Computing Minimum Area Homologies

Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no implementations of these algorithms for curves on surfaces with provable guarantees on the quality of the measure. In this paper, we present a simila...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 34; číslo 6; s. 13 - 21
Hlavní autoři: Chambers, Erin Wolf, Vejdemo-Johansson, Mikael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.09.2015
Témata:
ISSN:0167-7055, 1467-8659, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no implementations of these algorithms for curves on surfaces with provable guarantees on the quality of the measure. In this paper, we present a similarity measure for any two cycles that are homologous, where we calculate the minimum area of any homology (or connected bounding chain) between the two cycles. The minimum area homology exists for broader classes of cycles than previous measures which are based on homotopy. It is also much easier to compute than previously defined measures, yielding an efficient implementation that is based on linear algebra tools. We demonstrate our algorithm on a range of inputs, showing examples which highlight the feasibility of this similarity measure. Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no implementations of these algorithms for curves on surfaces with provable guarantees on the quality of the measure. In this paper, we present a similarity measure for any two cycles that are homologous, where we calculate the minimum area of any homology (or connected bounding chain) between the two cycles. The minimum area homology exists for broader classes of cycles than previous measures which are based on homotopy. It is also much easier to compute than previously defined measures, yielding an efficient implementation that is based on linear algebra tools. We demonstrate our algorithm on a range of inputs, showing examples which highlight the feasibility of this similarity measure.
AbstractList Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no implementations of these algorithms for curves on surfaces with provable guarantees on the quality of the measure. In this paper, we present a similarity measure for any two cycles that are homologous, where we calculate the minimum area of any homology (or connected bounding chain) between the two cycles. The minimum area homology exists for broader classes of cycles than previous measures which are based on homotopy. It is also much easier to compute than previously defined measures, yielding an efficient implementation that is based on linear algebra tools. We demonstrate our algorithm on a range of inputs, showing examples which highlight the feasibility of this similarity measure. Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no implementations of these algorithms for curves on surfaces with provable guarantees on the quality of the measure. In this paper, we present a similarity measure for any two cycles that are homologous, where we calculate the minimum area of any homology (or connected bounding chain) between the two cycles. The minimum area homology exists for broader classes of cycles than previous measures which are based on homotopy. It is also much easier to compute than previously defined measures, yielding an efficient implementation that is based on linear algebra tools. We demonstrate our algorithm on a range of inputs, showing examples which highlight the feasibility of this similarity measure.
Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no implementations of these algorithms for curves on surfaces with provable guarantees on the quality of the measure. In this paper, we present a similarity measure for any two cycles that are homologous, where we calculate the minimum area of any homology (or connected bounding chain) between the two cycles. The minimum area homology exists for broader classes of cycles than previous measures which are based on homotopy. It is also much easier to compute than previously defined measures, yielding an efficient implementation that is based on linear algebra tools. We demonstrate our algorithm on a range of inputs, showing examples which highlight the feasibility of this similarity measure.
Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no implementations of these algorithms for curves on surfaces with provable guarantees on the quality of the measure. In this paper, we present a similarity measure for any two cycles that are homologous, where we calculate the minimum area of any homology (or connected bounding chain) between the two cycles. The minimum area homology exists for broader classes of cycles than previous measures which are based on homotopy. It is also much easier to compute than previously defined measures, yielding an efficient implementation that is based on linear algebra tools. We demonstrate our algorithm on a range of inputs, showing examples which highlight the feasibility of this similarity measure. Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no implementations of these algorithms for curves on surfaces with provable guarantees on the quality of the measure. In this paper, we present a similarity measure for any two cycles that are homologous, where we calculate the minimum area of any homology (or connected bounding chain) between the two cycles. The minimum area homology exists for broader classes of cycles than previous measures which are based on homotopy. It is also much easier to compute than previously defined measures, yielding an efficient implementation that is based on linear algebra tools. We demonstrate our algorithm on a range of inputs, showing examples which highlight the feasibility of this similarity measure.
Author Vejdemo-Johansson, Mikael
Chambers, Erin Wolf
Author_xml – sequence: 1
  givenname: Erin Wolf
  surname: Chambers
  fullname: Chambers, Erin Wolf
  email: echambe5@slu.edu
  organization: Department of Math and Computer Science, Saint Louis University, MO, Saint Louis, USA
– sequence: 2
  givenname: Mikael
  surname: Vejdemo-Johansson
  fullname: Vejdemo-Johansson, Mikael
  email: mvj@kth.se
  organization: Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN, USA
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181226$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp1kE1P3DAQhq0KpC4fh_6DrbjQQ8CTeOzkuArsLhKlPfB1G3lTZzEk8WInovx7THfpAcEcZubwvK9m3h221bnOMPYN-BHEOq6W9RGkCOILG4GQKsklFltsxCHuiiN-ZTsh3HPOhZI4Yt9L166G3nbL8U_b2XZoxxNv9HjuWte4pTVhj23XuglmfzN32dX09LKcJ-e_Zmfl5DyphBIiWdTAK6MqLmtMMzCLHApUIq9j57UENJlJ6wJyyDnobIEIqDDDP7mugHPIdlmy9g1PZjUsaOVtq_0zOW3pxF5PyPklPfR3FC3SVEb-cM2vvHscTOiptaEyTaM744ZAoFTOhcAcI3rwDr13g-_iN5ECjFCBr4bHa6ryLgRvaqpsr3vrut5r2xBweo2YYsT0L-Ko-PFO8Xb0R-zG_ck25vlzkMrZ9E2xCcSG3vz9r9D-gaTKFNLNxYzmv2-LVMqSptkLW4uX3A
CitedBy_id crossref_primary_10_7717_peerj_cs_153
crossref_primary_10_1111_cgf_14367
crossref_primary_10_1007_s00454_022_00432_6
crossref_primary_10_1016_j_comgeo_2024_102102
Cites_doi 10.1006/jsco.1996.0125
10.4310/jdg/1214439286
10.1007/b97315
10.1145/2462356.2462375
10.1016/S0007-4497(02)01119-3
10.1007/978-3-319-04099-8_7
10.1002/cpa.20132
10.1137/100800245
10.1109/78.258082
10.1109/CVPR.1996.517122
10.1109/ACSSC.1993.342465
10.1109/SMI.2004.1314502
10.1142/S0218195995000064
10.1016/j.comgeo.2009.02.008
10.1145/1868237.1868247
10.1090/conm/470/09186
10.1007/978-3-662-30697-0
10.1007/978-3-642-03456-5_16
ContentType Journal Article
Copyright 2014 The Authors Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Authors Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ADTPV
AOWAS
D8V
DOI 10.1111/cgf.12514
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Computer and Information Systems Abstracts
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 21
ExternalDocumentID oai_DiVA_org_kth_181226
3814981061
10_1111_cgf_12514
CGF12514
ark_67375_WNG_HPX9266C_F
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c4744-bf10ce7c06f5231eb8195748f9570f615e3e2f9181801a3b55157535d8ac10013
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362978000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
1467-8659
IngestDate Tue Nov 04 17:03:23 EST 2025
Fri Sep 05 09:38:01 EDT 2025
Sun Nov 30 04:34:57 EST 2025
Tue Nov 18 21:56:39 EST 2025
Sat Nov 29 03:41:11 EST 2025
Sun Sep 21 06:18:41 EDT 2025
Tue Nov 11 03:32:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords I.5.3 [Pattern Recognition]: Clustering-Similarity measures
languages and systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4744-bf10ce7c06f5231eb8195748f9570f615e3e2f9181801a3b55157535d8ac10013
Notes istex:4460226735616F31DE30722E9F3A42BBAE52AB98
Supplementary Material
ArticleID:CGF12514
ark:/67375/WNG-HPX9266C-F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12514
PQID 1715445956
PQPubID 30877
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_kth_181226
proquest_miscellaneous_1778044585
proquest_journals_1715445956
crossref_citationtrail_10_1111_cgf_12514
crossref_primary_10_1111_cgf_12514
wiley_primary_10_1111_cgf_12514_CGF12514
istex_primary_ark_67375_WNG_HPX9266C_F
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References [BCP97] Bosma W., Cannon J., Playoust C.: The magma algebra system I: The user language. Journal of Symbolic Computation 24, 3 (1997), 235-265.
[AS71] Atiyah M., Singer I.: The index of elliptic operators on compact. Bulletin of the American Mathematical Society 93 (1971), 119-138.
[HSB66] Hirzebruch F., Schwarzenberger R. L., Borel A.: Topological Methods in Algebraic Geometry, vol. 232. Springer, New York, NY, 1966.
[DHK11] Dey T., Hirani A., Krishnamoorthy B.: Optimal homologous cycles, total unimodularity, and linear programming. SIAM Journal on Computing 40, 4 (2011), 1026-1044. http://epubs.siam.org/doi/abs/10.1137/100800245, http://arxiv.org/abs/epubs.siam.org/doi/pdf/10.1137/100800245 arXiv:http://epubs.siam.org/doi/pdf/10.1137/100800245, http://dx.doi.org/10.1137/100800245 doi:10.1137/100800245.
[CCE*10] Chambers E. W., Colin de Verdière É., Erickson J., Lazard S., Lazarus F., Thite S.: Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time. Computational Geometry 43, 3 (2010), 295-311. Special Issue on 24th Annual Symposium on Computational Geometry (SoCG' 08). http://www.sciencedirect.com/science/article/pii/S0925772109000637, http://dx.doi.org/10.1016/j.comgeo.2009.02.008 doi:10.1016/j.comgeo.2009.02.008.
[PVG*11] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
[RS02] Rubio J., Sergeraert F.: Constructive algebraic topology. Bulletin des Sciences Mathématiques 126, 5 (2002), 389-412.
[KMM04] Kaczynski T., Mischaikow K., Mrozek M.: Computational Homology, vol. 157. Springer, 2004.
[Mun00] Munkres J. R.: Topology (2nd edition). Pearson Education, Upper Saddle River, NJ. 2000.
[Don06] Donoho D. L.: For most large underdetermined systems of linear equations the minimal ð1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59, 6 (2006), 797-829.
[Hat02] Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge, UK, 2002. http://www.math.cornell.edu/hatcher/AT/ATpage.html.
[Law80] Lawson H.: Lectures on Minimal Submanifolds, vol. 1 of Mathematics Lecture Series. Publish or Perish, Houston, TX, 1980. http://books.google.com/books?id=vlbvAAAAMAAJ.
[SJ05] Stein W., Joyner D.: Sage: System for algebra and geometry experimentation. Communications in Computer Algebra (SIGSAM Bulletin) (2005). http://sage.sourceforge.net. Accessed 1 October 2012.
[TV04] Tangelder J., Veltkamp R.: A survey of content based 3D shape retrieval methods. In Proceedings of Shape Modeling Applications (June 2004), IEEE, pp. 145-156. http://dx.doi.org/10.1109/SMI.2004.1314502 doi:10.1109/SMI.2004.1314502.
[VJ12] Vejdemo-Johansson M.: Gap persistence-a computational topology package for gap. Book of Abstracts Minisymposium on Publicly Available Geometric/Topological Software (2012), 43.
[AG95] Alt H., Godau M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and its Applications 5 (1995), 75-91.
[CW10] Cook A. F., Wenk C.: Geodesic Fréchet distance inside a simple polygon. ACM Transactions on Algorithms 7 (2010). 1-19.
[EG08] Ellis G.: Homological algebra programming. In Computational Group Theory and the Theory of Groups 470; Americal Mathematical Society, Providence,RI. (2008), pp. 63-74.
[RZE08] Rubinstein R., Zibulevsky M., Elad M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technion 40, 8 (2008), 1-15.
[Whi84] White B.: Mappings that minimize area in their homotopy classes. Journal of Differential Geometry 20, 2 (1984), 433-446. http://projecteuclid.org/euclid.jdg/1214439286.
[Mil07] Milnor J.: A survey of cobordism theory. Collected Papers of John Milnor: Differential topology 3 (2007), 291.
1984; 20
1966; 232
2012
1997; 24
2011; 40
2006; 59
1996
2005
2011; 12
2004
2002
2009; 5760
1993; 1
1995; 5
2010; 43
1971; 93
2004; 157
2001
2000
1980; 1
2002; 126
2014
2013
2007; 3
2008; 40
2010; 7
2008; 470
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
Hatcher A. (e_1_2_7_18_1) 2002
Pedregosa F. (e_1_2_7_29_1) 2011; 12
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
Lawson H. (e_1_2_7_22_1) 1980
Rubinstein R. (e_1_2_7_31_1) 2008; 40
e_1_2_7_16_1
Stein W. (e_1_2_7_33_1) 2005
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Atiyah M. (e_1_2_7_5_1) 1971; 93
Milnor J. (e_1_2_7_23_1) 2007; 3
White B. (e_1_2_7_39_1) 1984; 20
Munkres J. R. (e_1_2_7_25_1) 2000
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_34_1
Tausz A. (e_1_2_7_37_1) 2012
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Vejdemo‐Johansson M. (e_1_2_7_38_1) 2012
References_xml – reference: [DHK11] Dey T., Hirani A., Krishnamoorthy B.: Optimal homologous cycles, total unimodularity, and linear programming. SIAM Journal on Computing 40, 4 (2011), 1026-1044. http://epubs.siam.org/doi/abs/10.1137/100800245, http://arxiv.org/abs/epubs.siam.org/doi/pdf/10.1137/100800245 arXiv:http://epubs.siam.org/doi/pdf/10.1137/100800245, http://dx.doi.org/10.1137/100800245 doi:10.1137/100800245.
– reference: [Mun00] Munkres J. R.: Topology (2nd edition). Pearson Education, Upper Saddle River, NJ. 2000.
– reference: [BCP97] Bosma W., Cannon J., Playoust C.: The magma algebra system I: The user language. Journal of Symbolic Computation 24, 3 (1997), 235-265.
– reference: [Don06] Donoho D. L.: For most large underdetermined systems of linear equations the minimal ð1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59, 6 (2006), 797-829.
– reference: [PVG*11] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
– reference: [AS71] Atiyah M., Singer I.: The index of elliptic operators on compact. Bulletin of the American Mathematical Society 93 (1971), 119-138.
– reference: [TV04] Tangelder J., Veltkamp R.: A survey of content based 3D shape retrieval methods. In Proceedings of Shape Modeling Applications (June 2004), IEEE, pp. 145-156. http://dx.doi.org/10.1109/SMI.2004.1314502 doi:10.1109/SMI.2004.1314502.
– reference: [VJ12] Vejdemo-Johansson M.: Gap persistence-a computational topology package for gap. Book of Abstracts Minisymposium on Publicly Available Geometric/Topological Software (2012), 43.
– reference: [KMM04] Kaczynski T., Mischaikow K., Mrozek M.: Computational Homology, vol. 157. Springer, 2004.
– reference: [CCE*10] Chambers E. W., Colin de Verdière É., Erickson J., Lazard S., Lazarus F., Thite S.: Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time. Computational Geometry 43, 3 (2010), 295-311. Special Issue on 24th Annual Symposium on Computational Geometry (SoCG' 08). http://www.sciencedirect.com/science/article/pii/S0925772109000637, http://dx.doi.org/10.1016/j.comgeo.2009.02.008 doi:10.1016/j.comgeo.2009.02.008.
– reference: [Hat02] Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge, UK, 2002. http://www.math.cornell.edu/hatcher/AT/ATpage.html.
– reference: [RZE08] Rubinstein R., Zibulevsky M., Elad M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technion 40, 8 (2008), 1-15.
– reference: [AG95] Alt H., Godau M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and its Applications 5 (1995), 75-91.
– reference: [EG08] Ellis G.: Homological algebra programming. In Computational Group Theory and the Theory of Groups 470; Americal Mathematical Society, Providence,RI. (2008), pp. 63-74.
– reference: [Mil07] Milnor J.: A survey of cobordism theory. Collected Papers of John Milnor: Differential topology 3 (2007), 291.
– reference: [CW10] Cook A. F., Wenk C.: Geodesic Fréchet distance inside a simple polygon. ACM Transactions on Algorithms 7 (2010). 1-19.
– reference: [Law80] Lawson H.: Lectures on Minimal Submanifolds, vol. 1 of Mathematics Lecture Series. Publish or Perish, Houston, TX, 1980. http://books.google.com/books?id=vlbvAAAAMAAJ.
– reference: [RS02] Rubio J., Sergeraert F.: Constructive algebraic topology. Bulletin des Sciences Mathématiques 126, 5 (2002), 389-412.
– reference: [SJ05] Stein W., Joyner D.: Sage: System for algebra and geometry experimentation. Communications in Computer Algebra (SIGSAM Bulletin) (2005). http://sage.sourceforge.net. Accessed 1 October 2012.
– reference: [HSB66] Hirzebruch F., Schwarzenberger R. L., Borel A.: Topological Methods in Algebraic Geometry, vol. 232. Springer, New York, NY, 1966.
– reference: [Whi84] White B.: Mappings that minimize area in their homotopy classes. Journal of Differential Geometry 20, 2 (1984), 433-446. http://projecteuclid.org/euclid.jdg/1214439286.
– volume: 470
  start-page: 63
  year: 2008
  end-page: 74
  article-title: Homological algebra programming
  publication-title: Computational Group Theory and the Theory of Groups
– volume: 126
  start-page: 389
  issue: 5
  year: 2002
  end-page: 412
  article-title: Constructive algebraic topology
  publication-title: Bulletin des Sciences Mathématiques
– volume: 7
  start-page: 1
  year: 2010
  end-page: 19
  article-title: Geodesic Fréchet distance inside a simple polygon
  publication-title: ACM Transactions on Algorithms
– volume: 1
  year: 1980
– volume: 40
  start-page: 1026
  issue: 4
  year: 2011
  end-page: 1044
  article-title: Optimal homologous cycles, total unimodularity, and linear programming
  publication-title: SIAM Journal on Computing
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 40
  start-page: 1
  issue: 8
  year: 2008
  end-page: 15
  article-title: Efficient implementation of the K‐SVD algorithm using batch orthogonal matching pursuit
  publication-title: CS Technion
– volume: 1
  start-page: 40
  year: 1993
  end-page: 44
– start-page: 145
  year: 2004
  end-page: 156
  article-title: A survey of content based 3D shape retrieval methods
  publication-title: Proceedings of Shape Modeling Applications
– start-page: 7
  year: 2012
– year: 2001
– volume: 93
  start-page: 119
  year: 1971
  end-page: 138
  article-title: The index of elliptic operators on compact
  publication-title: Bulletin of the American Mathematical Society
– year: 2000
– volume: 20
  start-page: 433
  issue: 2
  year: 1984
  end-page: 446
  article-title: Mappings that minimize area in their homotopy classes
  publication-title: Journal of Differential Geometry
– volume: 3
  start-page: 291
  year: 2007
  article-title: A survey of cobordism theory
  publication-title: Collected Papers of John Milnor: Differential topology
– start-page: 425
  year: 2013
  end-page: 434
– volume: 5
  start-page: 75
  year: 1995
  end-page: 91
  article-title: Computing the Fréchet distance between two polygonal curves
  publication-title: International Journal of Computational Geometry and its Applications
– volume: 24
  start-page: 235
  issue: 3
  year: 1997
  end-page: 265
  article-title: The magma algebra system I: The user language
  publication-title: Journal of Symbolic Computation
– year: 2014
– year: 2005
  article-title: Sage: System for algebra and geometry experimentation
  publication-title: Communications in Computer Algebra (SIGSAM Bulletin)
– year: 2012
– volume: 232
  year: 1966
– volume: 5760
  start-page: 235
  year: 2009
  end-page: 248
– start-page: 43
  year: 2012
  article-title: Gap persistence–a computational topology package for gap
  publication-title: Book of Abstracts Minisymposium on Publicly Available Geometric/Topological Software
– volume: 43
  start-page: 295
  issue: 3
  year: 2010
  end-page: 311
  article-title: Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time
  publication-title: Computational Geometry
– year: 2002
– volume: 59
  start-page: 797
  issue: 6
  year: 2006
  end-page: 829
  article-title: For most large underdetermined systems of linear equations the minimal ð1‐norm solution is also the sparsest solution
  publication-title: Communications on Pure and Applied Mathematics
– volume: 157
  year: 2004
– start-page: 526
  year: 1996
  end-page: 531
– volume-title: Topology
  year: 2000
  ident: e_1_2_7_25_1
– ident: e_1_2_7_34_1
– ident: e_1_2_7_6_1
  doi: 10.1006/jsco.1996.0125
– ident: e_1_2_7_20_1
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_7_29_1
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 291
  year: 2007
  ident: e_1_2_7_23_1
  article-title: A survey of cobordism theory
  publication-title: Collected Papers of John Milnor: Differential topology
– volume: 40
  start-page: 1
  issue: 8
  year: 2008
  ident: e_1_2_7_31_1
  article-title: Efficient implementation of the K‐SVD algorithm using batch orthogonal matching pursuit
  publication-title: CS Technion
– volume: 20
  start-page: 433
  issue: 2
  year: 1984
  ident: e_1_2_7_39_1
  article-title: Mappings that minimize area in their homotopy classes
  publication-title: Journal of Differential Geometry
  doi: 10.4310/jdg/1214439286
– ident: e_1_2_7_21_1
  doi: 10.1007/b97315
– ident: e_1_2_7_3_1
– ident: e_1_2_7_12_1
  doi: 10.1145/2462356.2462375
– start-page: 7
  volume-title: Book of Abstracts Minisymposium on Publicly Available Geometric/Topological Software
  year: 2012
  ident: e_1_2_7_37_1
– volume-title: Lectures on Minimal Submanifolds
  year: 1980
  ident: e_1_2_7_22_1
– ident: e_1_2_7_17_1
– ident: e_1_2_7_30_1
  doi: 10.1016/S0007-4497(02)01119-3
– ident: e_1_2_7_7_1
  doi: 10.1007/978-3-319-04099-8_7
– ident: e_1_2_7_14_1
  doi: 10.1002/cpa.20132
– start-page: 43
  year: 2012
  ident: e_1_2_7_38_1
  article-title: Gap persistence–a computational topology package for gap
  publication-title: Book of Abstracts Minisymposium on Publicly Available Geometric/Topological Software
– ident: e_1_2_7_13_1
  doi: 10.1137/100800245
– volume: 93
  start-page: 119
  year: 1971
  ident: e_1_2_7_5_1
  article-title: The index of elliptic operators on compact
  publication-title: Bulletin of the American Mathematical Society
– ident: e_1_2_7_26_1
  doi: 10.1109/78.258082
– ident: e_1_2_7_8_1
– ident: e_1_2_7_32_1
  doi: 10.1109/CVPR.1996.517122
– ident: e_1_2_7_10_1
– ident: e_1_2_7_28_1
  doi: 10.1109/ACSSC.1993.342465
– ident: e_1_2_7_16_1
– ident: e_1_2_7_24_1
– ident: e_1_2_7_36_1
  doi: 10.1109/SMI.2004.1314502
– ident: e_1_2_7_27_1
– ident: e_1_2_7_35_1
– ident: e_1_2_7_2_1
  doi: 10.1142/S0218195995000064
– ident: e_1_2_7_9_1
  doi: 10.1016/j.comgeo.2009.02.008
– year: 2005
  ident: e_1_2_7_33_1
  article-title: Sage: System for algebra and geometry experimentation
  publication-title: Communications in Computer Algebra (SIGSAM Bulletin)
– ident: e_1_2_7_11_1
  doi: 10.1145/1868237.1868247
– volume-title: Algebraic Topology
  year: 2002
  ident: e_1_2_7_18_1
– ident: e_1_2_7_15_1
  doi: 10.1090/conm/470/09186
– ident: e_1_2_7_19_1
  doi: 10.1007/978-3-662-30697-0
– ident: e_1_2_7_4_1
  doi: 10.1007/978-3-642-03456-5_16
SSID ssj0004765
Score 2.1957276
Snippet Calculating and categorizing the similarity of curves is a fundamental problem which has generated much recent interest. However, to date there are no...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Algorithms
Analysis
Chains
Clustering algorithms
Computation
computational geometry
Computer graphics
curves and surfaces
Efficient implementation
Feasibility
Geometry
Homology
Homotopies
I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling-Geometric algorithms
I.5.3 [Pattern Recognition]: Clustering-Similarity measures
Image processing systems
languages and systems
languages and systems; I.5.3 [Pattern Recognition]: Clustering–Similarity measures
Linear algebra
Linear algebra tools
Mathematical analysis
Object modelling
Pattern recognition
Pattern recognition systems
Similarity
Similarity measure
Similarity measures
Studies
Topological manifolds
weird math
Title Computing Minimum Area Homologies
URI https://api.istex.fr/ark:/67375/WNG-HPX9266C-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12514
https://www.proquest.com/docview/1715445956
https://www.proquest.com/docview/1778044585
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181226
Volume 34
WOSCitedRecordID wos000362978000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5q60EPvsVqlSoiXlb22XTxVFq3PWgp4qO3kE2zWrRb6UP8-c5kH1pQELwsgZ1sHpNJvtlkvgCcmkLWpTWwjFAxCslR0vBNTxpoSZEbSsdzhabMv2bdbr3f93sFuMxiYRJ-iPyHG1mGnq_JwEU4_Wbk8im6oNXZXYKSjePWK0KpdRvcX3-FRbKal1F7E2lMSixEB3nyzAvLUYl69mMRayb8oYvQVa89wfq_ar0BaynkrDaSMbIJBRVvweo3IsJtOE4ud8B09WYYD0fzEYorUe2MR3pyVNMduA-u7podI708wZAuc10jjCxTKibNWoS-pqVC2jBjbj3CpxkhjlGOsiPfolhvSzghIidEbo43qAtJvEzOLhTjcaz2oGrLmjnwQ8cP0fuymedbCudQzK_QeRORXYbzrA-5TJnF6YKLV555GNhqrltdhpNc9C2h0_hJ6EwrIpcQkxc6f8Y8_tht806v7yOsaPKgDJVMUzw1vSm3mCYYQr-vDMf5azQa2gkRsRrPSYZ4l1x0lbCsRMN5YcS33Ro-NPh48sRfZs-cMJCNHzvXev292rzZDnRi_--iB7CCCMxLDq1VoDibzNUhLMv32XA6OUoH9CfzS_SW
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB7UCuqDt1jPKiK-rOyRbbrgS6muFWsR8ehb2E2zWrRb6SH-fGeyhy0oCL4sgZ3s5phJvkkyXwCOzEBWpNW2jFBxCslR0vBMVxpoSRELpeOyQFPmN3izWWm1vNspOMtiYRJ-iHzBjSxDj9dk4LQgPWbl8jk6pemZTUOBoRqhfhfO7_yHxndcJC-7Gbc3scakzEJ0kifPPDEfFahpPyfBZkIgOold9eTjL_2v2MuwmILOUjXRkhWYUvEqLIxREa7BQXK9A6ZLN5240x11UVwFpXqvq4dHNViHB__ivlY30usTDMk4Y0YYWaZUXJrlCL1NS4W0ZcZZJcKnGSGSUY6yI8-iaG8rcELETojdHLddCSQxMzkbMBP3YrUJJVuWzbYXOl6I_pfNXc9SOIpifoXuWxDZRTjJGlHIlFucrrh4E5mPgbUWutZFOMxF3xNCjZ-EjnVP5BJB_5VOoHFXPDUvRf225SGwqAm_CDtZV4nU-AbC4ppiCD2_Ihzkr9FsaC8kiFVvRDLEvMTQWcJ_JV2c_4wYt887j1XR6z-L1-GLIBRk48dOdMf-XmxRu_R1YuvvovswV7-_aYjGVfN6G-YRj7nJEbYdmBn2R2oXZuXHsDPo76Xa_QWkBfiG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZTxsxEB5BUiF4oJwikJZQoYqXRXt446zES5R0SdUQRVWBvFm7jh0iyAblQP35nfEeEIlKlfqysrTj9TEe-5u1_Q3AuR3JhnSGjhUrTldylLQC25cWWpJmsfR8FhnK_C7v9RqDQdBfg6v8LkzKD1H8cCPLMPM1Gbh6Huo3Vi5H-pKWZ7YOZUZBZEpQbv8Mb7uv9yJ53c-5vYk1JmMWopM8ReaV9ahMXft7FWymBKKr2NUsPuHH_6v2DmxnoLPWTEfJLqypZA-23lAR7sNZGt4B07WbcTKeLCcorqJaZzox06OaH8Bt-O1Xq2Nl4RMsyThjVqwdWyou7bpGb9NRMW2ZcdbQ-LQ1IhnlKVcHDt32diIvRuyE2M3zh41IEjOTdwilZJqoI6i5sm4Pg9gLYvS_XO4HjsJZFPMrdN8i7VbgIu9EITNucQpx8SRyHwNbLUyrK_ClEH1OCTXeE_pqNFFIRLNHOoHGfXHfuxad_iBAYNESYQWquapEZnxz4XBDMYSeXwXOitdoNrQXEiVquiQZYl5i6CxhWamKi8KIcbs9vmuK6WwkHhcPglCQix-7MIr9e7VF6zo0ieN_Fz2FjX47FN3vvR8nsIlwzE9PsFWhtJgt1Sf4IF8W4_nscza4_wA5FPgB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Minimum+Area+Homologies&rft.jtitle=Computer+graphics+forum&rft.au=Chambers%2C+Erin+Wolf&rft.au=Vejdemo-Johansson%2C+Mikael&rft.date=2015-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=6&rft.spage=13&rft_id=info:doi/10.1111%2Fcgf.12514&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3814981061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon