Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture
Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially Convolutional Neural Network (CNN) has made a tremendous success in the field of computer vision for pattern recognition. Several approaches...
Uloženo v:
| Vydáno v: | IEEE access Ročník 9; s. 147888 - 147899 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially Convolutional Neural Network (CNN) has made a tremendous success in the field of computer vision for pattern recognition. Several approaches have been applied to reconstruct fingerprint images. However, these algorithms encountered problems with various overlapping patterns and poor quality on the images. In this work, a convolutional neural network autoencoder has been used to reconstruct fingerprint images. An autoencoder is a technique, which is able to replicate data in the images. The advantage of convolutional neural networks makes it suitable for feature extraction. Four datasets of fingerprint images have been used to prove the robustness of the proposed architecture. The dataset of fingerprint images has been collected from various real resources. These datasets include a fingerprint verification competition (FVC2004) database, which has been distorted. The proposed approach has been assessed by calculating the cumulative match characteristics (CMC) between the reconstructed and the original features. We obtained promising results of identification rate from four datasets of fingerprints images (Dataset I, Dataset II, Dataset III, Dataset IV) with 98.1%, 97%, 95.9%, and 95.02% respectively by CNN autoencoder. The proposed architecture was tested and compared to the other state-of-the-art methods. The achieved experimental results show that the proposed solution is suitable for recreating a complex context of fingerprinting images. |
|---|---|
| AbstractList | Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially Convolutional Neural Network (CNN) has made a tremendous success in the field of computer vision for pattern recognition. Several approaches have been applied to reconstruct fingerprint images. However, these algorithms encountered problems with various overlapping patterns and poor quality on the images. In this work, a convolutional neural network autoencoder has been used to reconstruct fingerprint images. An autoencoder is a technique, which is able to replicate data in the images. The advantage of convolutional neural networks makes it suitable for feature extraction. Four datasets of fingerprint images have been used to prove the robustness of the proposed architecture. The dataset of fingerprint images has been collected from various real resources. These datasets include a fingerprint verification competition (FVC2004) database, which has been distorted. The proposed approach has been assessed by calculating the cumulative match characteristics (CMC) between the reconstructed and the original features. We obtained promising results of identification rate from four datasets of fingerprints images (Dataset I, Dataset II, Dataset III, Dataset IV) with 98.1%, 97%, 95.9%, and 95.02% respectively by CNN autoencoder. The proposed architecture was tested and compared to the other state-of-the-art methods. The achieved experimental results show that the proposed solution is suitable for recreating a complex context of fingerprinting images. |
| Author | Elhanashi, Abdussalam Zheng, Qinghe Saponara, Sergio |
| Author_xml | – sequence: 1 givenname: Sergio orcidid: 0000-0001-6724-4219 surname: Saponara fullname: Saponara, Sergio email: sergio.saponara@unipi.it organization: Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy – sequence: 2 givenname: Abdussalam orcidid: 0000-0002-2514-1585 surname: Elhanashi fullname: Elhanashi, Abdussalam organization: Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy – sequence: 3 givenname: Qinghe orcidid: 0000-0003-1466-2542 surname: Zheng fullname: Zheng, Qinghe organization: School of Information Science and Engineering, Shandong University, Jinan, China |
| BookMark | eNp9UU1P3DAQtSqQ2AK_gEskzruN7SS2j6tot10JFYmvq-WMJ1svIaaOA-Lf10u2FeoBHzzWaN6b5_e-kqPe90jIBc0XlObq27KuV7e3C5YzuuCUFaKovpAZo5Wa85JXRx_eJ-R8GHZ5OjK1SjEjDzcIAU10_TZbpwvDc3B9zDZPZotD1rxlte9ffDdG53vTZT9xDO8lvvrwmC3H6LEHbzFkywC_XESIY8AzctyabsDzQz0l9-vVXf1jfnX9fVMvr-aQZMY5laiAIvCiUS0Yq2gjBQiwlgEvC2krLITgHKQtKiZ4CaUFTiuexDfSID8lm4nXerPTSfqTCW_aG6ffGz5stQnRQYfaQmMK2ZaGSpGWU6naFrkRyBtmioomrsuJ6zn43yMOUe_8GNKnB83KZBZLtok0paYpCH4YArYaXDR7d2IwrtM01_tU9JSK3qeiD6kkLP8P-1fx56iLCeUQ8R9ClUpKqfgfS9GbVA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_app122110986 crossref_primary_10_1007_s11554_023_01353_0 crossref_primary_10_1002_eng2_12897 crossref_primary_10_3390_biomimetics9010001 crossref_primary_10_1109_ACCESS_2022_3144386 crossref_primary_10_3390_inventions7020039 crossref_primary_10_1051_matecconf_202439201069 crossref_primary_10_1016_j_iswa_2023_200180 crossref_primary_10_1016_j_sasc_2024_200106 |
| Cites_doi | 10.1016/j.procs.2015.08.072 10.1109/ACCESS.2020.2971779 10.1049/iet-ipr.2018.5466 10.1049/el.2013.2619 10.1109/ACCESS.2018.2810849 10.1002/int.22586 10.1016/j.promfg.2018.10.023 10.1038/323533a0 10.1109/CISP.2012.6469988 10.1007/978-3-540-25948-0_1 10.1109/ACCESS.2019.2924127 10.1109/ACCESS.2020.2989050 10.1002/cpe.6057 10.1155/2009/284124 10.1109/ACCESS.2020.3005687 10.1049/iet-bmt.2016.0161 10.5171/2016.813264 10.1145/3387130 10.1109/TCSVT.2003.818355 10.1016/j.compbiomed.2016.09.019 10.1109/INFOMAN.2018.8392815 10.1109/ECTICon.2012.6254113 10.1016/j.image.2017.08.010 10.1007/s00521-020-05514-1 10.1145/3375799 10.3390/info9090213 10.1007/s00779-017-1094-1 10.1007/11552499_3 10.5391/IJFIS.2017.17.3.170 10.1073/pnas.1410272112 10.1109/CVPR.2014.244 10.1109/TIFS.2019.2930487 10.1049/iet-cvi.2016.0005 10.1007/s11042-018-5633-1 10.1016/j.ins.2013.08.022 10.1109/ICASSP.2017.7952518 10.1002/int.21948 10.1080/02522667.2016.1224468 10.1007/s41870-020-00508-7 10.1109/TPAMI.2018.2818162 10.1007/s11045-020-00736-x 10.1007/s00521-018-3609-8 10.3389/frobt.2020.00113 10.1109/CISP-BMEI.2016.7852722 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3124746 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 147899 |
| ExternalDocumentID | oai_doaj_org_article_dcba48f5a187474189ffe3a7e3b2a461 10_1109_ACCESS_2021_3124746 9598889 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Abdussalam Elhanashi was supported by Islamic Development Bank for his Ph.D. degree funderid: 10.13039/501100003971 – fundername: Ministero Istruzione Università Ricerca (MIUR)–Dipartimento di Eccellenza Crosslab Project at the University of Pisa funderid: 10.13039/501100007514 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c474t-18e9c1ec34b9fcad91b87c7cdd2c3548d6e47733c8d462735c5dc3163695b8ae3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:38:08 EDT 2025 Sun Jun 29 12:37:54 EDT 2025 Sat Nov 29 06:31:42 EST 2025 Tue Nov 18 22:26:30 EST 2025 Wed Aug 27 02:26:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-18e9c1ec34b9fcad91b87c7cdd2c3548d6e47733c8d462735c5dc3163695b8ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6724-4219 0000-0003-1466-2542 0000-0002-2514-1585 |
| OpenAccessLink | https://doaj.org/article/dcba48f5a187474189ffe3a7e3b2a461 |
| PQID | 2595720007 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2021_3124746 crossref_primary_10_1109_ACCESS_2021_3124746 proquest_journals_2595720007 doaj_primary_oai_doaj_org_article_dcba48f5a187474189ffe3a7e3b2a461 ieee_primary_9598889 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 bidishaw (ref20) 2014; 5 ref17 ref16 ref19 gawande (ref47) 2021 ref18 ref51 ref50 ref46 ref41 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 yani (ref29) 2016 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 goodfellow (ref42) 2016 ref2 rumelhart (ref43) 1986; 323 ref1 ref39 ref38 isah shehu (ref49) 2018 gawande (ref48) 2021 hijazi (ref45) 2015 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 garrison cottrell (ref44) 1987 |
| References_xml | – ident: ref51 doi: 10.1016/j.procs.2015.08.072 – ident: ref40 doi: 10.1109/ACCESS.2020.2971779 – year: 2018 ident: ref49 article-title: Sokoto coventry fingerprint dataset publication-title: arXiv 1807 10609 – ident: ref33 doi: 10.1049/iet-ipr.2018.5466 – ident: ref16 doi: 10.1049/el.2013.2619 – ident: ref6 doi: 10.1109/ACCESS.2018.2810849 – ident: ref23 doi: 10.1002/int.22586 – ident: ref46 doi: 10.1016/j.promfg.2018.10.023 – volume: 323 start-page: 533 year: 1986 ident: ref43 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: ref17 doi: 10.1109/CISP.2012.6469988 – ident: ref50 doi: 10.1007/978-3-540-25948-0_1 – ident: ref2 doi: 10.1109/ACCESS.2019.2924127 – ident: ref39 doi: 10.1109/ACCESS.2020.2989050 – ident: ref32 doi: 10.1002/cpe.6057 – ident: ref1 doi: 10.1155/2009/284124 – ident: ref3 doi: 10.1109/ACCESS.2020.3005687 – ident: ref22 doi: 10.1049/iet-bmt.2016.0161 – volume: 5 start-page: 2837 year: 2014 ident: ref20 article-title: Two stage block-wise fingerprint enhancement using discrete wavelet transform publication-title: Int J Comput Sci Inf Technol – ident: ref9 doi: 10.5171/2016.813264 – start-page: 208 year: 1987 ident: ref44 article-title: Learning internal representations from gray-scale images: An example of extensional programming publication-title: Proc 9th Annu Conf Cogn Sci Soc – ident: ref13 doi: 10.1145/3387130 – ident: ref15 doi: 10.1109/TCSVT.2003.818355 – ident: ref5 doi: 10.1016/j.compbiomed.2016.09.019 – ident: ref31 doi: 10.1109/INFOMAN.2018.8392815 – ident: ref24 doi: 10.1109/ECTICon.2012.6254113 – start-page: 1048 year: 2016 ident: ref29 article-title: A robust damaged fingerprint identification algorithm based on deep learning publication-title: Proc IEEE Adv Inf Manage Communicates Electron Autom Control Conf (IMCEC) – ident: ref25 doi: 10.1016/j.image.2017.08.010 – ident: ref37 doi: 10.1007/s00521-020-05514-1 – ident: ref7 doi: 10.1145/3375799 – ident: ref10 doi: 10.3390/info9090213 – ident: ref4 doi: 10.1007/s00779-017-1094-1 – ident: ref18 doi: 10.1007/11552499_3 – ident: ref34 doi: 10.5391/IJFIS.2017.17.3.170 – ident: ref11 doi: 10.1073/pnas.1410272112 – ident: ref41 doi: 10.1109/CVPR.2014.244 – ident: ref27 doi: 10.1109/TIFS.2019.2930487 – ident: ref19 doi: 10.1049/iet-cvi.2016.0005 – year: 2021 ident: ref48 publication-title: Fingerprint Color Image Database V1 MATLAB Centra File Exchange – year: 2021 ident: ref47 publication-title: Fingerprint Color Image Database V1 MATLAB Centra File Exchange – ident: ref26 doi: 10.1007/s11042-018-5633-1 – year: 2015 ident: ref45 publication-title: Using Convolutional Neural Networks for Image Recognition – ident: ref21 doi: 10.1016/j.ins.2013.08.022 – ident: ref30 doi: 10.1109/ICASSP.2017.7952518 – ident: ref35 doi: 10.1002/int.21948 – ident: ref8 doi: 10.1080/02522667.2016.1224468 – ident: ref12 doi: 10.1007/s41870-020-00508-7 – ident: ref14 doi: 10.1109/TPAMI.2018.2818162 – ident: ref38 doi: 10.1007/s11045-020-00736-x – year: 2016 ident: ref42 publication-title: Deep Learning – ident: ref36 doi: 10.1007/s00521-018-3609-8 – ident: ref52 doi: 10.3389/frobt.2020.00113 – ident: ref28 doi: 10.1109/CISP-BMEI.2016.7852722 |
| SSID | ssj0000816957 |
| Score | 2.3545952 |
| Snippet | Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 147888 |
| SubjectTerms | Algorithms Artificial neural networks autoencoder Biometric recognition systems Computer vision convolution neural networks Convolutional neural networks Datasets Deep learning Feature extraction Filtering Fingerprint images Fingerprint recognition Fingerprint verification Image matching Image quality Image reconstruction Machine learning Neural networks Object recognition Pattern recognition system identification |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxQxFH60xYMebLWKa2uZg8eO3Zkkk-S4Li4tSPGg0lvIvGRF0NmyO1vwv_e9THZYUARPMwxJmOTLj--9JN8DeFuboIiHcoywKpQSI405rFUZjEfrZT3FQSTpo769NXd39tMBXI53YWKM6fBZfMevaS8_rHDLrrIrqywZbPYQDrVuhrtaoz-FA0hYpbOwUDW1V7P5nOpAJmBdkWVaS80kd2_xSRr9OajKHzNxWl4Wx__3YyfwNNPIYjbg_gwOYvccnuyJC57C1x0j7L4Vi-S8Yx9eX9z8pClkU7S_ivmqe8g9j8pimY70SOfCi9m2X7HIZYjrYra32_ACviw-fJ5flzmKQolU5b6sTLRYRRSytUv0wVat0agxhBoF2SuhiVJrIdAE2RCZUagCCqJp1Jyt8VG8hKNu1cVXUEQvGmNVUDJIKs0SmJH108jARqIScgL1rnkdZolxjnTxwyVTY2rdgIljTFzGZAKXY6b7QWHj38nfM25jUpbHTh8IEJdHmwvYemmWynPEQdbnsctlFF5H0dZeNtUEThnEsZCM3wTOd73A5aG8cWQfKs0XmvTrv-c6g8f8g4Nf5hyO-vU2voFH-NB_36wvUi_9DS0P5W0 priority: 102 providerName: IEEE |
| Title | Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture |
| URI | https://ieeexplore.ieee.org/document/9598889 https://www.proquest.com/docview/2595720007 https://doaj.org/article/dcba48f5a187474189ffe3a7e3b2a461 |
| Volume | 9 |
| WOSCitedRecordID | wos000716673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB_MT5MXrwaNnaJE1ynMOhoOJBZbeQvmQiaCdbFbz4t_uSZmMi6MVLCyV9Td57Sd4vTX6PkJNcWo5xqM8RltmUgcM-BzlPrTSgDMt70JAkXYmbGzkaqdulVF9-T1hDD9wormuhNEyOufHJ4zzVihqPHTXC0TI3rAE-PaGWwFQYg2VWKC4izVDWU93-YIAtQkCYZ4hTcxRVfJuKAmN_TLHyY1wOk81wk2zEKDHpN7XbIiuu2ibrS9yBO-RhHvBVj8kwrM35Jbo6uXzBEWKWlB_JYFK9R8dCWZ6FI9zCtu-k_1ZPPIelddOkv_QzYZfcD8_vBhdpTJKQArahTjPpFGQOKCvVGIxVWSkFCLA2B4pwxBaOCUEpSMsKjFU4cAsUozDUTymNo3ukVU0qt08SZ2ghFbecWYbSFNrKeXo0xM-AkQJrk3yuLw2RQdwnsnjWAUn0lG6UrL2SdVRym5wuXnptCDR-L37mDbEo6tmvwwP0CR19Qv_lE22y4824EKK4QqCv2uRoblYde-pMI_zjwp9XEgf_8elDsuab0yzSHJFWPX1zx2QV3uun2bQTnBSv15_nnXDU8AuEq-rF |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VggQ98CoVKQX2wLFLs7t2bB9D1KgVIeJQUG-Wd-xUSLCpkk0l_j0zXmcVCYTU01ore2T782NmbH8D8KHUXpIeyjHCCp8LDDTnsJS51w6NE-UQO5KkmZrP9fW1-boHp_1bmBBCvHwWPnIynuX7JW7YVXZmpCGDzTyAh1KQmO61Vu9R4RASRqpELVQMzdl4MqFWkBFYFmSblkKxmruz_USW_hRW5a-1OG4w02f3q9pzeJoUyWzcIf8C9kLzEg526AUP4ftWJ2xusml037EXr80uf9Eiss7q39lk2dylsUeymKgjfuLN8Gy8aZdMc-nDKhvvnDe8gm_T86vJRZ7iKORITW7zQgeDRcBK1GaBzpui1goVel9iRRaLHwWhVFWh9mJE6oxE6bEiRY26s9YuVEew3yyb8Bqy4KqRNtJL4QVJMwRnYAY1MrGRlAkxgHLbvRYTyTjHuvhpo7ExNLbDxDImNmEygNO-0G3HsfH_7J8Ytz4rE2THHwSITfPNeqyd0AvpOOYgM_SYxSJUToWqLp0YFQM4ZBB7IQm_AZxsR4FNk3ltyUKUip80qeN_l3oPjy-uvszs7HL--Q084cp2XpoT2G9Xm_AWHuFd-2O9ehdH7B8_Nei0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recreating+Fingerprint+Images+by+Convolutional+Neural+Network+Autoencoder+Architecture&rft.jtitle=IEEE+access&rft.au=Saponara%2C+Sergio&rft.au=Elhanashi%2C+Abdussalam&rft.au=Zheng%2C+Qinghe&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=147888&rft.epage=147899&rft_id=info:doi/10.1109%2FACCESS.2021.3124746&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3124746 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |