnZ1_O3zXQTH6GdvSQY4irxkLxfdN7F0pIsZ3g53ZaNTepb4aUG5fGEWzKMIc731wvvzflN-TpJXo-wFj8q_16jK4_fvh2-qm9_Hx-cbq8bB3v-NxSq4VQmirCmWDWeugZ1bZ3vVcMsMTCaaEUdnjA2GKhnSWSc8BW4A4GzY7RxY7bJ1ib2xwmyPcmQTAPg5RXBvIc3OiNJtJaZSl4qbmzWHfSC0ewGjSAY76y3u9Ytxs7-d75OGcYH0Efn8RwY1bpzhAsBOGCVcLbPSGnXxtfZjOF4nxNKPq0KYaqjiumOVNV-uaJdJ02OdasqkpKiaVUXVWpncrlVEr2g3FhrlGn7QPCWG822-7NQ_dm273Zd1-t9In170f-Y_oDoaK0sA |
| CitedBy_id | crossref_primary_10_1016_j_comnet_2024_110247 crossref_primary_10_1016_j_rineng_2025_105139 crossref_primary_10_1038_s41598_024_67886_x crossref_primary_10_3389_fnbot_2023_1281166 crossref_primary_10_3389_fnbot_2023_1302898 |
| Cites_doi | 10.1016/j.comnet.2021.108439 10.1016/j.patcog.2022.108875 10.1016/j.cja.2023.03.044 10.1007/s10462-022-10281-7 10.1016/j.patrec.2022.11.031 10.1038/s41586-022-05172-4 10.1109/SMC.2017.8122622 10.1016/j.knosys.2022.109072 10.1016/j.eswa.2016.10.044 10.1007/s10489-021-02502-3 10.1109/TNNLS.2021.3070584 10.1109/MWC.011.2100036 10.1109/TITS.2022.3155072 10.3934/jimo.2022089 10.1016/j.cie.2022.107994 10.1109/TITS.2020.3040557 10.1016/j.comnet.2023.109644 10.37105/sd.4 10.1002/sys.21477 10.1109/TPAMI.2021.3079209 10.1109/TITS.2020.3042670 10.1109/TCDS.2021.3110959 10.1038/s41586-021-04357-7 10.1109/MNET.011.2000388 10.1109/TNNLS.2021.3079148 10.1016/j.vehcom.2022.100469 10.1016/j.adhoc.2020.102324 10.1038/nature14236 10.1002/asjc.2806 10.3390/rs14061406 10.1109/JSTARS.2022.3206399 10.1007/s00521-021-06569-4 10.1016/j.ast.2020.106053 10.48550/arXiv.2301.08028 10.1016/j.neucom.2020.08.034 10.1126/science.add4679 10.1016/j.cja.2022.09.008 |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu. Copyright © 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu. 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu |
| Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu. – notice: Copyright © 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu. 2023 Zhao, Wang, Fu, Guo, Chen, Li and Liu |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fnbot.2023.1243174 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (NC Live) Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1662-5218 |
| ExternalDocumentID | oai_doaj_org_article_916bb8b2ae694cb0976e5c108f9aac3e PMC10551453 10_3389_fnbot_2023_1243174 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFS ADBBV ADDVE ADMLS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 3V. 7XB 8FK ACXDI PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c474t-2b955892814353bbead329bdcde83a0605c95880c0f00b059cb1644a0b507af93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001075763600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5218 |
| IngestDate | Fri Oct 03 12:52:53 EDT 2025 Tue Nov 04 02:06:17 EST 2025 Thu Oct 02 11:45:20 EDT 2025 Sun Jul 13 03:27:04 EDT 2025 Tue Nov 18 20:36:13 EST 2025 Sat Nov 29 03:48:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-2b955892814353bbead329bdcde83a0605c95880c0f00b059cb1644a0b507af93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Mu Hua, University of Lincoln, United Kingdom; Yan Fang, Kennesaw State University, United States; Pengyu Yuan, Google, United States Edited by: Ming-Feng Ge, China University of Geosciences Wuhan, China |
| OpenAccessLink | https://doaj.org/article/916bb8b2ae694cb0976e5c108f9aac3e |
| PQID | 2866606687 |
| PQPubID | 4424403 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_916bb8b2ae694cb0976e5c108f9aac3e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10551453 proquest_miscellaneous_2874839438 proquest_journals_2866606687 crossref_citationtrail_10_3389_fnbot_2023_1243174 crossref_primary_10_3389_fnbot_2023_1243174 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-21 |
| PublicationDateYYYYMMDD | 2023-09-21 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Frontiers in neurorobotics |
| PublicationYear | 2023 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Li (B14) 2022; 131 Pan (B21) 2022; 14 Hospedales (B8) 2022; 44 Giles (B7) 2019; 22 Beck (B2) 2023 Poudel (B24) 2022; 35 Lei (B13) 2021; 35 Wei (B31) 2021; 199 Silveira (B27) 2020; 105 Hou (B9) 2017 Jin (B12) 2023; 225 Yao (B35) 2021; 28 Tang (B28) 2023; 56 Aleksander (B1) 2018; 4 Liu (B16) 2021; 22 Liu (B17); 14 Mnih (B19) 2015; 518 Puente-Castro (B25) 2022; 34 Yang (B34) 2022; 52 Xu (B33) 2021; 432 Fawzi (B5) 2022; 610 Ge (B6) 2023 Ouyang (B20) 2023; 25 Zhao (B37) 2023; 165 Hu (B10) 2023; 36 Pasha (B22) 2022; 23 Rodriguez-Fernandez (B26) 2017; 70 Wang (B30) 2022; 250 Wurman (B32) 2022; 602 Li (B15) 2021; 22 Chamola (B3) 2021; 111 Zhang (B36) 2022; 167 Liu (B18); 15 Perolat (B23) 2022; 378 Wang (B29) 2022; 19 Chen (B4) 2022; 33 Jiang (B11) 2022; 33 |
| References_xml | – volume: 199 start-page: 108439 year: 2021 ident: B31 article-title: Computation offloading over multi-UAV MEC network: a distributed deep reinforcement learning approach publication-title: Comput. Netw doi: 10.1016/j.comnet.2021.108439 – volume: 131 start-page: 108875 year: 2022 ident: B14 article-title: Clustering experience replay for the effective exploitation in reinforcement learning publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.108875 – year: 2023 ident: B6 article-title: Electromagnetic interference modeling and elimination for a solar/hydrogen hybrid powered small-scale UAV publication-title: Chin. J. Aeronaut doi: 10.1016/j.cja.2023.03.044 – volume: 56 start-page: 4295 year: 2023 ident: B28 article-title: Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: a comprehensive review publication-title: Artif. Intell. Rev doi: 10.1007/s10462-022-10281-7 – volume: 165 start-page: 47 year: 2023 ident: B37 article-title: A multi-scenario text generation method based on meta reinforcement learning publication-title: Pattern Recognit. Lett doi: 10.1016/j.patrec.2022.11.031 – volume: 610 start-page: 47 year: 2022 ident: B5 article-title: Discovering faster matrix multiplication algorithms with reinforcement learning publication-title: Nature doi: 10.1038/s41586-022-05172-4 – start-page: 316 volume-title: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) year: 2017 ident: B9 article-title: A novel DDPG method with prioritized experience replay doi: 10.1109/SMC.2017.8122622 – volume: 250 start-page: 109072 year: 2022 ident: B30 article-title: A task allocation algorithm for a swarm of unmanned aerial vehicles based on bionic wolf pack method publication-title: Knowl. Based Syst doi: 10.1016/j.knosys.2022.109072 – volume: 70 start-page: 103 year: 2017 ident: B26 article-title: Analysing temporal performance profiles of UAV operators using time series clustering publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2016.10.044 – volume: 52 start-page: 1582 year: 2022 ident: B34 article-title: A distributed task reassignment method in dynamic environment for multi-UAV system publication-title: Appl. Intell doi: 10.1007/s10489-021-02502-3 – volume: 33 start-page: 5374 year: 2022 ident: B4 article-title: Multiagent meta-reinforcement learning for adaptive multipath routing optimization publication-title: IEEE Trans. Neural Netw. Learn. Syst doi: 10.1109/TNNLS.2021.3070584 – volume: 28 start-page: 28 year: 2021 ident: B35 article-title: Joint optimization of control and communication in autonomous UAV swarms: challenges, potentials, and framework publication-title: IEEE Wirel. Commun doi: 10.1109/MWC.011.2100036 – volume: 23 start-page: 14224 year: 2022 ident: B22 article-title: The drone scheduling problem: a systematic state-of-the-art review publication-title: IEEE Trans. Intell. Transp. Syst doi: 10.1109/TITS.2022.3155072 – volume: 19 start-page: 3362 year: 2022 ident: B29 article-title: A mini review on UAV mission planning publication-title: J. Ind. Manag. Optim doi: 10.3934/jimo.2022089 – volume: 167 start-page: 107994 year: 2022 ident: B36 article-title: Helicopter-UAVs search and rescue task allocation considering UAVs operating environment and performance publication-title: Comput. Ind. Eng doi: 10.1016/j.cie.2022.107994 – volume: 22 start-page: 2100 year: 2021 ident: B15 article-title: Novel UAV-enabled data collection scheme for intelligent transportation system through UAV speed control publication-title: IEEE Trans. Intell. Transp. Syst doi: 10.1109/TITS.2020.3040557 – volume: 225 start-page: 109644 year: 2023 ident: B12 article-title: Equalizing service probability in UAV-assisted wireless powered mmWave networks for post-disaster rescue publication-title: Comput. Netw doi: 10.1016/j.comnet.2023.109644 – volume: 4 start-page: 17 year: 2018 ident: B1 article-title: Military use of unmanned aerial vehicles-a historical study publication-title: Saf. Def doi: 10.37105/sd.4 – volume: 22 start-page: 271 year: 2019 ident: B7 article-title: A mission-based architecture for swarm unmanned systems publication-title: Syst. Eng doi: 10.1002/sys.21477 – volume: 44 start-page: 5149 year: 2022 ident: B8 article-title: Meta-learning in neural networks: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell doi: 10.1109/TPAMI.2021.3079209 – volume: 22 start-page: 5926 year: 2021 ident: B16 article-title: An iterative two-phase optimization method based on divide and conquer framework for integrated scheduling of multiple UAVs publication-title: IEEE Trans. Intell. Transp. Syst doi: 10.1109/TITS.2020.3042670 – volume: 14 start-page: 1486 year: 2022 ident: B21 article-title: A dynamically adaptive approach to reducing strategic interference for multiagent systems publication-title: IEEE Trans. Cogn. Develop. Syst doi: 10.1109/TCDS.2021.3110959 – volume: 602 start-page: 223 year: 2022 ident: B32 article-title: Outracing champion Gran Turismo drivers with deep reinforcement learning publication-title: Nature doi: 10.1038/s41586-021-04357-7 – volume: 35 start-page: 386 year: 2021 ident: B13 article-title: Toward intelligent cooperation of UAV swarms: when machine learning meets digital twin publication-title: IEEE Netw doi: 10.1109/MNET.011.2000388 – volume: 33 start-page: 6388 year: 2022 ident: B11 article-title: Attention-based meta-reinforcement learning for tracking control of AUV with time-varying dynamics publication-title: IEEE Trans. Neural Netw. Learn. Syst doi: 10.1109/TNNLS.2021.3079148 – volume: 35 start-page: 100469 year: 2022 ident: B24 article-title: Task assignment algorithms for unmanned aerial vehicle networks: a comprehensive survey publication-title: Veh. Commun doi: 10.1016/j.vehcom.2022.100469 – volume: 111 start-page: 102324 year: 2021 ident: B3 article-title: A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2020.102324 – volume: 518 start-page: 529 year: 2015 ident: B19 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 25 start-page: 570 year: 2023 ident: B20 article-title: Formation control of unmanned aerial vehicle swarms: a comprehensive review publication-title: Asian J. Control doi: 10.1002/asjc.2806 – volume: 14 start-page: 1406 ident: B17 article-title: Swarm scheduling method for remote sensing observations during emergency scenarios publication-title: Remote Sens doi: 10.3390/rs14061406 – volume: 15 start-page: 8085 ident: B18 article-title: YOLOv5-tassel: detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens doi: 10.1109/JSTARS.2022.3206399 – volume: 34 start-page: 153 year: 2022 ident: B25 article-title: A review of artificial intelligence applied to path planning in UAV swarms publication-title: Neural Comput. Appl doi: 10.1007/s00521-021-06569-4 – volume: 105 start-page: 106053 year: 2020 ident: B27 article-title: Design and real-time implementation of a wireless autopilot using multivariable predictive generalized minimum variance control in the state-space publication-title: Aerosp. Sci. Technol doi: 10.1016/j.ast.2020.106053 – year: 2023 ident: B2 article-title: Survey of meta-reinforcement learning publication-title: arXiv doi: 10.48550/arXiv.2301.08028 – volume: 432 start-page: 124 year: 2021 ident: B33 article-title: Meta weight learning via model-agnostic meta-learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.034 – volume: 378 start-page: 990 year: 2022 ident: B23 article-title: Mastering the game of Stratego with model-free multiagent reinforcement learning publication-title: Science doi: 10.1126/science.add4679 – volume: 36 start-page: 377 year: 2023 ident: B10 article-title: Imaginary filtered hindsight experience replay for UAV tracking dynamic targets in large-scale unknown environments publication-title: Chin. J. Aeronaut doi: 10.1016/j.cja.2022.09.008 |
| SSID | ssj0062658 |
| Score | 2.3296103 |
| Snippet | Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1243174 |
| SubjectTerms | Algorithms Cluster analysis Collaboration Decision making Deep learning Efficiency Evacuations & rescues Learning MADDPG meta learning Model Agnostic Meta Learning (MAML) multi-agent reinforcement learning (MARL) Neuroscience Reinforcement Scheduling UAV Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4QAHvisCBRmJGzK1HWdjc0ELpXBgq5WgpbfIdpxSiU3K7rb8fWay3mVz6YVr4ihO3ozn2R7PA3hdlqFpvLHcyeC4LuKIu0bWXAbjRPBSxP5s1cnX8ujInJ7aaVpwW6S0yvWY2A_UdRdojXxfGSTaGB9N-f7iNyfVKNpdTRIaN-EWMhtJKV0TNV2PxMjVC7M6KIMTMbvftL6j9EmVv8WohoFTD4JRX7N_QDSHaZJbcefw_v_2-AHcS4yTjVcm8hBuxPYR3N2qQ_gYvk1-8Mn44GD6-R1zbBaXjic1iTNGYa5mdZLi4bNevYqthKcZMl62ZUlXkR2PT9jij5vPnsDx4afvH7_wpLbAgy71kitvi8JYZYhB5d6jieXK-jrU0eRO4LQn2AK9PYhGCI-sDJFEMuWER0rpGpvvwk7btfEpMK0D8h6iDyOrvSu8kaPaaSvDqKxVFBnI9W-vQipFTooYvyqckhBUVQ9VRVBVCaoM3myeuVgV4ri29QdCc9OSimj3F7r5WZV8skJm7L3xykXsZvACmVksghSmsc6FPGawtwa2Sp69qP6hmsGrzW30SdpocW3sLqlNqZF46txkYAY2NOjQ8E57_rOv7k2KpVIX-bPr3_4c7tAHU-qKknuws5xfxhdwO1wtzxfzl70f_AUEaxL5 priority: 102 providerName: ProQuest |
| Title | MW-MADDPG: a meta-learning based decision-making method for collaborative UAV swarm |
| URI | https://www.proquest.com/docview/2866606687 https://www.proquest.com/docview/2874839438 https://pubmed.ncbi.nlm.nih.gov/PMC10551453 https://doaj.org/article/916bb8b2ae694cb0976e5c108f9aac3e |
| Volume | 17 |
| WOSCitedRecordID | wos001075763600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: PIMPY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CjQM7IH6KjFEZiRsysx2ntrl1bAMkWkXARjlFtuOwSWuK2m779_ecpFVzgQsXH2JHcj4_-31PeX4fwFulfFU5bajl3lKZhSG1FS8p99oy7zgLzd2q869qMtHTqcm3pL5iTlhbHrgF7hDpi3PaCRuGRnrH0H2GzHOmK2OtT0M8fZky62CqPYORpWe6vSKDIZg5rGo3j4mTIn2P_gxdpuy5oaZaf49i9hMktzzO6WN41FFFMmqn-ATuhfop7G0VEHwG38c_6Xh0fJx_-kAsmYWVpZ0MxG8S_VNJyk5Dh84a2SnSKkYTpKpkywRuAjkbnZPlrV3MnsPZ6cmPj59pJ5NAvVRyRYUzWaaN0JH6pM6hbaTCuNKXQaeWYbziTYbb1LOKMYd0CpcAWZBlDrmgrUz6AnbqeR1eApHSI2GJfh_BdjZzmg9LKw33Q1WKwBLga9QK39UQj1IWVwXGEhHpokG6iEgXHdIJvNu886etoPHX0UdxMTYjY_Xr5gHaRNHZRPEvm0jgYL2URbcll4XQGKkhwdIqgTebbtxM8Q-JrcP8Oo5REhmjTHUCumcCvQn1e-rLi6Ysd5Qa5TJL9__HJ7yChxGWmJki-AHsrBbX4TU88Dery-ViAPfVVA9g9-hkkn8bNKaP7VjksVXY7uZfxvmvO6dMC8A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOiTggW9EYICR4AmZ2YnT2EgIFcpYtbaqxDbGU7AdZ0yiyWi7TfwpfiPXaVKal73tgdfYUfxxfO9xfH0PwMsksXlupKKaW01F7LpU5zyj3ErNrOHMVXerDofJeCyPjtRkA_40d2F8WGVjEytDnZXW_yPfDiUSbfSPMnl_-ot61Sh_utpIaCxhsed-X-CWbf5u0Mf5fRWGO5_2P-7SWlWAWpGIBQ2NimOpQumZQmQMDmUUKpPZzMlIM6T3VsWIastyxgyyD2wxkgbNDFInnfvkS2jyNwWCnXVgczIYTb41th93B7FcXs3BrZ_azgtT-oDNMHqDfhRdtWi5v0oloEVt24GZa55u5_b_NkZ34FbNqUlvuQjuwoYr7sHNtUyL9-HL6Csd9fr9yee3RJOpW2ha62UcE-_IM5LVYkN0WulzkaW0NkFOT9bWyrkjB71DMr_Qs-kDOLiSXj2ETlEW7hEQISwyO0-QukoYHRvJu5kWittukoWOBcCbaU5tnWzda378THHT5aGRVtBIPTTSGhoBvF69c7pMNXJp7Q8ePauaPk149aCcHae11UmR-xsjTagdNtMahtzTxZYzmSutbeQC2GqAlNa2a57-Q1EAL1bFaHX8UZIuXHnm6yQCqbWIZACyhdlWg9olxcmPKn-512TlIo4eX_7153B9d380TIeD8d4TuOE77wN1Qr4FncXszD2Fa_Z8cTKfPatXIYHvVw3qvx8Ab8s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH6aOoTYgd-IwAAjwQmZ2onTOEgIdXSFaVtVARu7Gdtxtkk0GW23iX-Nv47nNCnNZbcduCaO4tif3_te_Pw-gFdJYvPcyJRqbjUVsetRnfOMcis1s4YzV52tOtxLRiN5dJSO1-BPcxbGp1U2NrEy1Flp_T_ybiiRaKN_lEk3r9MixoPhh7Nf1CtI-Z3WRk5jAZFd9_sSw7fZ-50BzvXrMBxuf_v4mdYKA9SKRMxpaNI4lmkoPWuIjMFhjcLUZDZzMtIMqb5NY0S4ZTljBpkI9h4JhGYGaZTOfSEmNP_rSYRBTwfWt7ZH4y-NH8BIIZaLYzoYBqbdvDClT94Mo7foU9Fti5YrrBQDWjS3naS54vWGd_7n8boLt2uuTfqLxXEP1lxxHzZWKjA-gK_73-l-fzAYf3pHNJm4uaa1jsYx8Q4-I1ktQkQnlW4XWUhuE-T6ZGUNXThy0D8ks0s9nTyEg2v5qkfQKcrCPQYihEXG54lTLxVGx0byXqZFym0vyULHAuDNlCtbF2H3WiA_FQZjHiaqgonyMFE1TAJ4s3zmbFGC5MrWWx5Jy5a-fHh1oZweq9oaKYwJjJEm1A67aQ1DTupiy5nMU61t5ALYbEClaps2U_8QFcDL5W20Rn6LSReuPPdtEoGUW0QyANnCb6tD7TvF6UlV19xrtXIRR0-ufvsLuIlIVns7o92ncMt_u8_fCfkmdObTc_cMbtiL-els-rxekAR-XDem_wLxUnhl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MW-MADDPG%3A+a+meta-learning+based+decision-making+method+for+collaborative+UAV+swarm&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Zhao%2C+Minrui&rft.au=Wang%2C+Gang&rft.au=Fu%2C+Qiang&rft.au=Guo%2C+Xiangke&rft.date=2023-09-21&rft.issn=1662-5218&rft.eissn=1662-5218&rft.volume=17&rft_id=info:doi/10.3389%2Ffnbot.2023.1243174&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnbot_2023_1243174 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon |