Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility
CRISPR–Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted cont...
Uložené v:
| Vydané v: | Nature chemical biology Ročník 20; číslo 3; s. 333 - 343 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Nature Publishing Group US
01.03.2024
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1552-4450, 1552-4469, 1552-4469 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | CRISPR–Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of
Campylobacter jejuni
Cas9 (
Cj
Cas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evo
Cj
Cas9, primarily recognizes N
4
AH and N
5
HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N
3
VRYAC PAM site. Moreover, evo
Cj
Cas9 exhibits higher nuclease activity than wild-type
Cj
Cas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed
Sp
Cas9 variants. Combined with deaminases or reverse transcriptases, evo
Cj
Cas9 enables robust base and prime editing, with the small size of evo
Cj
Cas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.
Through directed evolution, the PAM compatibility of the compact Cas9 variant
Cj
Cas9 was increased. Evolved
Cj
Cas9 shows higher nuclease activity at canonical and non-canonical sites and enables robust in vivo gene editing from single AAV vectors. |
|---|---|
| AbstractList | CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems. CRISPR–Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 ( Cj Cas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evo Cj Cas9, primarily recognizes N 4 AH and N 5 HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N 3 VRYAC PAM site. Moreover, evo Cj Cas9 exhibits higher nuclease activity than wild-type Cj Cas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed Sp Cas9 variants. Combined with deaminases or reverse transcriptases, evo Cj Cas9 enables robust base and prime editing, with the small size of evo Cj Cas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems. Through directed evolution, the PAM compatibility of the compact Cas9 variant Cj Cas9 was increased. Evolved Cj Cas9 shows higher nuclease activity at canonical and non-canonical sites and enables robust in vivo gene editing from single AAV vectors. CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM) and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution (PACE) to broaden the PAM compatibility of CjCas9, the smallest Cas9 orthologue characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur ten-fold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base- and prime editing, with the small size of evoCjCas9 base editors allowing tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus (AAV) vector systems. CRISPR–Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.Through directed evolution, the PAM compatibility of the compact Cas9 variant CjCas9 was increased. Evolved CjCas9 shows higher nuclease activity at canonical and non-canonical sites and enables robust in vivo gene editing from single AAV vectors. CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N AH and N HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems. |
| Author | Mathis, Nicolas Kissling, Lucas Schmidheini, Lukas Rothgangl, Tanja Wang, Jingrui Priscilla Jinek, Martin Schwank, Gerald Böck, Desirée Marquart, Kim Fabiano Chanez, Christelle |
| Author_xml | – sequence: 1 givenname: Lukas orcidid: 0000-0001-5993-9985 surname: Schmidheini fullname: Schmidheini, Lukas organization: Institute of Pharmacology and Toxicology, University of Zurich, Institute of Molecular Health Sciences, ETH Zurich – sequence: 2 givenname: Nicolas orcidid: 0000-0002-4051-8344 surname: Mathis fullname: Mathis, Nicolas organization: Institute of Pharmacology and Toxicology, University of Zurich – sequence: 3 givenname: Kim Fabiano orcidid: 0000-0001-7393-4398 surname: Marquart fullname: Marquart, Kim Fabiano organization: Institute of Pharmacology and Toxicology, University of Zurich, Institute of Molecular Health Sciences, ETH Zurich – sequence: 4 givenname: Tanja orcidid: 0000-0001-7799-2413 surname: Rothgangl fullname: Rothgangl, Tanja organization: Institute of Pharmacology and Toxicology, University of Zurich – sequence: 5 givenname: Lucas orcidid: 0000-0002-4989-0695 surname: Kissling fullname: Kissling, Lucas organization: Institute of Pharmacology and Toxicology, University of Zurich – sequence: 6 givenname: Desirée orcidid: 0000-0001-8142-0629 surname: Böck fullname: Böck, Desirée organization: Institute of Pharmacology and Toxicology, University of Zurich – sequence: 7 givenname: Christelle orcidid: 0000-0002-3432-4375 surname: Chanez fullname: Chanez, Christelle organization: Department of Biochemistry, University of Zurich – sequence: 8 givenname: Jingrui Priscilla orcidid: 0009-0003-2317-5911 surname: Wang fullname: Wang, Jingrui Priscilla organization: Institute of Pharmacology and Toxicology, University of Zurich – sequence: 9 givenname: Martin orcidid: 0000-0002-7601-210X surname: Jinek fullname: Jinek, Martin organization: Department of Biochemistry, University of Zurich – sequence: 10 givenname: Gerald orcidid: 0000-0003-0767-2953 surname: Schwank fullname: Schwank, Gerald email: schwank@pharma.uzh.ch organization: Institute of Pharmacology and Toxicology, University of Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37735239$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtrFTEYhoO02Iv-ARcScONmbO6ZbIQy2FaoKChuQyaTaXOYkxyTzGn775s69ahddJUP8rzf5X2PwF6IwQHwBqMPGNH2JDPMW9UgQhuEGZHN7QtwiDknDWNC7e1qjg7AUc4rhKgQuH0JDqiUlBOqDsHPLobiwxznDAefnC1ugG4bp7n4GGAcoYE2rjfGFtitOpMV3JrkTSjwxpdr2KdoBvjt9MtCFd_7yZe7V2B_NFN2rx_fY_D97NOP7qK5_Hr-uTu9bCyTrDSE2kEJSxhhdhS8H4jiVCGCCR8NtUg5JkcxVIg5KgxFsjXIGWlVz1tHj8HHpetm7tdusC6UZCa9SX5t0p2Oxuv_f4K_1ldxq6XAAktcG7x_bJDir9nlotc-WzdNJrjqiCataDGpBsuKvnuCruKcQj1OE0WrsdVzWqm3_260W-WP4RUgC2BTzDm5cYdgpB9S1Uuqug7Vv1PVt1XUPhFZX8xDQPUqPz0vpYs01znhyqW_az-jugcz4bfL |
| CitedBy_id | crossref_primary_10_1016_j_omtn_2024_102366 crossref_primary_10_1038_s41596_025_01244_7 crossref_primary_10_3389_fgeed_2025_1533197 crossref_primary_10_1038_s41591_024_03466_w crossref_primary_10_1089_crispr_2024_0018 crossref_primary_10_1038_s41580_023_00697_6 crossref_primary_10_1186_s12967_024_05957_3 crossref_primary_10_1038_s41467_024_49233_w crossref_primary_10_3390_pharmaceutics16091197 crossref_primary_10_1038_s41467_024_46107_z crossref_primary_10_1038_s41592_024_02418_z crossref_primary_10_1007_s11248_024_00404_x crossref_primary_10_1038_s41587_025_02675_z crossref_primary_10_1016_j_ymthe_2025_03_057 crossref_primary_10_1146_annurev_chembioeng_100522_114706 crossref_primary_10_1002_biot_70052 crossref_primary_10_1016_j_ymthe_2025_03_026 crossref_primary_10_3390_fishes10020084 crossref_primary_10_1007_s11427_023_2566_8 crossref_primary_10_1089_hum_2024_043 crossref_primary_10_1016_j_heliyon_2024_e38588 crossref_primary_10_1038_s41592_024_02460_x crossref_primary_10_1038_s43856_025_00933_4 crossref_primary_10_1126_science_adt5199 |
| Cites_doi | 10.1016/j.celrep.2020.108364 10.1038/sj.cgt.7700672 10.1038/s41467-018-04580-3 10.1016/j.ymthe.2020.07.009 10.1089/crispr.2021.0143 10.1182/blood-2013-10-534032 10.1016/j.cell.2015.09.038 10.1089/genbio.2022.0015 10.1038/s41586-021-04058-1 10.1186/1479-0556-6-13 10.1126/science.abe7106 10.1016/j.omtn.2017.04.013 10.1038/nbt.4172 10.1038/s41586-020-03086-7 10.1126/scitranslmed.abl9238 10.1016/j.molcel.2018.01.032 10.1126/science.1232033 10.1038/s41587-019-0032-3 10.1038/s41587-020-0412-8 10.1038/s41587-021-00933-4 10.1126/science.1231143 10.1016/j.molcel.2021.08.008 10.1038/s41551-019-0501-5 10.1038/nature24644 10.1038/nature26155 10.1016/j.molcel.2017.02.007 10.1038/s41467-021-25375-z 10.1038/s41580-019-0131-5 10.1038/s41593-019-0431-2 10.1016/j.molcel.2018.12.003 10.1038/s41467-020-19687-9 10.1038/s41591-018-0209-1 10.1038/s41586-021-03534-y 10.1038/nature09929 10.1038/mt.2010.308 10.1016/j.ymthe.2022.01.005 10.1038/nature14592 10.1038/s41587-020-0453-z 10.1038/s41587-022-01410-2 10.1038/ncomms9425 10.1038/nature17946 10.1074/jbc.M410077200 10.1126/science.1225829 10.1038/6981 10.1126/science.aba8853 10.1038/s42003-022-03149-7 10.1096/fj.201900476RR 10.1021/acschembio.7b00855 10.1038/s41467-020-18715-y 10.1038/s41587-020-0555-7 10.1126/sciadv.aaz4849 10.1038/nrd.2018.110 10.1038/s41551-022-00911-4 10.1016/j.omtn.2021.08.025 10.1002/cbic.201800707 10.1038/sj.gt.3301905 10.1038/s41586-019-1711-4 10.1038/ncomms14500 10.1016/j.celrep.2020.02.010 10.1038/s41596-020-00465-2 10.1038/nature14299 10.1038/s41596-020-00410-3 10.1038/s41467-020-20633-y 10.1038/s41592-021-01348-4 10.1093/nar/gkv601 10.1016/j.ymthe.2020.12.007 10.1371/journal.pbio.3000686 10.1038/s41587-020-0642-9 10.1038/s41587-022-01533-6 10.1038/s41587-022-01613-7 10.1152/ajprenal.00128.2002 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature America, Inc. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature America, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. LK8 M0S M1P M2P M7N M7P P64 PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41589-023-01427-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1552-4469 |
| EndPage | 343 |
| ExternalDocumentID | PMC7616171 37735239 10_1038_s41589_023_01427_x |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 180257 funderid: https://doi.org/10.13039/501100001711 – fundername: Swiss National Science Foundation grantid: 185293 – fundername: Swiss National Science Foundation grantid: 182567 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 180257 |
| GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ KB. KC. LK5 LK8 M0L M1P M2P M7P M7R NACWA NNMJJ O9- ODYON P2P PCBAR PDBOC PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT PJZUB PPXIY PQGLB ADXHL CGR CUY CVF ECM EIF NPM PUEGO 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-23cd96c2424cf65bd2953902125fa3c09e47f6dcd94e36a3078a0ea7c9b58e3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071113100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1552-4450 1552-4469 |
| IngestDate | Tue Nov 04 02:05:35 EST 2025 Thu Oct 02 14:32:01 EDT 2025 Mon Oct 06 17:02:10 EDT 2025 Fri Sep 19 01:51:00 EDT 2025 Tue Nov 18 22:20:35 EST 2025 Sat Nov 29 02:45:22 EST 2025 Fri Feb 21 02:39:36 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | 2023. The Author(s), under exclusive licence to Springer Nature America, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-23cd96c2424cf65bd2953902125fa3c09e47f6dcd94e36a3078a0ea7c9b58e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7393-4398 0000-0002-3432-4375 0000-0002-4989-0695 0009-0003-2317-5911 0000-0002-7601-210X 0000-0003-0767-2953 0000-0001-5993-9985 0000-0002-4051-8344 0000-0001-7799-2413 0000-0001-8142-0629 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7616171 |
| PMID | 37735239 |
| PQID | 2933664463 |
| PQPubID | 29034 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7616171 proquest_miscellaneous_2868120237 proquest_journals_2933664463 pubmed_primary_37735239 crossref_primary_10_1038_s41589_023_01427_x crossref_citationtrail_10_1038_s41589_023_01427_x springer_journals_10_1038_s41589_023_01427_x |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
| PublicationTitle | Nature chemical biology |
| PublicationTitleAbbrev | Nat Chem Biol |
| PublicationTitleAlternate | Nat Chem Biol |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Nair (CR51) 2014; 123 Yeh, Chiang, Rees, Edge, Liu (CR8) 2018; 9 Hu (CR37) 2020; 18 Koblan (CR47) 2018; 36 Sahng, Moon, Horton (CR53) 2004; 279 Nguyen Tran (CR61) 2020; 11 Dugar (CR58) 2018; 69 Mali (CR10) 2013; 339 Komor, Kim, Packer, Zuris, Liu (CR6) 2016; 533 Zetsche (CR2) 2015; 163 Gonçalves (CR66) 2011; 19 Walton, Christie, Whittaker, Kleinstiver (CR36) 2020; 368 Pacak, Sakai, Thattaliyath, Mah, Byrne (CR65) 2008; 6 Ran (CR3) 2015; 520 Lazzarotto (CR44) 2020; 38 Walton, Hsu, Joung, Kleinstiver (CR33) 2021; 16 Karvelis (CR40) 2021; 599 CR48 Rothgangl (CR18) 2021; 39 Zheng (CR15) 2022; 30 Zhang (CR21) 2022; 1 Miller (CR31) 2020; 38 Legut (CR42) 2020; 30 Jiao (CR59) 2021; 372 Villiger (CR50) 2021; 26 Zurek, Knyphausen, Neufeld, Pushpanath, Hollfelder (CR68) 2020; 11 Pu, Disare, Dickinson (CR26) 2019; 20 Nakagawa (CR34) 2022; 5 Xu (CR39) 2021; 81 Chen (CR22) 2022; 5 Kleinstiver (CR38) 2015; 523 Deverman, Ravina, Bankiewicz, Paul, Sah (CR12) 2018; 17 Clement (CR71) 2019; 37 Davis (CR20) 2022; 6 Kügler, Kilic, Bähr (CR55) 2003; 10 Yamada (CR30) 2017; 65 Miller, Wang, Liu (CR25) 2020; 15 Badran, Liu (CR28) 2015; 6 Zhu (CR62) 2004; 11 Jinek (CR1) 2012; 337 Mendell (CR13) 2021; 29 Collias, Beisel (CR43) 2021; 12 Levy (CR14) 2020; 4 Böck (CR19) 2022; 14 CR56 Musunuru (CR54) 2021; 593 Richter (CR45) 2020; 38 Hu (CR23) 2018; 556 Edraki (CR41) 2019; 73 Esvelt, Carlson, Liu (CR24) 2011; 472 Grisch-Chan (CR52) 2017; 7 Gaudelli (CR5) 2017; 551 Koblan (CR11) 2021; 589 Anzalone (CR7) 2019; 576 Morales, Gambhir, Bennett, Stedman (CR57) 2020; 28 Marquart (CR49) 2021; 12 Villiger (CR17) 2018; 24 Düring (CR70) 2020; 33 Saha (CR60) 2020; 6 Cong (CR9) 2013; 339 DeBenedictis (CR27) 2022; 19 Huang (CR32) 2023; 41 Li, Eastman, Schwartz, Draghia-Akli (CR67) 1999; 17 Liu (CR46) 2019; 33 Mir, Edraki, Lee, Sontheimer (CR35) 2018; 13 CR69 CR64 Kim (CR29) 2017; 8 Truong (CR16) 2015; 43 Jüttner (CR63) 2019; 22 Pickar-Oliver, Gersbach (CR4) 2019; 20 R Nakagawa (1427_CR34) 2022; 5 1427_CR56 AH Badran (1427_CR28) 2015; 6 JH Hu (1427_CR23) 2018; 556 SM Miller (1427_CR25) 2020; 15 A Edraki (1427_CR41) 2019; 73 N Nair (1427_CR51) 2014; 123 C Zheng (1427_CR15) 2022; 30 K Clement (1427_CR71) 2019; 37 C Saha (1427_CR60) 2020; 6 P Mali (1427_CR10) 2013; 339 BE Deverman (1427_CR12) 2018; 17 KF Marquart (1427_CR49) 2021; 12 H Zhang (1427_CR21) 2022; 1 T Karvelis (1427_CR40) 2021; 599 RT Walton (1427_CR36) 2020; 368 AC Komor (1427_CR6) 2016; 533 J Pu (1427_CR26) 2019; 20 LW Koblan (1427_CR11) 2021; 589 1427_CR64 WH Yeh (1427_CR8) 2018; 9 D-JJ Truong (1427_CR16) 2015; 43 HM Grisch-Chan (1427_CR52) 2017; 7 L Villiger (1427_CR50) 2021; 26 1427_CR69 KM Esvelt (1427_CR24) 2011; 472 JM Levy (1427_CR14) 2020; 4 M Jinek (1427_CR1) 2012; 337 DN Düring (1427_CR70) 2020; 33 M Yamada (1427_CR30) 2017; 65 SM Miller (1427_CR31) 2020; 38 CR Lazzarotto (1427_CR44) 2020; 38 TP Huang (1427_CR32) 2023; 41 FA Ran (1427_CR3) 2015; 520 NMM Gaudelli (1427_CR5) 2017; 551 MT Nguyen Tran (1427_CR61) 2020; 11 T Rothgangl (1427_CR18) 2021; 39 MF Richter (1427_CR45) 2020; 38 JR Mendell (1427_CR13) 2021; 29 Z Hu (1427_CR37) 2020; 18 A Pickar-Oliver (1427_CR4) 2019; 20 M Legut (1427_CR42) 2020; 30 AV Anzalone (1427_CR7) 2019; 576 C Jiao (1427_CR59) 2021; 372 PJ Zurek (1427_CR68) 2020; 11 Z Liu (1427_CR46) 2019; 33 B Zetsche (1427_CR2) 2015; 163 S Chen (1427_CR22) 2022; 5 LW Koblan (1427_CR47) 2018; 36 J Jüttner (1427_CR63) 2019; 22 MAFV Gonçalves (1427_CR66) 2011; 19 RT Walton (1427_CR33) 2021; 16 BP Kleinstiver (1427_CR38) 2015; 523 G Dugar (1427_CR58) 2018; 69 D Collias (1427_CR43) 2021; 12 K Musunuru (1427_CR54) 2021; 593 JR Davis (1427_CR20) 2022; 6 S Kügler (1427_CR55) 2003; 10 A Mir (1427_CR35) 2018; 13 HJ Zhu (1427_CR62) 2004; 11 L Villiger (1427_CR17) 2018; 24 X Li (1427_CR67) 1999; 17 EA DeBenedictis (1427_CR27) 2022; 19 X Xu (1427_CR39) 2021; 81 1427_CR48 WP Sahng (1427_CR53) 2004; 279 E Kim (1427_CR29) 2017; 8 D Böck (1427_CR19) 2022; 14 CA Pacak (1427_CR65) 2008; 6 L Cong (1427_CR9) 2013; 339 L Morales (1427_CR57) 2020; 28 |
| References_xml | – volume: 33 start-page: 108364 year: 2020 ident: CR70 article-title: Fast retrograde access to projection neuron circuits underlying vocal learning in songbirds publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108364 – volume: 11 start-page: 263 year: 2004 end-page: 272 ident: CR62 article-title: Cloning and analysis of human UroplakinII promoter and its application for gene therapy in bladder cancer publication-title: Cancer Gene Ther. doi: 10.1038/sj.cgt.7700672 – volume: 9 start-page: 2184 year: 2018 ident: CR8 article-title: In vivo base editing of post-mitotic sensory cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-04580-3 – volume: 28 start-page: 1753 year: 2020 end-page: 1755 ident: CR57 article-title: Broader implications of progressive liver dysfunction and lethal sepsis in two boys following systemic high-dose AAV publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.07.009 – volume: 5 start-page: 472 year: 2022 end-page: 486 ident: CR22 article-title: Compact 3Cas9 for efficient in vivo genome editing and adenine base editing publication-title: CRISPR J. doi: 10.1089/crispr.2021.0143 – volume: 123 start-page: 3195 year: 2014 end-page: 3199 ident: CR51 article-title: Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy publication-title: Blood doi: 10.1182/blood-2013-10-534032 – volume: 163 start-page: 759 year: 2015 end-page: 771 ident: CR2 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 1 start-page: 285 year: 2022 end-page: 299 ident: CR21 article-title: Adenine base editing in vivo with a single adeno-associated virus vector publication-title: GEN Biotechnol. doi: 10.1089/genbio.2022.0015 – volume: 599 start-page: 692 year: 2021 end-page: 696 ident: CR40 article-title: Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease publication-title: Nature doi: 10.1038/s41586-021-04058-1 – volume: 6 year: 2008 ident: CR65 article-title: Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice publication-title: Genet. Vaccines Ther. doi: 10.1186/1479-0556-6-13 – volume: 372 start-page: 941 year: 2021 end-page: 948 ident: CR59 article-title: Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9 publication-title: Science doi: 10.1126/science.abe7106 – volume: 7 start-page: 339 year: 2017 end-page: 349 ident: CR52 article-title: Low-dose gene therapy for murine PKU using episomal naked DNA vectors expressing PAH from its endogenous liver promoter publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2017.04.013 – volume: 36 start-page: 843 year: 2018 end-page: 848 ident: CR47 article-title: Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4172 – volume: 589 start-page: 608 year: 2021 end-page: 614 ident: CR11 article-title: In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice publication-title: Nature doi: 10.1038/s41586-020-03086-7 – volume: 14 start-page: 9238 year: 2022 ident: CR19 article-title: In vivo prime editing of a metabolic liver disease in mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abl9238 – volume: 69 start-page: 893 year: 2018 end-page: 905 ident: CR58 article-title: CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Cas9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.032 – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: CR10 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 37 start-page: 224 year: 2019 end-page: 226 ident: CR71 article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0032-3 – volume: 38 start-page: 471 year: 2020 end-page: 481 ident: CR31 article-title: Continuous evolution of Cas9 variants compatible with non-G PAMs publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0412-8 – volume: 39 start-page: 949 year: 2021 end-page: 957 ident: CR18 article-title: In vivo adenine base editing of in macaques reduces LDL cholesterol levels publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00933-4 – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: CR9 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 81 start-page: 4333 year: 2021 end-page: 4345 ident: CR39 article-title: Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.08.008 – volume: 4 start-page: 97 year: 2020 end-page: 110 ident: CR14 article-title: Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0501-5 – volume: 551 start-page: 464 year: 2017 end-page: 471 ident: CR5 article-title: Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage publication-title: Nature doi: 10.1038/nature24644 – volume: 556 start-page: 57 year: 2018 end-page: 63 ident: CR23 article-title: Evolved Cas9 variants with broad PAM compatibility and high DNA specificity publication-title: Nature doi: 10.1038/nature26155 – volume: 65 start-page: 1109 year: 2017 end-page: 1121 ident: CR30 article-title: Crystal structure of the minimal Cas9 from reveals the molecular diversity in the CRISPR–Cas9 systems publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.02.007 – volume: 12 start-page: 5114 year: 2021 ident: CR49 article-title: Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens publication-title: Nat. Commun. doi: 10.1038/s41467-021-25375-z – volume: 20 start-page: 490 year: 2019 end-page: 507 ident: CR4 article-title: The next generation of CRISPR–Cas technologies and applications publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0131-5 – volume: 22 start-page: 1345 year: 2019 end-page: 1356 ident: CR63 article-title: Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0431-2 – volume: 73 start-page: 714 year: 2019 end-page: 726 ident: CR41 article-title: A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.12.003 – volume: 11 start-page: 6023 year: 2020 ident: CR68 article-title: UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution publication-title: Nat. Commun. doi: 10.1038/s41467-020-19687-9 – volume: 24 start-page: 1519 year: 2018 end-page: 1525 ident: CR17 article-title: Treatment of a metabolic liver disease by in vivo genome base editing in adult mice publication-title: Nat. Med. doi: 10.1038/s41591-018-0209-1 – volume: 593 start-page: 429 year: 2021 end-page: 434 ident: CR54 article-title: In vivo CRISPR base editing of durably lowers cholesterol in primates publication-title: Nature doi: 10.1038/s41586-021-03534-y – volume: 472 start-page: 499 year: 2011 end-page: 503 ident: CR24 article-title: A system for the continuous directed evolution of biomolecules publication-title: Nature doi: 10.1038/nature09929 – volume: 19 start-page: 1331 year: 2011 end-page: 1341 ident: CR66 article-title: Transcription factor rational design improves directed differentiation of human mesenchymal stem cells into skeletal myocytes publication-title: Mol. Ther. doi: 10.1038/mt.2010.308 – volume: 30 start-page: 1343 year: 2022 end-page: 1351 ident: CR15 article-title: A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.01.005 – volume: 523 start-page: 481 year: 2015 end-page: 485 ident: CR38 article-title: Engineered CRISPR–Cas9 nucleases with altered PAM specificities publication-title: Nature doi: 10.1038/nature14592 – volume: 38 start-page: 883 year: 2020 end-page: 891 ident: CR45 article-title: Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0453-z – ident: CR64 – volume: 41 start-page: 96 year: 2023 end-page: 107 ident: CR32 article-title: High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01410-2 – volume: 6 year: 2015 ident: CR28 article-title: Development of potent in vivo mutagenesis plasmids with broad mutational spectra publication-title: Nat. Commun. doi: 10.1038/ncomms9425 – volume: 533 start-page: 420 year: 2016 end-page: 424 ident: CR6 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature doi: 10.1038/nature17946 – volume: 279 start-page: 50630 year: 2004 end-page: 50638 ident: CR53 article-title: Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410077200 – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: CR1 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 17 start-page: 241 year: 1999 end-page: 245 ident: CR67 article-title: Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences publication-title: Nat. Biotechnol. doi: 10.1038/6981 – volume: 368 start-page: 290 year: 2020 end-page: 296 ident: CR36 article-title: Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants publication-title: Science doi: 10.1126/science.aba8853 – volume: 5 start-page: 211 year: 2022 ident: CR34 article-title: Engineered Cas9 variant with enhanced activity and broader targeting range publication-title: Commun. Biol. doi: 10.1038/s42003-022-03149-7 – volume: 33 start-page: 9210 year: 2019 end-page: 9219 ident: CR46 article-title: Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID–Cas9 fusion publication-title: FASEB J. doi: 10.1096/fj.201900476RR – volume: 13 start-page: 357 year: 2018 end-page: 365 ident: CR35 article-title: Type II-C CRISPR–Cas9 biology, mechanism, and application publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00855 – volume: 11 start-page: 4871 year: 2020 ident: CR61 article-title: Engineering domain-inlaid Cas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing publication-title: Nat. Commun. doi: 10.1038/s41467-020-18715-y – ident: CR56 – volume: 38 start-page: 1317 year: 2020 end-page: 1327 ident: CR44 article-title: CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0555-7 – volume: 6 start-page: 4849 year: 2020 end-page: 4866 ident: CR60 article-title: Guide-free Cas9 from pathogenic bacteria causes severe damage to DNA publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz4849 – volume: 17 start-page: 641 year: 2018 end-page: 659 ident: CR12 article-title: Gene therapy for neurological disorders: progress and prospects publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.110 – volume: 6 start-page: 1272 year: 2022 end-page: 1283 ident: CR20 article-title: Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-022-00911-4 – volume: 26 start-page: 502 year: 2021 end-page: 510 ident: CR50 article-title: Replacing the Cas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.08.025 – ident: CR69 – volume: 20 start-page: 1547 year: 2019 end-page: 1553 ident: CR26 article-title: Evolution of C-terminal modification tolerance in full-length and split T7 RNA polymerase biosensors publication-title: ChemBioChem doi: 10.1002/cbic.201800707 – volume: 10 start-page: 337 year: 2003 end-page: 347 ident: CR55 article-title: Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area publication-title: Gene Ther. doi: 10.1038/sj.gt.3301905 – volume: 576 start-page: 149 year: 2019 end-page: 157 ident: CR7 article-title: Search-and-replace genome editing without double-strand breaks or donor DNA publication-title: Nature doi: 10.1038/s41586-019-1711-4 – ident: CR48 – volume: 8 start-page: 14500 year: 2017 ident: CR29 article-title: In vivo genome editing with a small Cas9 orthologue derived from publication-title: Nat. Commun. doi: 10.1038/ncomms14500 – volume: 30 start-page: 2859 year: 2020 end-page: 2868 ident: CR42 article-title: High-throughput screens of PAM-flexible Cas9 variants for gene knockout and transcriptional modulation publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.010 – volume: 16 start-page: 1511 year: 2021 end-page: 1547 ident: CR33 article-title: Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA publication-title: Nat. Protoc. doi: 10.1038/s41596-020-00465-2 – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: CR3 article-title: In vivo genome editing using Cas9 publication-title: Nature doi: 10.1038/nature14299 – volume: 15 start-page: 4101 year: 2020 end-page: 4127 ident: CR25 article-title: Phage-assisted continuous and non-continuous evolution publication-title: Nat. Protoc. doi: 10.1038/s41596-020-00410-3 – volume: 12 start-page: 555 year: 2021 ident: CR43 article-title: CRISPR technologies and the search for the PAM-free nuclease publication-title: Nat. Commun. doi: 10.1038/s41467-020-20633-y – volume: 19 start-page: 55 year: 2022 end-page: 64 ident: CR27 article-title: Systematic molecular evolution enables robust biomolecule discovery publication-title: Nat. Methods doi: 10.1038/s41592-021-01348-4 – volume: 43 start-page: 6450 year: 2015 end-page: 6458 ident: CR16 article-title: Development of an intein-mediated split-Cas9 system for gene therapy publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv601 – volume: 29 start-page: 464 year: 2021 end-page: 488 ident: CR13 article-title: Current clinical applications of in vivo gene therapy with AAVs publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.12.007 – volume: 18 start-page: e3000686 year: 2020 ident: CR37 article-title: A compact Cas9 ortholog from ( Cas9) expands the DNA targeting scope publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000686 – volume: 576 start-page: 149 year: 2019 ident: 1427_CR7 publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 19 start-page: 55 year: 2022 ident: 1427_CR27 publication-title: Nat. Methods doi: 10.1038/s41592-021-01348-4 – volume: 339 start-page: 823 year: 2013 ident: 1427_CR10 publication-title: Science doi: 10.1126/science.1232033 – volume: 12 start-page: 5114 year: 2021 ident: 1427_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25375-z – ident: 1427_CR56 doi: 10.1038/s41587-020-0642-9 – volume: 28 start-page: 1753 year: 2020 ident: 1427_CR57 publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.07.009 – volume: 24 start-page: 1519 year: 2018 ident: 1427_CR17 publication-title: Nat. Med. doi: 10.1038/s41591-018-0209-1 – volume: 38 start-page: 1317 year: 2020 ident: 1427_CR44 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0555-7 – ident: 1427_CR48 doi: 10.1038/s41587-022-01533-6 – volume: 279 start-page: 50630 year: 2004 ident: 1427_CR53 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410077200 – volume: 69 start-page: 893 year: 2018 ident: 1427_CR58 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.032 – volume: 39 start-page: 949 year: 2021 ident: 1427_CR18 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00933-4 – volume: 15 start-page: 4101 year: 2020 ident: 1427_CR25 publication-title: Nat. Protoc. doi: 10.1038/s41596-020-00410-3 – volume: 5 start-page: 211 year: 2022 ident: 1427_CR34 publication-title: Commun. Biol. doi: 10.1038/s42003-022-03149-7 – volume: 43 start-page: 6450 year: 2015 ident: 1427_CR16 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv601 – volume: 372 start-page: 941 year: 2021 ident: 1427_CR59 publication-title: Science doi: 10.1126/science.abe7106 – volume: 599 start-page: 692 year: 2021 ident: 1427_CR40 publication-title: Nature doi: 10.1038/s41586-021-04058-1 – volume: 6 year: 2015 ident: 1427_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms9425 – volume: 123 start-page: 3195 year: 2014 ident: 1427_CR51 publication-title: Blood doi: 10.1182/blood-2013-10-534032 – volume: 7 start-page: 339 year: 2017 ident: 1427_CR52 publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2017.04.013 – volume: 16 start-page: 1511 year: 2021 ident: 1427_CR33 publication-title: Nat. Protoc. doi: 10.1038/s41596-020-00465-2 – volume: 20 start-page: 490 year: 2019 ident: 1427_CR4 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0131-5 – volume: 37 start-page: 224 year: 2019 ident: 1427_CR71 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0032-3 – volume: 36 start-page: 843 year: 2018 ident: 1427_CR47 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4172 – volume: 472 start-page: 499 year: 2011 ident: 1427_CR24 publication-title: Nature doi: 10.1038/nature09929 – volume: 41 start-page: 96 year: 2023 ident: 1427_CR32 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01410-2 – volume: 18 start-page: e3000686 year: 2020 ident: 1427_CR37 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000686 – ident: 1427_CR69 doi: 10.1038/s41587-022-01613-7 – volume: 29 start-page: 464 year: 2021 ident: 1427_CR13 publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.12.007 – volume: 589 start-page: 608 year: 2021 ident: 1427_CR11 publication-title: Nature doi: 10.1038/s41586-020-03086-7 – volume: 11 start-page: 263 year: 2004 ident: 1427_CR62 publication-title: Cancer Gene Ther. doi: 10.1038/sj.cgt.7700672 – volume: 17 start-page: 241 year: 1999 ident: 1427_CR67 publication-title: Nat. Biotechnol. doi: 10.1038/6981 – volume: 65 start-page: 1109 year: 2017 ident: 1427_CR30 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.02.007 – volume: 6 start-page: 4849 year: 2020 ident: 1427_CR60 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz4849 – volume: 368 start-page: 290 year: 2020 ident: 1427_CR36 publication-title: Science doi: 10.1126/science.aba8853 – volume: 523 start-page: 481 year: 2015 ident: 1427_CR38 publication-title: Nature doi: 10.1038/nature14592 – volume: 6 year: 2008 ident: 1427_CR65 publication-title: Genet. Vaccines Ther. doi: 10.1186/1479-0556-6-13 – ident: 1427_CR64 doi: 10.1152/ajprenal.00128.2002 – volume: 9 start-page: 2184 year: 2018 ident: 1427_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04580-3 – volume: 33 start-page: 9210 year: 2019 ident: 1427_CR46 publication-title: FASEB J. doi: 10.1096/fj.201900476RR – volume: 38 start-page: 471 year: 2020 ident: 1427_CR31 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0412-8 – volume: 339 start-page: 819 year: 2013 ident: 1427_CR9 publication-title: Science doi: 10.1126/science.1231143 – volume: 30 start-page: 2859 year: 2020 ident: 1427_CR42 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.010 – volume: 38 start-page: 883 year: 2020 ident: 1427_CR45 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0453-z – volume: 19 start-page: 1331 year: 2011 ident: 1427_CR66 publication-title: Mol. Ther. doi: 10.1038/mt.2010.308 – volume: 337 start-page: 816 year: 2012 ident: 1427_CR1 publication-title: Science doi: 10.1126/science.1225829 – volume: 22 start-page: 1345 year: 2019 ident: 1427_CR63 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0431-2 – volume: 533 start-page: 420 year: 2016 ident: 1427_CR6 publication-title: Nature doi: 10.1038/nature17946 – volume: 556 start-page: 57 year: 2018 ident: 1427_CR23 publication-title: Nature doi: 10.1038/nature26155 – volume: 14 start-page: 9238 year: 2022 ident: 1427_CR19 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abl9238 – volume: 10 start-page: 337 year: 2003 ident: 1427_CR55 publication-title: Gene Ther. doi: 10.1038/sj.gt.3301905 – volume: 1 start-page: 285 year: 2022 ident: 1427_CR21 publication-title: GEN Biotechnol. doi: 10.1089/genbio.2022.0015 – volume: 26 start-page: 502 year: 2021 ident: 1427_CR50 publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.08.025 – volume: 11 start-page: 6023 year: 2020 ident: 1427_CR68 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19687-9 – volume: 73 start-page: 714 year: 2019 ident: 1427_CR41 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.12.003 – volume: 17 start-page: 641 year: 2018 ident: 1427_CR12 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.110 – volume: 30 start-page: 1343 year: 2022 ident: 1427_CR15 publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.01.005 – volume: 33 start-page: 108364 year: 2020 ident: 1427_CR70 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108364 – volume: 5 start-page: 472 year: 2022 ident: 1427_CR22 publication-title: CRISPR J. doi: 10.1089/crispr.2021.0143 – volume: 20 start-page: 1547 year: 2019 ident: 1427_CR26 publication-title: ChemBioChem doi: 10.1002/cbic.201800707 – volume: 13 start-page: 357 year: 2018 ident: 1427_CR35 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00855 – volume: 11 start-page: 4871 year: 2020 ident: 1427_CR61 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18715-y – volume: 81 start-page: 4333 year: 2021 ident: 1427_CR39 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.08.008 – volume: 6 start-page: 1272 year: 2022 ident: 1427_CR20 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-022-00911-4 – volume: 551 start-page: 464 year: 2017 ident: 1427_CR5 publication-title: Nature doi: 10.1038/nature24644 – volume: 8 start-page: 14500 year: 2017 ident: 1427_CR29 publication-title: Nat. Commun. doi: 10.1038/ncomms14500 – volume: 520 start-page: 186 year: 2015 ident: 1427_CR3 publication-title: Nature doi: 10.1038/nature14299 – volume: 4 start-page: 97 year: 2020 ident: 1427_CR14 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0501-5 – volume: 163 start-page: 759 year: 2015 ident: 1427_CR2 publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 12 start-page: 555 year: 2021 ident: 1427_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20633-y – volume: 593 start-page: 429 year: 2021 ident: 1427_CR54 publication-title: Nature doi: 10.1038/s41586-021-03534-y |
| SSID | ssj0036618 |
| Score | 2.553964 |
| Snippet | CRISPR–Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their... CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 333 |
| SubjectTerms | 631/154/152 631/92/469 Biochemical Engineering Biochemistry Biocompatibility Bioorganic Chemistry Cell Biology Chemistry Chemistry and Materials Science Chemistry/Food Science CRISPR CRISPR-Associated Protein 9 - genetics CRISPR-Associated Protein 9 - metabolism CRISPR-Cas Systems - genetics Directed evolution Editing Evolution Gene Editing Genetic disorders Genetic modification Genome Genome editing Genomes Mutation Nuclease Robustness |
| Title | Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility |
| URI | https://link.springer.com/article/10.1038/s41589-023-01427-x https://www.ncbi.nlm.nih.gov/pubmed/37735239 https://www.proquest.com/docview/2933664463 https://www.proquest.com/docview/2868120237 https://pubmed.ncbi.nlm.nih.gov/PMC7616171 |
| Volume | 20 |
| WOSCitedRecordID | wos001071113100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1552-4469 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0036618 issn: 1552-4450 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1552-4469 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0036618 issn: 1552-4450 databaseCode: PCBAR dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medicine (ProQuest) customDbUrl: eissn: 1552-4469 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0036618 issn: 1552-4450 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1552-4469 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0036618 issn: 1552-4450 databaseCode: KB. dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1552-4469 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0036618 issn: 1552-4450 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1552-4469 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0036618 issn: 1552-4450 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDQle-Nj4CIzKSIgXMEtjJ7afUFdtQoJVESDUt8hxHFEEyWjSavvvOTtJpzKxF14iRbk4ce5yZ59__h3AqyTOteRjSXMmS8qLpKB5EklaljY0WqJXZn6j8Ccxm8n5XKV9wq3pYZWDT_SOuqiNy5EfYVhiCQbvhL0__01d1Si3utqX0NiBPceSwDx0Lx08Mcr7_J5jGaOcx2G_aSZk8qjBwOXAQpFDE_FI0IvtwHRttHkdNPnXyqkPSKf3_7crD-BePxQlk852HsItW-3DwaTCafivS_KaeHCoz7rvw53pUBjuAL45RqtFtapXDekioi2IXfc2TOqSaOKh7aYl0x9T3Siyxhk5qpC4rC_Jl7UuSDo566TaDp97-Qi-nJ58nX6gfXkGarjgLY2YKVRi3P4SU6LOi0jFTDnK-LjUzITKclEmBQpxyxKNzkTq0GphVB5Lyx7DblVX9ikQqbAJrbAJo3miczkutdKOhsiIPDIygPGgmcz0zOWugMbPzK-gM5l12sxQm5nXZnYRwJvNPecdb8eN0oeDprL-H26yKzUF8HJzGb-1W1LRlcWvnEXS8bdhSyKAJ519bB7HhMDRLVMBiC3L2Qg4Zu_tK9Xiu2f4Fombdo4DeDvY2NVr_bsXz27uxXO4i2_KOwDdIey2y5V9AbfNul00yxHsiLnwRzmCveOTWfoZzz4ev8PjWZSO_J_1B5pBJYY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglQuPFoegQJGAi40ajZ2YueA0GqhatXtaiUq1BOW4zhiq5KUTXbp_id-JGMn2Wqp6K0Hzpk4Y-ebGT8-zwC8iaNUCdYTfkpF7rMszvw0DoWf5ybQSqBXpu6i8JCPRuLkJBmvwe_uLoylVXY-0TnqrNR2j3wXwxKNMXjH9OP5T99WjbKnq10JjQYWh2bxC5ds1YeDT_h_34bh3ufjwb7fVhXwNeOs9kOqsyTW9lqEzlHVLEwiXPijC49yRXWQGMbzOEMhZmis0AaECoziOkkjYSi2egtu4yQiFI4oOO78PmrndhNtTjOfsShor-gEVOxWGCYtNSm03CUWcv9iNQxemdtepWj-dU7rwt_e_f9r4B7AvXaaTfqNXTyENVNswla_UHX5Y0HeEUd8dScKm7Ax6IrebcFXm61rUszKWUWaaG8yYuatfZIyJ4o42r6uyeB0oKqEzBXacFETu6NN0mmpMjLuHzVSdcM9XjyCLzfQ18ewXpSFeQpEJNiESrAJrVisUtHLVaJsiiXN01ALD3odDqRus7Lb4iBn0rEDqJANdiRiRzrsyAsP3i_fOW9yklwrvd3hQrb-qZKXoPDg9fIxjrU9LlKFwVGWobC56bAl7sGTBo3Lz1HOceZOEw_4Ck6XAjZr-eqTYvLdZS_nsV1S9zzY6RB9qda_e_Hs-l68go3946OhHB6MDp_DXdSaNUTBbVivpzPzAu7oeT2ppi-dzRL4drNI_wPqfXs- |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAzFeuGxcAgOMBLxA1DR2YvsBoaqjYtqoKoHQnhY5jqMVQTKatKz_jJ_HsZN0KhN72wPPcRzb-Y6PL9_5DsDLOEqVYH3hp1TkPsvizE_jUPh5bgKtBM7K1AUKH_LxWBwdyckG_O5iYSytspsT3USdldqekffQLdEYnXdMe3lLi5jsjd6f_vRtBil709ql02ggcmCWv3D7Vr3b38N__SoMRx--DD_6bYYBXzPOaj-kOpOxtiESOsdmZ6GMqLSq51GuqA6kYTyPMyzEDI0V2oNQgVFcyzQShmKt1-A6t5LljjQ46XwAttSdLFp9M5-xKGjDdQIqehW6TEtTCi2PiYXcP1t3iRfWuRfpmn_d2TpXOLrz_w7iXbjdLr_JoLGXe7Bhim3YGRSqLn8syWviCLHupmEbtoZdMrwd-GpVvKbFvJxXpFkFmIyYRWu3pMyJIo7Or2sy_DZUlSQLhbZd1MSedJN0VqqMTAafmlJ1w0le3ofPV9DXB7BZlIV5BERIrEJJrEIrFqtU9HMllZVe0jwNtfCg32Ei0a1au00a8j1xrAEqkgZHCeIocThKzjx4s3rntNEqubT0boeRpJ23quQcIB68WD3GsbbXSKowOMpJKKxmHdbEPXjYIHP1Oco5ruip9ICvYXZVwKqZrz8ppidO1ZzHdqvd9-Bth-7zZv27F48v78VzuIkATw73xwdP4BY2mjX8wV3YrGdz8xRu6EU9rWbPnPkSOL5aoP8BLMCD-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+directed+evolution+of+a+compact+CjCas9+variant+with+broad+PAM+compatibility&rft.jtitle=Nature+chemical+biology&rft.au=Schmidheini%2C+Lukas&rft.au=Mathis%2C+Nicolas&rft.au=Marquart%2C+Kim+Fabiano&rft.au=Rothgangl%2C+Tanja&rft.date=2024-03-01&rft.eissn=1552-4469&rft.volume=20&rft.issue=3&rft.spage=333&rft_id=info:doi/10.1038%2Fs41589-023-01427-x&rft_id=info%3Apmid%2F37735239&rft.externalDocID=37735239 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon |