Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture

Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially Convolutional Neural Network (CNN) has made a tremendous success in the field of computer vision for pattern recognition. Several approaches...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 147888 - 147899
Hlavní autoři: Saponara, Sergio, Elhanashi, Abdussalam, Zheng, Qinghe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially Convolutional Neural Network (CNN) has made a tremendous success in the field of computer vision for pattern recognition. Several approaches have been applied to reconstruct fingerprint images. However, these algorithms encountered problems with various overlapping patterns and poor quality on the images. In this work, a convolutional neural network autoencoder has been used to reconstruct fingerprint images. An autoencoder is a technique, which is able to replicate data in the images. The advantage of convolutional neural networks makes it suitable for feature extraction. Four datasets of fingerprint images have been used to prove the robustness of the proposed architecture. The dataset of fingerprint images has been collected from various real resources. These datasets include a fingerprint verification competition (FVC2004) database, which has been distorted. The proposed approach has been assessed by calculating the cumulative match characteristics (CMC) between the reconstructed and the original features. We obtained promising results of identification rate from four datasets of fingerprints images (Dataset I, Dataset II, Dataset III, Dataset IV) with 98.1%, 97%, 95.9%, and 95.02% respectively by CNN autoencoder. The proposed architecture was tested and compared to the other state-of-the-art methods. The achieved experimental results show that the proposed solution is suitable for recreating a complex context of fingerprinting images.
AbstractList Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially Convolutional Neural Network (CNN) has made a tremendous success in the field of computer vision for pattern recognition. Several approaches have been applied to reconstruct fingerprint images. However, these algorithms encountered problems with various overlapping patterns and poor quality on the images. In this work, a convolutional neural network autoencoder has been used to reconstruct fingerprint images. An autoencoder is a technique, which is able to replicate data in the images. The advantage of convolutional neural networks makes it suitable for feature extraction. Four datasets of fingerprint images have been used to prove the robustness of the proposed architecture. The dataset of fingerprint images has been collected from various real resources. These datasets include a fingerprint verification competition (FVC2004) database, which has been distorted. The proposed approach has been assessed by calculating the cumulative match characteristics (CMC) between the reconstructed and the original features. We obtained promising results of identification rate from four datasets of fingerprints images (Dataset I, Dataset II, Dataset III, Dataset IV) with 98.1%, 97%, 95.9%, and 95.02% respectively by CNN autoencoder. The proposed architecture was tested and compared to the other state-of-the-art methods. The achieved experimental results show that the proposed solution is suitable for recreating a complex context of fingerprinting images.
Author Elhanashi, Abdussalam
Zheng, Qinghe
Saponara, Sergio
Author_xml – sequence: 1
  givenname: Sergio
  orcidid: 0000-0001-6724-4219
  surname: Saponara
  fullname: Saponara, Sergio
  email: sergio.saponara@unipi.it
  organization: Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
– sequence: 2
  givenname: Abdussalam
  orcidid: 0000-0002-2514-1585
  surname: Elhanashi
  fullname: Elhanashi, Abdussalam
  organization: Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
– sequence: 3
  givenname: Qinghe
  orcidid: 0000-0003-1466-2542
  surname: Zheng
  fullname: Zheng, Qinghe
  organization: School of Information Science and Engineering, Shandong University, Jinan, China
BookMark eNp9UU1P3DAQtSqQ2AK_gEskzruN7SS2j6tot10JFYmvq-WMJ1svIaaOA-Lf10u2FeoBHzzWaN6b5_e-kqPe90jIBc0XlObq27KuV7e3C5YzuuCUFaKovpAZo5Wa85JXRx_eJ-R8GHZ5OjK1SjEjDzcIAU10_TZbpwvDc3B9zDZPZotD1rxlte9ffDdG53vTZT9xDO8lvvrwmC3H6LEHbzFkywC_XESIY8AzctyabsDzQz0l9-vVXf1jfnX9fVMvr-aQZMY5laiAIvCiUS0Yq2gjBQiwlgEvC2krLITgHKQtKiZ4CaUFTiuexDfSID8lm4nXerPTSfqTCW_aG6ffGz5stQnRQYfaQmMK2ZaGSpGWU6naFrkRyBtmioomrsuJ6zn43yMOUe_8GNKnB83KZBZLtok0paYpCH4YArYaXDR7d2IwrtM01_tU9JSK3qeiD6kkLP8P-1fx56iLCeUQ8R9ClUpKqfgfS9GbVA
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_app122110986
crossref_primary_10_1007_s11554_023_01353_0
crossref_primary_10_1002_eng2_12897
crossref_primary_10_3390_biomimetics9010001
crossref_primary_10_1109_ACCESS_2022_3144386
crossref_primary_10_3390_inventions7020039
crossref_primary_10_1051_matecconf_202439201069
crossref_primary_10_1016_j_iswa_2023_200180
crossref_primary_10_1016_j_sasc_2024_200106
Cites_doi 10.1016/j.procs.2015.08.072
10.1109/ACCESS.2020.2971779
10.1049/iet-ipr.2018.5466
10.1049/el.2013.2619
10.1109/ACCESS.2018.2810849
10.1002/int.22586
10.1016/j.promfg.2018.10.023
10.1038/323533a0
10.1109/CISP.2012.6469988
10.1007/978-3-540-25948-0_1
10.1109/ACCESS.2019.2924127
10.1109/ACCESS.2020.2989050
10.1002/cpe.6057
10.1155/2009/284124
10.1109/ACCESS.2020.3005687
10.1049/iet-bmt.2016.0161
10.5171/2016.813264
10.1145/3387130
10.1109/TCSVT.2003.818355
10.1016/j.compbiomed.2016.09.019
10.1109/INFOMAN.2018.8392815
10.1109/ECTICon.2012.6254113
10.1016/j.image.2017.08.010
10.1007/s00521-020-05514-1
10.1145/3375799
10.3390/info9090213
10.1007/s00779-017-1094-1
10.1007/11552499_3
10.5391/IJFIS.2017.17.3.170
10.1073/pnas.1410272112
10.1109/CVPR.2014.244
10.1109/TIFS.2019.2930487
10.1049/iet-cvi.2016.0005
10.1007/s11042-018-5633-1
10.1016/j.ins.2013.08.022
10.1109/ICASSP.2017.7952518
10.1002/int.21948
10.1080/02522667.2016.1224468
10.1007/s41870-020-00508-7
10.1109/TPAMI.2018.2818162
10.1007/s11045-020-00736-x
10.1007/s00521-018-3609-8
10.3389/frobt.2020.00113
10.1109/CISP-BMEI.2016.7852722
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3124746
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 147899
ExternalDocumentID oai_doaj_org_article_dcba48f5a187474189ffe3a7e3b2a461
10_1109_ACCESS_2021_3124746
9598889
Genre orig-research
GrantInformation_xml – fundername: Abdussalam Elhanashi was supported by Islamic Development Bank for his Ph.D. degree
  funderid: 10.13039/501100003971
– fundername: Ministero Istruzione Università Ricerca (MIUR)–Dipartimento di Eccellenza Crosslab Project at the University of Pisa
  funderid: 10.13039/501100007514
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c474t-18e9c1ec34b9fcad91b87c7cdd2c3548d6e47733c8d462735c5dc3163695b8ae3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:38:08 EDT 2025
Sun Jun 29 12:37:54 EDT 2025
Sat Nov 29 06:31:42 EST 2025
Tue Nov 18 22:26:30 EST 2025
Wed Aug 27 02:26:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-18e9c1ec34b9fcad91b87c7cdd2c3548d6e47733c8d462735c5dc3163695b8ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6724-4219
0000-0003-1466-2542
0000-0002-2514-1585
OpenAccessLink https://doaj.org/article/dcba48f5a187474189ffe3a7e3b2a461
PQID 2595720007
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2021_3124746
crossref_primary_10_1109_ACCESS_2021_3124746
proquest_journals_2595720007
doaj_primary_oai_doaj_org_article_dcba48f5a187474189ffe3a7e3b2a461
ieee_primary_9598889
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
bidishaw (ref20) 2014; 5
ref17
ref16
ref19
gawande (ref47) 2021
ref18
ref51
ref50
ref46
ref41
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
yani (ref29) 2016
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
goodfellow (ref42) 2016
ref2
rumelhart (ref43) 1986; 323
ref1
ref39
ref38
isah shehu (ref49) 2018
gawande (ref48) 2021
hijazi (ref45) 2015
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
garrison cottrell (ref44) 1987
References_xml – ident: ref51
  doi: 10.1016/j.procs.2015.08.072
– ident: ref40
  doi: 10.1109/ACCESS.2020.2971779
– year: 2018
  ident: ref49
  article-title: Sokoto coventry fingerprint dataset
  publication-title: arXiv 1807 10609
– ident: ref33
  doi: 10.1049/iet-ipr.2018.5466
– ident: ref16
  doi: 10.1049/el.2013.2619
– ident: ref6
  doi: 10.1109/ACCESS.2018.2810849
– ident: ref23
  doi: 10.1002/int.22586
– ident: ref46
  doi: 10.1016/j.promfg.2018.10.023
– volume: 323
  start-page: 533
  year: 1986
  ident: ref43
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref17
  doi: 10.1109/CISP.2012.6469988
– ident: ref50
  doi: 10.1007/978-3-540-25948-0_1
– ident: ref2
  doi: 10.1109/ACCESS.2019.2924127
– ident: ref39
  doi: 10.1109/ACCESS.2020.2989050
– ident: ref32
  doi: 10.1002/cpe.6057
– ident: ref1
  doi: 10.1155/2009/284124
– ident: ref3
  doi: 10.1109/ACCESS.2020.3005687
– ident: ref22
  doi: 10.1049/iet-bmt.2016.0161
– volume: 5
  start-page: 2837
  year: 2014
  ident: ref20
  article-title: Two stage block-wise fingerprint enhancement using discrete wavelet transform
  publication-title: Int J Comput Sci Inf Technol
– ident: ref9
  doi: 10.5171/2016.813264
– start-page: 208
  year: 1987
  ident: ref44
  article-title: Learning internal representations from gray-scale images: An example of extensional programming
  publication-title: Proc 9th Annu Conf Cogn Sci Soc
– ident: ref13
  doi: 10.1145/3387130
– ident: ref15
  doi: 10.1109/TCSVT.2003.818355
– ident: ref5
  doi: 10.1016/j.compbiomed.2016.09.019
– ident: ref31
  doi: 10.1109/INFOMAN.2018.8392815
– ident: ref24
  doi: 10.1109/ECTICon.2012.6254113
– start-page: 1048
  year: 2016
  ident: ref29
  article-title: A robust damaged fingerprint identification algorithm based on deep learning
  publication-title: Proc IEEE Adv Inf Manage Communicates Electron Autom Control Conf (IMCEC)
– ident: ref25
  doi: 10.1016/j.image.2017.08.010
– ident: ref37
  doi: 10.1007/s00521-020-05514-1
– ident: ref7
  doi: 10.1145/3375799
– ident: ref10
  doi: 10.3390/info9090213
– ident: ref4
  doi: 10.1007/s00779-017-1094-1
– ident: ref18
  doi: 10.1007/11552499_3
– ident: ref34
  doi: 10.5391/IJFIS.2017.17.3.170
– ident: ref11
  doi: 10.1073/pnas.1410272112
– ident: ref41
  doi: 10.1109/CVPR.2014.244
– ident: ref27
  doi: 10.1109/TIFS.2019.2930487
– ident: ref19
  doi: 10.1049/iet-cvi.2016.0005
– year: 2021
  ident: ref48
  publication-title: Fingerprint Color Image Database V1 MATLAB Centra File Exchange
– year: 2021
  ident: ref47
  publication-title: Fingerprint Color Image Database V1 MATLAB Centra File Exchange
– ident: ref26
  doi: 10.1007/s11042-018-5633-1
– year: 2015
  ident: ref45
  publication-title: Using Convolutional Neural Networks for Image Recognition
– ident: ref21
  doi: 10.1016/j.ins.2013.08.022
– ident: ref30
  doi: 10.1109/ICASSP.2017.7952518
– ident: ref35
  doi: 10.1002/int.21948
– ident: ref8
  doi: 10.1080/02522667.2016.1224468
– ident: ref12
  doi: 10.1007/s41870-020-00508-7
– ident: ref14
  doi: 10.1109/TPAMI.2018.2818162
– ident: ref38
  doi: 10.1007/s11045-020-00736-x
– year: 2016
  ident: ref42
  publication-title: Deep Learning
– ident: ref36
  doi: 10.1007/s00521-018-3609-8
– ident: ref52
  doi: 10.3389/frobt.2020.00113
– ident: ref28
  doi: 10.1109/CISP-BMEI.2016.7852722
SSID ssj0000816957
Score 2.3545952
Snippet Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 147888
SubjectTerms Algorithms
Artificial neural networks
autoencoder
Biometric recognition systems
Computer vision
convolution neural networks
Convolutional neural networks
Datasets
Deep learning
Feature extraction
Filtering
Fingerprint images
Fingerprint recognition
Fingerprint verification
Image matching
Image quality
Image reconstruction
Machine learning
Neural networks
Object recognition
Pattern recognition
system identification
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxQxFH60xYMebLWKa2uZg8eO3Zkkk-S4Li4tSPGg0lvIvGRF0NmyO1vwv_e9THZYUARPMwxJmOTLj--9JN8DeFuboIiHcoywKpQSI405rFUZjEfrZT3FQSTpo769NXd39tMBXI53YWKM6fBZfMevaS8_rHDLrrIrqywZbPYQDrVuhrtaoz-FA0hYpbOwUDW1V7P5nOpAJmBdkWVaS80kd2_xSRr9OajKHzNxWl4Wx__3YyfwNNPIYjbg_gwOYvccnuyJC57C1x0j7L4Vi-S8Yx9eX9z8pClkU7S_ivmqe8g9j8pimY70SOfCi9m2X7HIZYjrYra32_ACviw-fJ5flzmKQolU5b6sTLRYRRSytUv0wVat0agxhBoF2SuhiVJrIdAE2RCZUagCCqJp1Jyt8VG8hKNu1cVXUEQvGmNVUDJIKs0SmJH108jARqIScgL1rnkdZolxjnTxwyVTY2rdgIljTFzGZAKXY6b7QWHj38nfM25jUpbHTh8IEJdHmwvYemmWynPEQdbnsctlFF5H0dZeNtUEThnEsZCM3wTOd73A5aG8cWQfKs0XmvTrv-c6g8f8g4Nf5hyO-vU2voFH-NB_36wvUi_9DS0P5W0
  priority: 102
  providerName: IEEE
Title Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture
URI https://ieeexplore.ieee.org/document/9598889
https://www.proquest.com/docview/2595720007
https://doaj.org/article/dcba48f5a187474189ffe3a7e3b2a461
Volume 9
WOSCitedRecordID wos000716673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB_MT5MXrwaNnaJE1ynMOhoOJBZbeQvmQiaCdbFbz4t_uSZmMi6MVLCyV9Td57Sd4vTX6PkJNcWo5xqM8RltmUgcM-BzlPrTSgDMt70JAkXYmbGzkaqdulVF9-T1hDD9wormuhNEyOufHJ4zzVihqPHTXC0TI3rAE-PaGWwFQYg2VWKC4izVDWU93-YIAtQkCYZ4hTcxRVfJuKAmN_TLHyY1wOk81wk2zEKDHpN7XbIiuu2ibrS9yBO-RhHvBVj8kwrM35Jbo6uXzBEWKWlB_JYFK9R8dCWZ6FI9zCtu-k_1ZPPIelddOkv_QzYZfcD8_vBhdpTJKQArahTjPpFGQOKCvVGIxVWSkFCLA2B4pwxBaOCUEpSMsKjFU4cAsUozDUTymNo3ukVU0qt08SZ2ghFbecWYbSFNrKeXo0xM-AkQJrk3yuLw2RQdwnsnjWAUn0lG6UrL2SdVRym5wuXnptCDR-L37mDbEo6tmvwwP0CR19Qv_lE22y4824EKK4QqCv2uRoblYde-pMI_zjwp9XEgf_8elDsuab0yzSHJFWPX1zx2QV3uun2bQTnBSv15_nnXDU8AuEq-rF
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VggQ98CoVKQX2wLFLs7t2bB9D1KgVIeJQUG-Wd-xUSLCpkk0l_j0zXmcVCYTU01ore2T782NmbH8D8KHUXpIeyjHCCp8LDDTnsJS51w6NE-UQO5KkmZrP9fW1-boHp_1bmBBCvHwWPnIynuX7JW7YVXZmpCGDzTyAh1KQmO61Vu9R4RASRqpELVQMzdl4MqFWkBFYFmSblkKxmruz_USW_hRW5a-1OG4w02f3q9pzeJoUyWzcIf8C9kLzEg526AUP4ftWJ2xusml037EXr80uf9Eiss7q39lk2dylsUeymKgjfuLN8Gy8aZdMc-nDKhvvnDe8gm_T86vJRZ7iKORITW7zQgeDRcBK1GaBzpui1goVel9iRRaLHwWhVFWh9mJE6oxE6bEiRY26s9YuVEew3yyb8Bqy4KqRNtJL4QVJMwRnYAY1MrGRlAkxgHLbvRYTyTjHuvhpo7ExNLbDxDImNmEygNO-0G3HsfH_7J8Ytz4rE2THHwSITfPNeqyd0AvpOOYgM_SYxSJUToWqLp0YFQM4ZBB7IQm_AZxsR4FNk3ltyUKUip80qeN_l3oPjy-uvszs7HL--Q084cp2XpoT2G9Xm_AWHuFd-2O9ehdH7B8_Nei0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recreating+Fingerprint+Images+by+Convolutional+Neural+Network+Autoencoder+Architecture&rft.jtitle=IEEE+access&rft.au=Saponara%2C+Sergio&rft.au=Elhanashi%2C+Abdussalam&rft.au=Zheng%2C+Qinghe&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=147888&rft.epage=147899&rft_id=info:doi/10.1109%2FACCESS.2021.3124746&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3124746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon